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Abstract—Modern frameworks, such as Hadoop, combined due to two factors: first, each infrastructure has its owrdhar
with abundance of computing resources from the cloud, offer ware limitations. Second, the data processing algorithms i
a significant ‘opportunity to address long standing challengs 5 jemented by the jobs cannot always be efficiently parateli
in distributed processing. Infrastructure-as-a-Serviceclouds re- d theref t suited for this t f distributed
duce the investment cost of renting a large data center while an ereiore are not suited tor 'S_ ype ot distributedrens
distributed processing frameworks are capable of efficieny Ment. Research on the aforementioned bottleneck factars ha
harvesting the rented physical resources. Yet, the performnce resulted in solutions that can efficiently harvest the hamw
users get out of these resources varies greatly because theaesources of infrastructures of any size. Experience inlsri
cloud hardware is shared by all users. The value for money pa5 shown that the combination of a resource allocation tool

cloud consumers achieve renders resource sharing policies ith ind lib for distributed -
key player in both cloud performance and user satisfaction.n with a programming library for distributed programmingg.

this paper, we employ microeconomics to direct the allotmen MPI) can fully utilize small to medium computer clusters,[3]
of cloud resources for consumption in highly scalable maste [4]. For larger computing infrastructures, frameworkstsas

worker virtual infrastructures. Our approach is developed on  MapReduce are shown to display outstanding scalability[1]
B’;‘;Sri’gln'rseiz‘utgis“"‘;‘:g'ﬁ?nr;tse”dmﬂs‘"’i‘:%aﬁ Pi%grg:gﬁettﬁgdcﬂg Yet, purchasing and maintaining such large physical infras
administration is able to maximize per-user financial ’profit We tructgres involves a high investment r'gh'fraStr_UCture as a_
show that there is an equilibrium point at which our method ~Service(laa§ clouds have greatly reduced the investment risk
achieves resource sharing proportional to each user's budg. of owning an infrastructure, but introduce a new perfornganc
Ultimately, this approach allows us to answer the questionfohow  scaling factor: the user’s financial capacity to rent virtua
mag;y reso“rlces a dcc:j”i”mﬁr Slhc’”(;d request from the seemingly yagoyrces. This additional factor complicates the depkaym
endless pool provided by the cloud. and management of cloud architectures.

. INTRODUCTION The value for money spent in a multi-tenant, elastic cloud
renders resource sharing policies a key player in both cloud
Cloud computing introduces a number of challenges rgerformance and user satisfaction. These policies must tak
garding both performance and financial issues. On the oagy account the fact that cloud providers need strategies t
hand, consumers of cloud services try to minimize the execsiyajuate and reduce possible financial risks while maximiz-
tion time of their submitted tasks without exceeding a givefg their profit. In addition, resource sharing policies mus
budget and on the other, cloud providers are keen on maximigke into consideration the user’s budget. Such policiésnof
ing their financial gain while keeping their customers $&tis  employ either auctioning [5], [6] or attempt to estimate ruse
With this work we focus on virtual infrastructures fO”OVgn demand for resources [7] In this way, the consumer needs are
the master-worker paradigm hosted in a cloud. In this tyRgiantified based on their willingness to pay for the resairce
of infrastructure, there is a master node that dispatches jgyailable. Microeconomic-based resource sharing pslitias
to worker nodes and increasing performance is a matter Qfow for the distributed computing infrastructure to ream
adding extra worker nodes. This ease of expansion has be@gilibrium where the quality of service provided refledts t
put into use by a number of programming frameworks, Su?ﬁoney spent.

as MapReduce[l], [2], and resource allocation management _ i ) .
In this paper, we propose a virtual-machine provision

tools, including Condor[3] and TORQUE[4]. _ _ )
policy based on marginal cost and revenue functions. Each
Much of the previous work on master-worker architecture§oud customer announces her budget as a function of the
targets scalability bottlenecks. Such bottlenecks magldgv execution time of the tasks she submits. Knowledge of this
function, combined with the machine-hour cost, allows for
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allocated per customer in the context of @aSCloud The be requested from alaaSCloud is not a trivial onelaaS
main contribution of our approach is that we provide an amsw€louds offer VMs at a specific monetary cost. Overconsump-
to the question of exactly how many virtual machines (VMs) tion of virtual resources must be avoided since underetiliz
consumer should request from a cloud within a budget. Irt lighvorker-nodes reduce the value-for-money the cloud client
of scalable, master-worker-based, virtual infrastruesuand achieves. Similarly, a conservative policy that undenestes

the seemingly endless resources of a physical cloud, sjregif the need for worker nodes may result in long processing times
the exact amount of resources needed must be basedthars hampering user satisfaction.

a) the consumer’s budget and b) the performance bottlenecks
which are known only at runtime. We propose a mechanis(pa
that continuously monitors user application performanoce a
either “removes” or “adds” VMs in response to the observed 1)
performance fluctuations serving the needs of autonomic sys
tems [8]. Our approach automatically adjusts to the ever-
changing equilibrium point caused by dynamic workloads and
thus ensures that resources are shared proportionallyteyno
spent by the users. In addition, our approach is applicable t

a wide range of computational environments since it does not
enforce the use of a specific job submission tool. We allow
each user to select any virtual infrastructure equippel thie

tools of her preference.

The rest of this paper is organized as follows: Section I
describes the problem our system targets. Section Il givesz)
an overview of the related work. In Section IV we describe
the main aspects of our system in a single user environment.
In Section V we present how our approach performs when
multiple users coexist in a dynamic environment with ever-
changing conditions. Section VI outlines both simulation a
prototype experimental results while concluding remanies a
found in Section VII.

