
Flexible Use of Cloud Resources through
Profit Maximization and Price Discrimination

Konstantinos Tsakalozos#1, Herald Kllapi#2, Eva Sitaridi∗3,
Mema Roussopoulos#4, Dimitris Paparas∗5 and Alex Delis#6

#University of Athens, GR15748, Athens, Greece
{k.tsakalozos1, herald2, mema4, ad6}@di.uoa.gr

∗Columbia University, New York, NY 10027
{eva3, paparas5}@cs.columbia.edu

Abstract—Modern frameworks, such as Hadoop, combined
with abundance of computing resources from the cloud, offer
a significant opportunity to address long standing challenges
in distributed processing. Infrastructure-as-a-Serviceclouds re-
duce the investment cost of renting a large data center while
distributed processing frameworks are capable of efficiently
harvesting the rented physical resources. Yet, the performance
users get out of these resources varies greatly because the
cloud hardware is shared by all users. The value for money
cloud consumers achieve renders resource sharing policiesa
key player in both cloud performance and user satisfaction.In
this paper, we employ microeconomics to direct the allotment
of cloud resources for consumption in highly scalable master-
worker virtual infrastructures. Our approach is developed on
two premises: the cloud-consumer always has a budget and cloud
physical resources are limited. Using our approach, the cloud
administration is able to maximize per-user financial profit. We
show that there is an equilibrium point at which our method
achieves resource sharing proportional to each user’s budget.
Ultimately, this approach allows us to answer the question of how
many resources a consumer should request from the seemingly
endless pool provided by the cloud.

I. I NTRODUCTION

Cloud computing introduces a number of challenges re-
garding both performance and financial issues. On the one
hand, consumers of cloud services try to minimize the execu-
tion time of their submitted tasks without exceeding a given
budget and on the other, cloud providers are keen on maximiz-
ing their financial gain while keeping their customers satisfied.
With this work we focus on virtual infrastructures following
the master-worker paradigm hosted in a cloud. In this type
of infrastructure, there is a master node that dispatches jobs
to worker nodes and increasing performance is a matter of
adding extra worker nodes. This ease of expansion has been
put into use by a number of programming frameworks, such
as MapReduce[1], [2], and resource allocation management
tools, including Condor[3] and TORQUE[4].

Much of the previous work on master-worker architectures
targets scalability bottlenecks. Such bottlenecks may develop

This work has been partially supported by theD4Science I & IIFP7-projects
funded by the European Commission.

due to two factors: first, each infrastructure has its own hard-
ware limitations. Second, the data processing algorithms im-
plemented by the jobs cannot always be efficiently parallelized
and therefore are not suited for this type of distributed environ-
ment. Research on the aforementioned bottleneck factors has
resulted in solutions that can efficiently harvest the hardware
resources of infrastructures of any size. Experience in Grids
has shown that the combination of a resource allocation tool
with a programming library for distributed programming (e.g.,
MPI) can fully utilize small to medium computer clusters [3],
[4]. For larger computing infrastructures, frameworks such as
MapReduce are shown to display outstanding scalability[1].
Yet, purchasing and maintaining such large physical infras-
tructures involves a high investment risk.Infrastructure as a
Service(IaaS) clouds have greatly reduced the investment risk
of owning an infrastructure, but introduce a new performance
scaling factor: the user’s financial capacity to rent virtual
resources. This additional factor complicates the deployment
and management of cloud architectures.

The value for money spent in a multi-tenant, elastic cloud
renders resource sharing policies a key player in both cloud
performance and user satisfaction. These policies must take
into account the fact that cloud providers need strategies to
evaluate and reduce possible financial risks while maximiz-
ing their profit. In addition, resource sharing policies must
take into consideration the user’s budget. Such policies often
employ either auctioning [5], [6] or attempt to estimate user
demand for resources [7]. In this way, the consumer needs are
quantified based on their willingness to pay for the resources
available. Microeconomic-based resource sharing policies thus
allow for the distributed computing infrastructure to reach an
equilibrium where the quality of service provided reflects the
money spent.