Il. PROBLEM STATEMENT

The master-workers paradigm is used by numerous pro-
gramming frameworks and resource management tools to im-
plement a number of parallel algorithms [9]. The master node
acts as the coordinator assigning jobs to the workers. Since
workers reside on different machines, they can process data
simultaneously and collectively produce the output rasult
A user can effectively increase application performance by
adding more worker nodes.

This paradigm is constrained by the physical resourcgg
available as well as the application-specific requiremen
Satisfying the needs of such applications routinely ingslv
setting and maintaining high-end, large data centers. The
latter either exceed the financial capabilities of the egezd
parties or constitute a risky investmenaaSclouds, with
their on-demand elasticity, are able to reduce such ﬁnancI
risks; they provide a seemingly-endless pool of computatio
resources needed to exploit the scalability of master-wor
frameworks such as Map-Reduce [1]. Users contacting A
laascloud request a number of virtual machines (VMSs) t
host the software framework of their preference. These V
make up the elastic virtual infrastructure that will expamd
demand with the addition of extra worker nodes.

When deciding on the number of worker VMs, one must
nsider both:

The level of user satisfaction:User satisfaction can

be quantified through a budget function. However, low
budget does not necessarily indicate that the user is
satisfied with fewer VMs, rather a low budget may be
the result of limited financial means on the user’s part.
In a multi-user environment, administrators may need
to consider establishing a social scheduling policy that
would prevent “poor” users from being entirely deprived
of virtual resources. The risk here is that one may
manipulate such policies and reduce the cloud’s financial
gain.

The overall performance of the virtual infrastruc-

ture: The number of worker VMs must never exceed the
threshold over which extra workers become an overhead.
As more nodes are added to the virtual infrastructure,
the performance penalty incurred by the communication
between the workers and the master node increases.
The scalability displayed by the virtual infrastructure is
often subject to this communication cost. In turn, this
communication cost is subject to the algorithms used,
the amount of data processed and the characteristics
of the virtual and physical nodes [10], [11]. Moreover,
neither the user nor the cloud administration are able to
estimate the infrastructure’s performance by themselves.
The software stack installed and the data sets processed
are known only to the user, whereas the exact physical
node characteristics are known only to the cloud admin-
istration and are typically never revealed to the user.

Ideally, one could use an analytical model to predict the
timal number of worker VMs. Such a model would take into
counta) the performance limitations set by the hardware,
B the interactions among all user applications simultangous
erved by the cloud;) the input data used by the applications
execution, andd) the performance constraints set by the
software stack on both the physical and virtual infrasticet
Unfortunately, implementing this model is impractical btn
[ffeasible especially considering the fact that severmgerties
are known only at runtime. Our approach requires from each
ser to specify only her budget as a function of the total exec
Bn time of her workload. Assuming that such workloads are
?ecurring, we employ an autonomic system that continuously
I%?onitors the infrastructure’s performance and adjustsnyp a

changing conditions. We handle the infrastructure as akblac

box —with the number of VMs as input and the total execution

The decision on the exact number of worker-node VMs time as output—, thus our approach can be used in any master-



workers “elastic” architecture [2], [3]. resources of different grid sites are shared through a béddi
process.

[1l. RELATED WORK The management dhaS-Clouds must tackle both techni-
cal and theoretical issues to achieve profit maximizationHe
The idea of using economics in resource sharing policigiud providers and satisfaction of QoS expectations sy
is an old one. Two types of market-oriented resource sharipgstomers. Such infrastructures offer elastic serviceswray
policies have been examined in terms of market stability afigat they can be measured, thus allowing for a billing pay
resource efficiency [12] . The two types are: a) markets whetse enforced. In this way, clouds inherently provide ground f
resources are shared through auctions and b) markets whgiglying various economic models [24]. Service consumers
resources are treated as interchangeable commdditiethe  aimost always have some form of a utility function that cerre
latter market type, resources are given a fixed price dete&i sponds to their budget while providers try to maximize their
according to their supply and demand [7]. Markets whefgancial gain. For instance, in [25], a budget-based firgnci
resources are treated as commodities are applicable wieneyodel is used to manage an adaptive cloud environment. Yet,
the group of interested users does not allow the creation @ilike our approach, their model is not adaptive in terms of
an auction. Most often in commodity selling markets, usehe number of cloud virtual machines deployed. Insteadr the
demand reduces as resource price increases. This kind of ggghroach responds to user QoS requirements by building new
behavior is assumed to study the conditions that maximiee tata structures and/or choosing the most appropriate query
resource provider’s profit [15]. Markets with more than ongxecution plan.
type of commodity (such as CPU, network, storage) are well-
suited for use in multi-user computing clusters. Here, gied

set the price of all sold resources considering their catigis can process large amounts of datynamic Hadoop2] and
[7]. Policies that take into account only high-level perfance b 9 " any. '

metrics, such as the application response time [16], seera mgondor [3] integrate with "elastic” infrastructures to aae
.resources upon demand. These frameworks add a software

appeal_lng to the end users since less intervention is muwayer that efficiently manages administrative concernsaf-s
on their part. : . . :
ing virtual infrastructures. We build on the success of such

Resource allocation based on auctioning [5], [6], [17] iRighly scalable frameworks and infrastructures and enhanc
easy-to-implement and well-justified. Users quantifytingied them with the application of microeconomic models for profit
for resources through bids while at the same time resouniggiximization. Contrary to much prior work [6], [12], [15],
providers offer their “products” for a price. In Mirage [18 [16], [20], [21], our approach targetaaS-Clouds and not the
sensor network with limited resources, bids involvingwatt Grid. Our system acts as a gateway to the cloud for the users,
currency in a closed loop market are used to express the ugging into consideration high-level user requirements. (i
need for resources and prioritize requests. Similarly,1if],[ application response time) and finally, designates a daitab
auctioning is employed to provide access to low level resesir number of virtual machines. To do so, we employ microeco-
such as CPU and RAM. Here resources are limited and usgtnics to converge to a proportional sharing equilibriu][2
use proxies to bid for combinations of resources in periodi this convergence point, resources are allocated prioport
auctions. ally to the amount of money each user spends. Contrary to

Often, both consumers and producers are able to gakditional auctioning-based systems [5], [6], [18], [10Ur
auctions in their favor. In many cases, market gaming is &Proach does notrequire users to bid. Rather, it takespas in
unwanted implication. An approach in tackling this imptioa @ USer budget function that portrays the money she is willing
is presented in [19]. Here, the agent matching the bids witp Pay for certain response time guarantees. The periodic
the resource offers is allowed to reduce the resource supﬁ}lﬂé:t'ons of [17] allow for resource sharing adjustments, bu

thus protecting the producers from teaming consumers. resource mapping produced is not optimal, instead, iin ou
case we achieve proportional share (fairness). The userebud

Due to its publicly available resources and the large usgfnctions we employ resemble the decaying value function of
base, the Grid is used by many researchers as a testped execution tasks described in [21]. However, unlike our
for various resource sharing policies [6], [12], [15], [16]work, [21] proposes heuristics to balance the risks andsgain
[20], [21]. However, the nature of the Grid —publicly-furtle jqlved. In addition, in our approach all tasks (correstiog
and freely available— does not allow such resource allogati;, users) are served simultaneously, thus there is no need
methodologies to be widely acceptable. Systems such g8 any task scheduling (queueing and prioritize). Thisals

Tycoon [22] and Libra [23] are built on lower-level resourcgomes in contrast to Mirage [18] where the goal is to pripeiti
scheduling and allocation tools —as the resource managerr&_rwestS according to their importance.

Torque system [4]- to bypass the complexity of Grids. In [21]

By combining clouds with high resource availability [13]
and a massively scalable programming framework [1], a user

In a multi-user virtualized environment, as the one we
Lin Amazon Elastic Computing Cloud [13] we find both marketagp 1INd in the cloud, quality of service and efficient resource

users are allowed to buy resources at a fixed price or bid fantht a lower management are often contradicting high level goals. 1, [27
price [14]



the impact of resource overbooking in quality of service is - Lot budaet
examined. Autonomic systems [28], [29] are also shown to uige etbudge

2:Monitor

be able of efficiently managing resources under time-varyin SN T §7 ***** N
requests and multi-tier environments. | Response }
. L. 3 Budget time A t !

Our approach in resource provisioning resembles that of | _ dget

i i X 1Resource| 7 Sharing Layer !

a monopoly where the cloud provider is able to enforce price i D —— —

different prices to different consumers. We also employ an
autonomic mechanism that monitors the user’s applications
and continuously adjusts the number of VMs to be used. This Worker

mechanism is required since the user application response

discrimination [30]. In such a market the monopolist charge ' | Hadoop

time may change over time in ways we cannot predict. This,. , i emove

approach allows us to treat the cloud as a black box providing workers 3: Add/remove

us with resources. Unlike [2], [23], [31], we do not enforce ! || workers
the use of a specific job-submission tool. Instead, we leictlo | !
consumers use the job management system of their preference ! Cfr‘gf;‘;p \C/fr’&‘:‘l" :
and we ensure that the instantiated VMs register with it. | Infrastracture Infrastracture
IV. ADAPTIVE CLOUD MANAGEMENT Physical Inirastructure
In this section, we present a microeconomic model we Fig. 1. Operational overview of our approach

use to designate a suitable amount of resources for the cloud
consumers. Resources are dynamically requested on-the-fly

from anlaaScloud in the form of Virtual Machines (VMs). As we will discuss later, a budget function would better be
monotonically decreasidgi.e: B(t;) < B(ty),V t1 > t2.

A. Overview of Our Approach This means that users are not going to pay less if results are
to arrive sooner. For each job submission, we keep track of
The main operational aspects of our approach are depictad response time. By applying the average response time to
in Figure 1. Theresource-sharing layeimplements the mi- the user's budget function we determine the amount of money
croeconomic model we propose. In the figure, we show twwailable for buying virtual resources. This amount become
users who contact two separate virtual infrastructuresieia the revenue the cloud will get per hour.

Hadoop and Condor. The interaction among the users, our We expect the master-worker architecture present in the

framework, and the cloud involves three phases: first, eaeh u_. . S
virtual infrastructure to decrease the application’s orse

sets a budget function. Second, jobs are submitted and tf}elr "
. : . me when we deploy additional VMs. In turn, when we reduce
response time is monitored or announced to our framewo[

Third, worker VMs are added to or removed from the virtug 1¢ response tlme, the cloud's revenii ﬁorr_na_llly increases,

: . . Since the user is expected to pay more. This is the reason why
infrastructures. The user has no involvement during the las . .

phase. Also, note that the second and third step have to e suggest that budget functions be decreasing.

repeated more than once to find the optimal number of VMs. In practice, physical resources of clouds are limited and a
Therefore, the workloads served by our resource sharirgy laperformance bottleneck will eventually develop. Therefoe-
have to be recurring [9]. gardless the nature of this bottleneck (network commuiaioat
and/or computation), the response time reaches a minimum
for a specific number of VMs. This in turn means that there

an upper bound on the revenue. In Figure 2, we show a

Two key factors in our approach are the cloud revemie (
and the cloud cost({). The cloud revenue is estimated usin

the user budggt function and the monitored response t'mﬁys/pothetical revenue function. Note that the number of VMs
The cloud cost is the cost of owning the cloud resources.dn t . .
offering a lower bound on the response time and an upper

case of a single user, our approach maximizes the (.j'ﬁererbcc?und on the revenue may not be the most profitable in terms
between the revenue and the cost. In the case of mqupIe,userf :

o of value for money the user achieves.
our approach allocates resources fairly; i.e., propoatigrto

the money each user is willing to pay. A major factor influencing profit is the cost'§ of provid-
ing a VM. From the cloud’s perspective, this cost includes
B. Single User Adaption via Profit Maximization server hardware and software, IT staff training and salary,

power consumption and cooling costs, insurance, and down-
When the user contacts our framework, she announcegrge penalties. Although the virtual machine cost functisn
budget that will accompany all her job submission requests.