In this paper, we propose a virtual-machine provision
policy based on marginal cost and revenue functions. Each
cloud customer announces her budget as a function of the
execution time of the tasks she submits. Knowledge of this
function, combined with the machine-hour cost, allows for
educated decisions regarding the amount of virtual resources

allocated per customer in the context of anIaaS-Cloud. The
main contribution of our approach is that we provide an answer
to the question of exactly how many virtual machines (VMs) a
consumer should request from a cloud within a budget. In light
of scalable, master-worker-based, virtual infrastructures and
the seemingly endless resources of a physical cloud, specifying
the exact amount of resources needed must be based on
a) the consumer’s budget and b) the performance bottlenecks
which are known only at runtime. We propose a mechanism
that continuously monitors user application performance and
either “removes” or “adds” VMs in response to the observed
performance fluctuations serving the needs of autonomic sys-
tems [8]. Our approach automatically adjusts to the ever-
changing equilibrium point caused by dynamic workloads and
thus ensures that resources are shared proportionally to money
spent by the users. In addition, our approach is applicable to
a wide range of computational environments since it does not
enforce the use of a specific job submission tool. We allow
each user to select any virtual infrastructure equipped with the
tools of her preference.

The rest of this paper is organized as follows: Section II
describes the problem our system targets. Section III gives
an overview of the related work. In Section IV we describe
the main aspects of our system in a single user environment.
In Section V we present how our approach performs when
multiple users coexist in a dynamic environment with ever-
changing conditions. Section VI outlines both simulation and
prototype experimental results while concluding remarks are
found in Section VII.

II. PROBLEM STATEMENT

The master-workers paradigm is used by numerous pro-
gramming frameworks and resource management tools to im-
plement a number of parallel algorithms [9]. The master node
acts as the coordinator assigning jobs to the workers. Since
workers reside on different machines, they can process data
simultaneously and collectively produce the output results.
A user can effectively increase application performance by
adding more worker nodes.

This paradigm is constrained by the physical resources
available as well as the application-specific requirements.
Satisfying the needs of such applications routinely involves
setting and maintaining high-end, large data centers. The
latter either exceed the financial capabilities of the interested
parties or constitute a risky investment.IaaS-clouds, with
their on-demand elasticity, are able to reduce such financial
risks; they provide a seemingly-endless pool of computational
resources needed to exploit the scalability of master-worker
frameworks such as Map-Reduce [1]. Users contacting an
Iaas-cloud request a number of virtual machines (VMs) to
host the software framework of their preference. These VMs
make up the elastic virtual infrastructure that will expandon-
demand with the addition of extra worker nodes.

The decision on the exact number of worker-node VMs to

be requested from anIaaS-Cloud is not a trivial one.IaaS-
Clouds offer VMs at a specific monetary cost. Overconsump-
tion of virtual resources must be avoided since underutilized
worker-nodes reduce the value-for-money the cloud client
achieves. Similarly, a conservative policy that underestimates
the need for worker nodes may result in long processing times
thus hampering user satisfaction.

When deciding on the number of worker VMs, one must
consider both:

1) The level of user satisfaction:User satisfaction can
be quantified through a budget function. However, low
budget does not necessarily indicate that the user is
satisfied with fewer VMs, rather a low budget may be
the result of limited financial means on the user’s part.
In a multi-user environment, administrators may need
to consider establishing a social scheduling policy that
would prevent “poor” users from being entirely deprived
of virtual resources. The risk here is that one may
manipulate such policies and reduce the cloud’s financial
gain.

2) The overall performance of the virtual infrastruc-
ture: The number of worker VMs must never exceed the
threshold over which extra workers become an overhead.
As more nodes are added to the virtual infrastructure,
the performance penalty incurred by the communication
between the workers and the master node increases.
The scalability displayed by the virtual infrastructure is
often subject to this communication cost. In turn, this
communication cost is subject to the algorithms used,
the amount of data processed and the characteristics
of the virtual and physical nodes [10], [11]. Moreover,
neither the user nor the cloud administration are able to
estimate the infrastructure’s performance by themselves.
The software stack installed and the data sets processed
are known only to the user, whereas the exact physical
node characteristics are known only to the cloud admin-
istration and are typically never revealed to the user.

Ideally, one could use an analytical model to predict the
optimal number of worker VMs. Such a model would take into
accounta) the performance limitations set by the hardware,
b) the interactions among all user applications simultaneously
served by the cloud,c) the input data used by the applications
in execution, andd) the performance constraints set by the
software stack on both the physical and virtual infrastructure.
Unfortunately, implementing this model is impractical if not
infeasible especially considering the fact that several properties
are known only at runtime. Our approach requires from each
user to specify only her budget as a function of the total execu-
tion time of her workload. Assuming that such workloads are
recurring, we employ an autonomic system that continuously
monitors the infrastructure’s performance and adjusts to any
changing conditions. We handle the infrastructure as a black
box –with the number of VMs as input and the total execution
time as output–, thus our approach can be used in any master-

workers “elastic” architecture [2], [3].

III. R ELATED WORK

The idea of using economics in resource sharing policies
is an old one. Two types of market-oriented resource sharing
policies have been examined in terms of market stability and
resource efficiency [12] . The two types are: a) markets where
resources are shared through auctions and b) markets where
resources are treated as interchangeable commodities1. In the
latter market type, resources are given a fixed price determined
according to their supply and demand [7]. Markets where
resources are treated as commodities are applicable whenever
the group of interested users does not allow the creation of
an auction. Most often in commodity selling markets, user
demand reduces as resource price increases. This kind of user
behavior is assumed to study the conditions that maximize the
resource provider’s profit [15]. Markets with more than one
type of commodity (such as CPU, network, storage) are well-
suited for use in multi-user computing clusters. Here, policies
set the price of all sold resources considering their correlations
[7]. Policies that take into account only high-level performance
metrics, such as the application response time [16], seem more
appealing to the end users since less intervention is required
on their part.

Resource allocation based on auctioning [5], [6], [17] is
easy-to-implement and well-justified. Users quantify their need
for resources through bids while at the same time resource
providers offer their “products” for a price. In Mirage [18], a
sensor network with limited resources, bids involving virtual
currency in a closed loop market are used to express the user
need for resources and prioritize requests. Similarly, in [17],
auctioning is employed to provide access to low level resources
such as CPU and RAM. Here resources are limited and users
use proxies to bid for combinations of resources in periodic
auctions.

Often, both consumers and producers are able to game
auctions in their favor. In many cases, market gaming is an
unwanted implication. An approach in tackling this implication
is presented in [19]. Here, the agent matching the bids with
the resource offers is allowed to reduce the resource supply
thus protecting the producers from teaming consumers.

Due to its publicly available resources and the large user
base, the Grid is used by many researchers as a testbed
for various resource sharing policies [6], [12], [15], [16],
[20], [21]. However, the nature of the Grid –publicly-funded
and freely available– does not allow such resource allocation
methodologies to be widely acceptable. Systems such as
Tycoon [22] and Libra [23] are built on lower-level resource
scheduling and allocation tools –as the resource manager of
Torque system [4]– to bypass the complexity of Grids. In [21],

1In Amazon Elastic Computing Cloud [13] we find both market types:
users are allowed to buy resources at a fixed price or bid for them at a lower
price [14]

resources of different grid sites are shared through a bidding
process.

The management ofIaaS-Clouds must tackle both techni-
cal and theoretical issues to achieve profit maximization for the
cloud providers and satisfaction of QoS expectations set bythe
customers. Such infrastructures offer elastic services ina way
that they can be measured, thus allowing for a billing policyto
be enforced. In this way, clouds inherently provide ground for
applying various economic models [24]. Service consumers
almost always have some form of a utility function that corre-
sponds to their budget while providers try to maximize their
financial gain. For instance, in [25], a budget-based financial
model is used to manage an adaptive cloud environment. Yet,
unlike our approach, their model is not adaptive in terms of
the number of cloud virtual machines deployed. Instead, their
approach responds to user QoS requirements by building new
data structures and/or choosing the most appropriate query
execution plan.