This budgetB(t) is a fun_Ct'on of the amour?t of money PETr" 2Monotonically decreasing budget functions combined witfixad price
hour she can afford relative to her average job response time& VM ensures that our approach will not get trapped at d lmgaimum



undoubtedly, complex, we assume it is well-studied and kmowe do not have enough data to compM&. Therefore, for
to the cloud financial administration. From the user’s poiht these runs, we simply increase the number of VMsstap
view, each VM usually has a fixed price. This price is the VM

cost for the users. In any case, this cost per VM is knov‘@?ther increase or decrease the number of VMs we need active.

to our approach. Figure 2 depicts —apart from the FeVENULRa exact number of VMs to be added or removed plays a

the cost mvplved n purcha_smg VMS.‘ We choose to Ol'Splégfgnificant role in the number of iterations our approachdsee
a cost function that grows linearly with the number of VMs

e ) L to converge to the\/C = M R equilibrium. In Algorithm 2,
This fixed price per VM policy is common amorngaS-cloud how h decid th b f VMs. The inout
providers [13]. When combining this VM billing policy with awe S1OW NOW We decide on e number o s “he Inpu

: . . ~of this algorithm is a variable namedirection indicating
monotonically decreasing user budget function, we get@s'nwhetherMC is greater tharMR (or not) and the number of
point where the profiiR-C' is maximized.

VMs which are currently active. There are two policies in
Figure 2 also presents the Marginal Reverd®) and the changing the VM numbera) exponentially andb) linearly.

Marginal Cost MC) that an additional unit of product (in ourOur approach is inspired by the congestion avoidance and

case, a VM) will bring: control [32] employed by various TCP implementations.

Depending on the difference betwe®R and MC, we

MR = dR/dVM, MC = dC/dVM The idea behind the exponential and linear
increase/decrease is the same as with the slow start and
The profit is maximized wheMC=MR at point A. Here, congestion avoidance modes we find for the TCP congestion
we should provide B VMs. Beyond B, each VM costs moreindow. We start with the exponential VM-increase mode
than the revenue offeredMC>MR). Until we reach B VMs, until we pass the maximum profit point. As soon as we
the cost for each unit of product (VM) is less than the revenage past theMC = MR, we start decreasing VMs linearly.
we get from it MC<MR). For B VMs, the total cost and In case we havestart exp moveafter steps of the same
revenue are E and D respectively; so the maximum p#fit “directior?, that is we havestart exp move after successive

is:P=D—FE. decreases ostart exp move after successive VM additions,
_ we move again to the exponential mode. In this way, if the
Price/hour equilibrium point changes, we readjust quickly using the

exponential change mode. Nevertheless if the equilibrium

Revenue (R) g . .
point stays the same, we perform a slight pivot around

P{ ””””””””” 3 Cost (C) it using the linear mode. Line$ to 11 of Algorithm 2
E > : count the successive iterations of the sanwirettion’.
‘ MC Using this count, we determine which mode to followf (
: MR clause of line12). In line 18, we employ a sanity check
. that prevents us from suggesting too many VMs. We check
B VMs this number of VMs against a threshold&/N_threshold

and if this threshold is exceeded, we change our increase
mode to linear.VMs threshold and start exp move after
constants are set to B® VMs and?5 iterations respectively.
‘As discussed in Section Il, identifying the equilibriumygyever, these values are bound to change according to
point of maximum profit must be done through an iterativge specific characteristics of the cloud infrastructurarge
process during the consumer’s interaction with the clolt Tinfrastructures are able to sustain a higher number of VMs
reason for this is that response times, and thus the total 4Ags, thevMs thresholdshould be set accordingly. Similarly,
marginal revenue, are known only at runtime. for infrastructures where VM instantiation is costly, hégh

Algorithm 1 computes the number of VMs to be usedalues ofstart exp move after may be appropriate.
in the virtual infrastructure by finding the equilibrium poi
where MC=MR. This algorithm takes as input the marginat. Cloud versus User Profit
cost MC) and estimates at runtime the marginal reveMB)(
We choose to hav®C as an input parameter as we expect Our approach can be used either as a module “inside”
either the cloud administration or th@aSconsumer to set the the cloud or as a user-gateway to the cloud’s resource pro-
cost function MR estimation is done through the user’s budgetisioning mechanism. The difference between these two uses
function and the average response tiffieboth of which are is essentially what the cost and revenue functions reptesen
provided as input. The final inpustep is the initial number when our approach is implemented as a cloud component, the
of VMs to be used to bootstrap the algorithm. In lings-12, revenue function is the amount of money the user pays while
we compute the Marginal Revenue. In doing so, we use ttiee resource cost is the internal operational cost of thedclo
average response time and the designated VM count of thethis case, the profit is the cloud’s financial gain. When
last two runs. We keep this information in the static vaabl consumers employ our approach as a gateway to the cloud
of the algorithm (linesl-5). Note that for the first two runs resource provisioning mechanism, the cost is the resource

Fig. 2. Maximize profit using Marginal Revenue and Cost



Algorithm 1 Compute Number of VMs Algorithm 2 VMs_Deviation

Input: B() : User budget function Input: di recti on: “Up” or “Down” if MR > MC or MR < MC
MC() : Marginal cost function | ast _VM count Current number of VMs
st ep: Step in changing the VM count Output: Number of VMs to provide

T Average response time

Output: Number of VMs to provide %3
. . 3:

1: static last resp time = 0 4:
2: static secondto_last resp time = 0 5
3: static last VM _count = 0 6
4: static secondto_last VM _count = 0 7:
5: static run = 1; a:
6: cur VM_count = 0; 9o
7: if (run == 1) OR (run == 2)then 10
8: cur.VM_count = lastVM_count + step 11
9: else 12
10: dVM = secondto_last VM_count - lastVM_count 13:
11: dR = B(secondo_last resp time) - B(last resp time) 14:
12: MR =dR/dVvM 15:
13: if MR > MC(last VM_count) then 16
14: cur VM _count = VMs Deviation(“Up”, last VM _count) 17
15: else 18:
16: cur VM _count = VMs Deviation(“Down”, last VM _count) 19:
17: endif 20:
18: end if 21:
19: secondto_last resp time = lastresp time 22:
20: secondto_last VM _count = lastVM_count 23
21: last VM _count = curVM_count 24
22: lastresptime =T 25:
23: run++ 26
24: return cur_VM_count 27:

constant VMs_threshold = 50
constant start exp_move after = 5
static last direction = “Unknown”
static samedirection = 0
static VMs_increase = 1;
if direction != lastdirection then
samedirection = 0
else
samedirection++

:end if
: last direction = direction
: if samedirection > start exp_ move after then

VMs_increase = 2 * VMsincrease;
else
VMs _increase = 1;

: end if
: if direction == “Up” then

if last VM _count + VMs increase> VMs_thresholdthen
VMs_count = lastVM_count + 1
samedirection = 0

else
VMs_count = lastVM_count + VMs increase

end if

. else

VMs_count = lastVM_count - VMs increase

: end if

return VMs_count

purchase price and the revenue is the money users are willing
to pay. However, in this setting, the revenue is not paid to
the cloud; instead, it is used as a measure of user satefacti
Maximizing profit results in an optimum degree of satisfacti
(revenue) per virtual machine. In brief, consumers maximiz
the value-for-money ratio.

V. MULTIUSER DYNAMIC ENVIRONMENTS

Our approach thus far assumes a single user environment,
an assumption that is not true when it comedaaS-clouds.
Clouds are multi-tenant environments where users do not
directly interact with each other, yet, the performance thet the
out of the infrastructure is greatly influenced by other sser,
In this section, we show how our model functions in sucﬁ
dynamic environments to reach equilibriuMC¢=MR). .

A. Multiple Users

Adding morelaaScloud consumers results in increased
demand for cloud resources. The VMs of different users will «
compete over physical resources increasing the virtughsaf
tructure’s average response time. In turn, increased nsgpo
times decrease revenue. Figure 3 shows how the maximum
profit equilibrium, point4, is shifted to the left as revenue and
marginal revenue decrease. The shift freimio A’ suggests
that fewer VMs (B’ instead of B) should be deployed to
maximize the profit from a specific user. The interpretation
of this per-user optimal VM provision pointy) depends on

Price/hour
Revenue (R)

éEé VMs

Fig. 3. Equilibrium shift in light of revenue reduction

entity (consumer or cloud administration) that emplmys

pproach:

Cloud: When the cloud administration employs our ap-
proach it achieves maximum profit per user. We ex-
pect lower-level mechanisms, such as CPU scheduling
and network bandwidth quota, to favor well-paying cus-
tomers.

Users: In caseMC=MR is reached for each user sep-
arately, cloud’s physical resources are assigned in such
a way that any deviation from that would result in
placing at least one of the consumers at a disadvantage
(Pareto optimality). If we were to provide more physical
resources at the same cost —without changing the con-
sumers VM number- to a specific consumer we would be
decreasing her jobs’ response times. However, the rest of
the consumers would be deprived of some portion of their



resources due to the cloud’s resource sharing policies. Starting from the maximum profit point and using equa-
These consumers will be at a disadvantage as their valtiens 3 and 4:
for-money ratio would deteriorate.

MC(v) = MR(v)=
B. Proportional Share — Price Discrimination dC(v)  dR(v) NG
The equilibrium point our approach reaches displays a dv d}%v @
number of properties examined both in the context of eco- K = To =
nomics and resource sharing. With our approach the cloud A
« ” . . . d( e (ln(v) +1))
sells” resources at a different price to each user. Thigtyp K = 7
of market resembles a variation of the monopoly where the A1
monopolist enforces price discrimination among buyerd.[30 K = AR =
Selling at different prices allows for maximizing profit per A1
consumer. In this case, the total financial gain is greatan th L Ve (5)

the financial gain the provider would have with a single
price for all consumers. The main difference between our In case we have: users each one with her own budget

approach and monopolistic markets with price discrimovati function (B;(t) = %) the ratio of the VMs allotted to usér
is that in our approach, we do not exert control over the:

resource/product supply, the amount of resources is fixed an Uk i /(M % K) Ak ©)
we only need to distribute them among users/consumers. In ST v = ST N/ (M K) = ST

contrast, the monopolist in markets with price discrimioais

able to produce more products to satisfy the demand up to the Equation 6 shows that this VM allotment is proportional
point where profit is maximized for each customer separatefy the maximum amount of money each user is willing to

We now show how our approach manages to share R&Y- We acknowledge that the above modeling is inaccurate.
sources proportionally to the funds each consumer is \gillif\evertheless, the modeling and its assumptions are usgd onl
to pay. This resource sharing policy property indicateg thf9" the needs of demonstrating the resource sharing piepert
our approach treats users in a fair way. To show that oliy practice, purapproach makes no such assumptions as-it con
approach performs this type of fair resource sharing, V%antly monitors _the_cloud’s performa_nce through the raspo
have to make certain assumptions. The overall goal of thd¥ges of the applications. The proportional share properre
assumptions is to model the user behavior and the cloug'§© verified through our experimentation portion of whiot w

runtime performance. These assumptions are: discuss in Section VI.
Assumption 1: Each VM has a fixed cosk. C. Rapidly Changing Conditions