By combining clouds with high resource availability [13]
and a massively scalable programming framework [1], a user
can process large amounts of data.Dynamic Hadoop[2] and
Condor [3] integrate with “elastic” infrastructures to acquire
resources upon demand. These frameworks add a software
layer that efficiently manages administrative concerns of scal-
ing virtual infrastructures. We build on the success of such
highly scalable frameworks and infrastructures and enhance
them with the application of microeconomic models for profit
maximization. Contrary to much prior work [6], [12], [15],
[16], [20], [21], our approach targetsIaaS-Clouds and not the
Grid. Our system acts as a gateway to the cloud for the users,
taking into consideration high-level user requirements (i.e.
application response time) and finally, designates a suitable
number of virtual machines. To do so, we employ microeco-
nomics to converge to a proportional sharing equilibrium [26].
At this convergence point, resources are allocated proportion-
ally to the amount of money each user spends. Contrary to
traditional auctioning-based systems [5], [6], [18], [17]our
approach does not require users to bid. Rather, it takes as input
a user budget function that portrays the money she is willing
to pay for certain response time guarantees. The periodic
auctions of [17] allow for resource sharing adjustments, but
the resource mapping produced is not optimal, instead, in our
case we achieve proportional share (fairness). The user budget
functions we employ resemble the decaying value function of
the execution tasks described in [21]. However, unlike our
work, [21] proposes heuristics to balance the risks and gains
involved. In addition, in our approach all tasks (corresponding
to users) are served simultaneously, thus there is no need
for any task scheduling (queueing and prioritize). This also
comes in contrast to Mirage [18] where the goal is to prioritize
requests according to their importance.

In a multi-user virtualized environment, as the one we
find in the cloud, quality of service and efficient resource
management are often contradicting high level goals. In [27],

the impact of resource overbooking in quality of service is
examined. Autonomic systems [28], [29] are also shown to
be able of efficiently managing resources under time-varying
requests and multi-tier environments.

Our approach in resource provisioning resembles that of
a monopoly where the cloud provider is able to enforce price
discrimination [30]. In such a market the monopolist charges
different prices to different consumers. We also employ an
autonomic mechanism that monitors the user’s applications
and continuously adjusts the number of VMs to be used. This
mechanism is required since the user application response
time may change over time in ways we cannot predict. This
approach allows us to treat the cloud as a black box providing
us with resources. Unlike [2], [23], [31], we do not enforce
the use of a specific job-submission tool. Instead, we let cloud
consumers use the job management system of their preference
and we ensure that the instantiated VMs register with it.

IV. A DAPTIVE CLOUD MANAGEMENT

In this section, we present a microeconomic model we
use to designate a suitable amount of resources for the cloud
consumers. Resources are dynamically requested on-the-fly
from an IaaS-cloud in the form of Virtual Machines (VMs).

A. Overview of Our Approach

The main operational aspects of our approach are depicted
in Figure 1. Theresource-sharing layerimplements the mi-
croeconomic model we propose. In the figure, we show two
users who contact two separate virtual infrastructures, namely
Hadoop and Condor. The interaction among the users, our
framework, and the cloud involves three phases: first, each user
sets a budget function. Second, jobs are submitted and their
response time is monitored or announced to our framework.
Third, worker VMs are added to or removed from the virtual
infrastructures. The user has no involvement during the last
phase. Also, note that the second and third step have to be
repeated more than once to find the optimal number of VMs.
Therefore, the workloads served by our resource sharing layer
have to be recurring [9].

Two key factors in our approach are the cloud revenue (R)
and the cloud cost (C). The cloud revenue is estimated using
the user budget function and the monitored response times.
The cloud cost is the cost of owning the cloud resources. In the
case of a single user, our approach maximizes the difference
between the revenue and the cost. In the case of multiple users,
our approach allocates resources fairly; i.e., proportionally to
the money each user is willing to pay.

B. Single User Adaption via Profit Maximization

When the user contacts our framework, she announces a
budget that will accompany all her job submission requests.
This budgetB(t) is a function of the amount of money per
hour she can afford relative to her average job response time.

3: Add/remove
workers 3: Add/remove

workers

Hadoop
Master
Node

Worker

Node

Worker

Node

Hadoop
Virtual

Infrastracture

...

Condor
Master
Node

Worker

Node

Worker

Node

Virtual
Infrastracture

Condor

...

$

t
Budget

$

t
Budget

1:Set budget1:Set budget

Physical Infrastructure

2:Monitor

time
Response

Resource Sharing Layer

Fig. 1. Operational overview of our approach

As we will discuss later, a budget function would better be
monotonically decreasing2, i.e: B(t1) ≤ B(t2), ∀ t1 > t2.
This means that users are not going to pay less if results are
to arrive sooner. For each job submission, we keep track of
the response time. By applying the average response time to
the user’s budget function we determine the amount of money
available for buying virtual resources. This amount becomes
the revenue the cloud will get per hour.

We expect the master-worker architecture present in the
virtual infrastructure to decrease the application’s response
time when we deploy additional VMs. In turn, when we reduce
the response time, the cloud’s revenue (R) normally increases,
since the user is expected to pay more. This is the reason why
we suggest that budget functions be decreasing.

In practice, physical resources of clouds are limited and a
performance bottleneck will eventually develop. Therefore, re-
gardless the nature of this bottleneck (network communication
and/or computation), the response time reaches a minimum
for a specific number of VMs. This in turn means that there
is an upper bound on the revenue. In Figure 2, we show a
hypothetical revenue function. Note that the number of VMs
offering a lower bound on the response time and an upper
bound on the revenue may not be the most profitable in terms
of value for money the user achieves.

A major factor influencing profit is the cost (C) of provid-
ing a VM. From the cloud’s perspective, this cost includes
server hardware and software, IT staff training and salary,
power consumption and cooling costs, insurance, and down-
time penalties. Although the virtual machine cost functionis,

2Monotonically decreasing budget functions combined with afixed price
per VM ensures that our approach will not get trapped at a local minimum

undoubtedly, complex, we assume it is well-studied and known
to the cloud financial administration. From the user’s pointof
view, each VM usually has a fixed price. This price is the VM
cost for the users. In any case, this cost per VM is known
to our approach. Figure 2 depicts –apart from the revenue–
the cost involved in purchasing VMs. We choose to display
a cost function that grows linearly with the number of VMs.
This fixed price per VM policy is common amongIaaS-cloud
providers [13]. When combining this VM billing policy with a
monotonically decreasing user budget function, we get a single
point where the profitR-C is maximized.

Figure 2 also presents the Marginal Revenue (MR) and the
Marginal Cost (MC) that an additional unit of product (in our
case, a VM) will bring:

MR = dR/dVM, MC = dC/dVM

The profit is maximized whenMC=MR at point A. Here,
we should provide B VMs. Beyond B, each VM costs more
than the revenue offered (MC>MR). Until we reach B VMs,
the cost for each unit of product (VM) is less than the revenue
we get from it (MC<MR). For B VMs, the total cost and
revenue are E and D respectively; so the maximum profitP
is: P = D − E.

Price/hour

A

B

P

D

MR

MC

VMs

Cost (C)

Revenue (R)

E

Fig. 2. Maximize profit using Marginal Revenue and Cost

As discussed in Section II, identifying the equilibrium
point of maximum profit must be done through an iterative
process during the consumer’s interaction with the cloud. The
reason for this is that response times, and thus the total and
marginal revenue, are known only at runtime.

Algorithm 1 computes the number of VMs to be used
in the virtual infrastructure by finding the equilibrium point
whereMC=MR. This algorithm takes as input the marginal
cost (MC) and estimates at runtime the marginal revenue (MR).
We choose to haveMC as an input parameter as we expect
either the cloud administration or theIaaSconsumer to set the
cost function.MR estimation is done through the user’s budget
function and the average response timeT , both of which are
provided as input. The final input,step, is the initial number
of VMs to be used to bootstrap the algorithm. In lines10–12,
we compute the Marginal Revenue. In doing so, we use the
average response time and the designated VM count of the
last two runs. We keep this information in the static variables
of the algorithm (lines1–5). Note that for the first two runs

we do not have enough data to computeMR. Therefore, for
these runs, we simply increase the number of VMs bystep.

Depending on the difference betweenMR and MC, we
either increase or decrease the number of VMs we need active.
The exact number of VMs to be added or removed plays a
significant role in the number of iterations our approach needs
to converge to theMC = MR equilibrium. In Algorithm 2,
we show how we decide on the number of VMs. The input
of this algorithm is a variable nameddirection, indicating
whetherMC is greater thanMR (or not) and the number of
VMs which are currently active. There are two policies in
changing the VM number:a) exponentially andb) linearly.
Our approach is inspired by the congestion avoidance and
control [32] employed by various TCP implementations.