Assumption 2: The response time a single user would get out

of the cloud if she were using VMs is: . .
length chosen to monitor the response time plays a key mole. |
T(v) = L, (1) light of rapidly changing average response times, our ntetho
In(v) +1 might not converge to the point of maximum profit. As a
where)M corresponds to the time it would take the applicatioremedy, we could consider increasing the monitoring period
to complete with only one VM. With this function we modellength. Factors influencing the response time include:
the fact that response time will reach a saturation point and
will improve only marginally after reaching a certain numbe

As is the case with any autonomic system [8], the period

« Variations in the workloads/jobs submitted to the virtual

of VMs [10] infrastructure. These variations include not only diffdre
_ ' ' execution tasks but also changing input parameters.
Assumption 3: Each useri has a budget of the form « Abrupt fluctuations in the amount of concurrelaaS
Ai cloud consumers.
Bi(t) = — (2)

Our approach adapts to mild changes in the response time
since Algorithm 1 computes/ R at runtime. The period length
) o between two successive suggestions must be such that the
From assumption 1, we have that the cost is fixed per VM/erage response time indicates changes in workloads and

therefore: resource availability.
MC =K ®)

where )\; is a per user-constant ands the response time.

: VI. EVALUATION
From equations 2 and 1, we can compute the revenue for

useri given that she uses VMs: We have implemented our framework as a Java library

M i so that it can be embedded in either consumer or cloud
B;(t) = Bi(T(v)) = Bi(m(v) n 1) =" (In()+1) 4 esource management systems. Our evaluation is two-fold.



First, we simulate a number of different cloud infrastruets Ritchie User 10 spends 25% of her time using on average 50
serving multiple users. Second, we use our framework tatasdfMs. When the system reaches the equilibrium point, we see
resource management in a real cloud infrastructure setupttiat the number of VMs assigned to each user is proportional
our lab. With the simulation we examine the behavior of ouo the amount of money she is willing to pay. Thus, more VMs
framework when used in large data centers while in the remie assigned to Richies and fewer to Scrooges. The deviation
cloud we show how our approach enables users to subifindm the equilibrium point increases as more VMs are used in
jobs to an “elastic” Hadoop infrastructure capable of grayvi our virtual infrastructure. This behavior is expected siriic
or shrinking on demand. large virtual infrastructures the addition or removal ofragte

VM has minor impact on the overall performance.
A. Simulated Cloud Environment

2 50

We have simulated the behavior of a typical cloud mlddles: -
ware that serves user requests for VMs. The cloud mlddlewaré
assigns the requested VMs evenly to physical machines asingg so T %
load balancing algorithm. We assume that all users arritteeat f”E L
same time and they submit the same workload continuously ‘ ‘ ‘ ‘ . Serooge, User 9 mmmm
for a pre-defined number of periods. During the first periodg s e S— — 1
all users are assigned the same number of VMs. This may
change according to the suggestions our approach provides. ,
Of key importance to our simulation is the model used tog
estimate the workload execution time based on the resourqﬁszs
provided by the cloud. The turnaround time of a job execution®
is given by the following formula:

1

ng VMS(u,i)

i=0 TotalVMs:)
With N being the number of VMs uset owns, VMs(u, i)
returns the portion of the VMs deployed on the physical nodew %
1. TotalVMs(i)is the total number of VMs deployed on node E
We also apply a Gaussian noise. The optimal amount of VM2
per user is calculated at the end of every period and is used 5
in the upcoming execution.

B(‘)b‘ User B‘ [rzeez]
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Table | shows all parameters of our simulation. We have 2 | ; } } ! : %
three types of users, Richies, Bobs and Scrooges. Richies p@
more than Bobs, and Bobs pay more than Scrooges. User&i %
4, 7, 10 are Richies, users 2, 5, 8 are Bobs and Users 3, 6, gsg
are Scrooges.

ng, User 2‘ [szeen]

) 50 60 b 80. %0

Time
percenta
N
(5,

¢

TABLE |
SIMULATION PARAMETER SETTINGS

Number of VMs

[ Parameter | Value
Number of physical nodes 100 Fig. 4. Percentage of time spent with each number of VMs
Number of users 10
mgg%nu”r?gﬁ%cgngfsfﬁg ‘;frruser ioo In any proportional sharing policy the following formula
VM cost 015 $ holds for every uset.
Gauss p=0, Y; R;
o = 0.001 = - =7 =0,
Richie budget function B(t) = \;z D Yu o 2o R
Bob budget function B(t) = % whereU is the number of userg; is the amount of resources
Scrooge budget function B(t) = > provided to useri and R; is the revenue we get from her.

Figure 5 shows that metric for every user during the simaitati

period after the equilibrium point is reached. In this wag w

Figure 4 shows 10 plots, each one corresponding toeatablish that indeed our approach converges to a propaftio
different user. The figure shows the percentage of time the ushare state. The computed proportional share metric isstimo
has at her discretion a specific number of VMs. For exampl@,for all users with slightly negative values for the Riches.



The reason for this is that Riches deviate more than the rest Using the simulated environment we were able to test how
of the users from their equilibrium point thus they are cledrg long it takes our approach to reach a steady state with respec

slightly more. to the number of users simultaneously entering the cloud.
Figure 7 shows the number of time periods our approach
29 o1l ' ' ' ' ' ' ' takes to reach a steady state as we increase the number of
©c . . . .
B O users contacting our simulated cloud. The estimation of the
28 — . . . .
g ML . . . . . Richie, User 10 —— steady state is based on when the profit stops increasing. For
T 1) T T T ) T . . .y .
2g oy [0 100 150 2000 2500 3000 350 4000 each iteration, we compute the profit in our infrastructuoerf
© c
ﬁi 00 all workers. By applying linear regression on the latest five
80 .01 . . . . . .
3 1 # # # # # Scjooge Users profit measurements we construct a straight line indicating
£3 o so 100 1800 2000 2500 3000 3500 4000 the evolution of the profit in the recent past. When the slope
b3 0‘1’ of this line is below0.2 for three consecutive iterations, we
o -uU. .
£ 1 # # # # # , Bb User8 —— assume the system has reached a steady state. Figure 7 shows
£3 o1 w u u
By g0 00 180 200 0 o 30400 that the system becomes more stable when more users use
ﬁgﬁ 0(1) S it. The reason for this is that the impact of a single user’s
o B S ) .. , .
& x # # # # # frchie, Geer 7 VM decisions on the rest of the cloud’'s users is greater
20 500 1000 1500 2000 2500 3000 3500 4000 .y
S when fewer users are present. In addition, a large number of
G 0 . L .
22 o1 users correspond to more VM adjustment operations per time
& 1 § § § § L Scjoode [eerd period, and thus the steady state point is reached withierfew
= ° 500 1000 1500 2000 2500 3000 3500 4000 . .
ge M iterations.
58 0
ED 01 ) ) ) ) ) ) | Bob, Users —— 250
Py o1 500 1000 1500 2000 2500 3000 3500 4000
L) — : e 200 | 1
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& ) ) ) ) ) ) llchle‘ Userlll — °
2y o1 500 1000 1500 2000 2500 3000 3500 4000 % 150 - )
;_g .. o
5z © g 100 f
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‘gg ol o Fig. 7. Convergence to Proportional Sharing
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B. A Private Cloud

Fig. 5. User VMs proportional sharin . .
g prop 9 To evaluate our approach in a real environment, we tested

it in a private cloud setup in our lab. We have setup two types
2500 of “elastic” virtual infrastructures one using Condor [3jch
a second with Hadoop [33]. In both infrastructure typeseher
2000 1 is a master node acting as a gateway. Through this gateway
the user is able to submit jobs to be executed on the worker
nodes.

1500

Profit (in $)

1000 1 . .
Worker nodes register with the master node as soon as

500 | . they become online. Both Condor and Hadoop feature a
mechanism to remove unreachable nodes from their worker
%o % 100 150 200 pools. Therefore, removing a worker involves shutting down
Time periods the VM hosting the respective worker services and perhaps
running additional shutdown scripts to ensure a gracefphde
of the worker from the “elastic” infrastructure.

Fig. 6. Total Profit

Figure 6 illustrates the total profit of the system, when the Each user has at her disposal her own private “elastic”
latter reaches its equilibrium point. For nearly 70 timeipaés infrastructure. When she contacts our cloud —apart from her
the cloud’s profit increases. From that point on, our franmdwobudget— she specifies the type of virtual infrastructureishe
gradually reduces the deviation from thEC=MR equilibrium going to use. Our cloud instantiates a gateway featuring a
point. public IP and informs the user about it. Each user is aware



only of her own gateway. Users do not interact with each othéne occurrences of the query regular expression and the
they are entirely isolated within their set of virtual mawbé. second operation sorts the matching strings accordingeio th
During operation, worker nodes register only with the gatgw frequency. The submitted job proceeds with the distributed
of the user that triggered their instantiation; there are roweation of a full textLucene[37] index using Katta [38].
workers shared among users. With this setup, the resour@éss operation functions on a different segmentdkipedia
shared are only those of the physical nodes. a 100 MB file, although it could use the results of the first

In our lab, the cloud’s hardware is setup on a rack whefll €P operation.

six dedicated nodes serve VM instantiation requests. Alph Repeated job submissions of the aforementioned formation
ical systems are connected through @ Bps Ethernet switch. are used to index parts dVikipediawhile at the same time
Each such node is equipped wighGB of RAM. Two nodes use our approach to efficiently use cloud resources.

are each equipped with an Intel(R) Core(TM)2 CPU 6600 at
2.40GHz while the other four have an Intel(R) Xeon(R) CPLéh
X3220 at 2.40GHz. Live migration is not available and VMB
disk images are fetched on-demand from a file server Wh@
they are to be deployed.

During our experimentation, the budget function we
oose to quantify the user need for performance is set to
t) = 1000 1/t, wheret is the response time. The cost per

is set to $.085, the amount Amazon EC2 [13] charges
for a small VM instance.

The VM hypervisor we use i¥en 3.2-1 [34]. In order to
treat all hardware nodes as a cloud we have setupOiben- de
Nebula v.1.2.Q35] middleware. WithOpenNebulave are able
to automate the instantiation, migration and shutdown ofsVM
These operations include the transparent copy or removal
disk images to/from the proper physical hosting nodes a

Figure 8(a) shows the number of VMs our approach
signates to the user’s job. Starting frerdMs our algorithm
quickly converges to an average of aroundvMs, with a
maximum of9 and a minimum oft VMs. In Figure 8(b) we
5% sent the response times the user gets from the cloudd Rapi

viations in response time such as the ones measured during

the issue .Of respectlvxen_ commanc_is. To harvest phySIcalperiods 34 and 45 are the product of other users consuming
resources in the best possible way, virtual worker nodesldho loud’s resources

be evenly distributed among physical VM hosting nodes. To

this end, we do not rely on the default VM scheduling and Figure 8(c) shows the internal operation of Algorithm 1.

placement policy olOpenNebulainstead we uséVefeli[36]. Using the user’s budget function and the response times we

Nefeli allows us to set VM deployment hints and constrainfgresent in Figure 8(b) we are able to compute the marginal

when entire virtual infrastructures are to be instantiateiti revenue. Figure 8(c) shows hawR pivots aroundMC in an

instantiated VMs use 512/B of RAM and a single CPU attempt to maximize profit.

core. To achieve this, we make use of ten VCPU-option |mpact of interaction among users:

to restrict the utilization of CPU cores. With this second experiment we show what is the reaction of
In the experiments presented here, we focus on the Hadddf§ approach to shortage of resources caused by the shéring o

infrastructure. As with the simulated workloads, userriate the clouds hardware. In order to have a clear view of the share

tion with the cloud consists of fixed time periods during whicresource we have used a CPU intensive job. This job estimates

a job is submitted. The response time of each submissiontfi& value ofr by executing a MapReduce program on our
tracked so as to set the exact number of the deployed VMelastic” Hadoop infrastructure. The MapReduce program
At the beginning of each period, we request the addition 86€d is shipped as part of Hadoop examples and employs a
removal of VMs. As soon as a new node comes on-line quasi-Monte Carlo method to distribute computation. Ramdo
automatically registers with the Hadoop JobTracker rugniPoints are placed within a unit square. Comparing the amount

on the user’s gateway using a predeﬁned |IP address. of points inside the inscribed circle to those outside gNSS

. . an estimate ofr.
A real job submission on a real cloud:

With this first use case of our approach we show: a) how a We start with a cloud where the only tenant is the user
long lasting job can be split into several smaller ones tad#ec submitting the above job. Eventually the maximum profit equi

the Optima| number of VMs to use, and b) how our approa(ﬂbrium point is reached and the number of VMs designated
functions in a real cloud environment. pivots around it. Then we initiate a CPU intensive operation

The iob bmitted t f K perf dat consuming a considerable amount of the cloud’s resources.
€ Jobs submitied to our Tramework periorm data propy;q gacong job causes the equilibrium point of the first job

cessing on portions oWikipedia FII’S,t, we make sure that to change and we monitor how our approach adjusts to this
data are properly stored on Hadoop'’s file-system (HDFS) ange

that subsequent data processing operations will not faié T _ _ _
CPU intensive part of the job a executes tireep program In this experiment the cost per VM is also set (5.

on a 500 MB Wikipedia corpus file.Gr ep is shipped as We use a step budget function presented in Figure 9. Note that
part of the Hadoop example programs. Here, two map/redukh this function the user states that she is not willing &y p

operations are executed in sequence. The first operationico@xtra for any time improvements in the rangeddb 200 secs.
As a consequence our approach does not fully utilize allctlou
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Fig. 9. Step budget function
performance penalties. For example, three VMs co-deployed

O&the same physical node will perform worse than two VMs

In Figure 10 we show the VMs assigned to the user in eag ning on different hosting machines. Similar abnornesdit

. ) ) ; u
execution period. There are 3 phasg;. F_rom pe_rlod L to 1_8 Merge in the case of VM failures. Due to job re-submissions,
approach converges to the first equilibrium point. Therenis

L ) . : 3 failing VM would stall the overall execution. However, in
gxponentlal Increase in the VM count until pe_rlod 6. Then rge infrastructures both uneven VM deployment and node
linear decrease (penpds 7 to 12) and then again an expaheq ilure have a reduced impact. Large numbers of VMs tend
decrease. From period 19 to 3.4 our gpproac_h suggests {lig e evenly distributed even under random-based schegulin
use of 9 VMs on average, this is the first equilibrium pomé

On period 34 we start the background process. That proc r%:cies. Also, VM failures can be effectively handled by th

; ultaneous submission of the same job to multiple workers
uses more than half of the the cloud’s CPU resources. This . P
causes the consumption not only of the idle CPU cycles but
also part of the resources our job requires. Therefore, a new VII. CONCLUSIONS- FUTURE WORK

equilibrium point develops around the 5 VMs margin. Since L . .
the second maximum profit point is close to the first one oyr COMbining resources frorfaaS Clouds with modern dis-

approach does not enter the exponential decrease mode, raffPuted computing frameworks allows for the effective han
it decreases the number of VMs linearly. From period 38 {§ing of massively parallel problems. However, this combi-

56 our approach has reached the second equilibrium pOim_nation introduces new challenges regarding both efficisat u
of cloud resources as well as user satisfaction. In this pape

C. Discussion on “Tiny” Clouds we provide an answer to the key question of how many
virtual machines (VMs) a user should request fromlaaS
Although the experiments shown here reached a stalidoud given that users have a limited budget and that there
state around the equilibrium point, our prior experiencthwiare speed-up barriers set by the available physical ressurc
a private cloud comprising of fewer physical nodes shows thé/e follow a microeconomic-inspired approach to determine
such a point is not easily found. Often, in clouds with linditethe number of VMs alloted to each user according to her
resources, the equilibrium point either exceeds the ckoudinancial capacity. Since the underlying physical resosiare
capacity or suggests that the users should not use the cleshdred among all cloud tenants, the performance the users ge
at all since their profits are maximized for less thatvM. out of the cloud may significantly vary over time. Therefore,
Moreover, in small cloud infrastructures, deploying VMs- unour approach continuously monitors the response time af use
evenly on physical systems results in seemingly unreasenafpplications and adjusts the amount of resources accdyding



At its equilibrium point, the suggested approach maximizgsr] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolkébsing

profit. From the provider’s point of view this profit corresyts

to financial benefit whereas from the consumer’s point of yview
the same profit corresponds to quality of service received. Q18]
experimental evaluation with both a detailed prototype and

simulator demonstrates that our proposed method converges

to a fair resource sharing equilibrium point. At that poithig

[19]

number of VMs provided to each user is proportional to the

amount of money the same user is willing to pay.

In the future, we plan to investigate methods that redut®!
the time required to reach the maximum profit point and
enrich pertinent approaches from the fields of both autonontt1]

systems and economics. We also plan to examine the effects

of open- and closed-loop markets on our approach. Finally,
we wish to apply the same ideas on other resource sharl?y
frameworks that do not rely on clouds to accommodate user

needs.
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