The idea behind the exponential and linear
increase/decrease is the same as with the slow start and
congestion avoidance modes we find for the TCP congestion
window. We start with the exponential VM-increase mode
until we pass the maximum profit point. As soon as we
are past theMC = MR, we start decreasing VMs linearly.
In case we havestart exp move after steps of the same
“direction”, that is we havestart exp move after successive
decreases orstart exp move after successive VM additions,
we move again to the exponential mode. In this way, if the
equilibrium point changes, we readjust quickly using the
exponential change mode. Nevertheless if the equilibrium
point stays the same, we perform a slight pivot around
it using the linear mode. Lines6 to 11 of Algorithm 2
count the successive iterations of the same “direction”.
Using this count, we determine which mode to follow (if
clause of line12). In line 18, we employ a sanity check
that prevents us from suggesting too many VMs. We check
this number of VMs against a threshold (VM threshold)
and if this threshold is exceeded, we change our increase
mode to linear. VMs threshold and start exp move after
constants are set to be50 VMs and5 iterations respectively.
However, these values are bound to change according to
the specific characteristics of the cloud infrastructure. Large
infrastructures are able to sustain a higher number of VMs
thus, theVMs thresholdshould be set accordingly. Similarly,
for infrastructures where VM instantiation is costly, higher
values ofstart exp move after may be appropriate.

C. Cloud versus User Profit

Our approach can be used either as a module “inside”
the cloud or as a user-gateway to the cloud’s resource pro-
visioning mechanism. The difference between these two uses
is essentially what the cost and revenue functions represent:
when our approach is implemented as a cloud component, the
revenue function is the amount of money the user pays while
the resource cost is the internal operational cost of the cloud.
In this case, the profit is the cloud’s financial gain. When
consumers employ our approach as a gateway to the cloud
resource provisioning mechanism, the cost is the resource

Algorithm 1 Compute Number of VMs
Input: B(): User budget function

MC(): Marginal cost function

step: Step in changing the VM count

T : Average response time

Output: Number of VMs to provide

1: static last resp time = 0
2: static secondto last resp time = 0
3: static last VM count = 0
4: static secondto last VM count = 0
5: static run = 1;
6: cur VM count = 0;
7: if (run == 1) OR (run == 2) then
8: cur VM count = lastVM count + step
9: else

10: dVM = secondto last VM count - lastVM count
11: dR = B(secondto last resp time) - B(last resp time)
12: MR = dR / dVM
13: if MR ≥ MC(last VM count) then
14: cur VM count = VMs Deviation(“Up”, last VM count)
15: else
16: cur VM count = VMs Deviation(“Down”, last VM count)
17: end if
18: end if
19: secondto last resp time = last resp time
20: secondto last VM count = lastVM count
21: last VM count = cur VM count
22: last resp time = T

23: run++

24: return cur VM count

purchase price and the revenue is the money users are willing
to pay. However, in this setting, the revenue is not paid to
the cloud; instead, it is used as a measure of user satisfaction.
Maximizing profit results in an optimum degree of satisfaction
(revenue) per virtual machine. In brief, consumers maximize
the value-for-money ratio.

V. M ULTIUSER DYNAMIC ENVIRONMENTS

Our approach thus far assumes a single user environment,
an assumption that is not true when it comes toIaaS-clouds.
Clouds are multi-tenant environments where users do not
directly interact with each other, yet, the performance they get
out of the infrastructure is greatly influenced by other users.
In this section, we show how our model functions in such
dynamic environments to reach equilibrium (MC=MR).

A. Multiple Users

Adding more IaaS-cloud consumers results in increased
demand for cloud resources. The VMs of different users will
compete over physical resources increasing the virtual infras-
tructure’s average response time. In turn, increased response
times decrease revenue. Figure 3 shows how the maximum
profit equilibrium, pointA, is shifted to the left as revenue and
marginal revenue decrease. The shift fromA to A′ suggests
that fewer VMs (B′ instead ofB) should be deployed to
maximize the profit from a specific user. The interpretation
of this per-user optimal VM provision point (B′) depends on

Algorithm 2 VMs Deviation
Input: direction: “Up” or “Down” if MR ≥ MC or MR < MC

last_VM_count Current number of VMs

Output: Number of VMs to provide

1: constant VMs threshold = 50
2: constant start exp move after = 5
3: static last direction = “Unknown”
4: static samedirection = 0
5: static VMs increase = 1;
6: if direction != last direction then
7: samedirection = 0
8: else
9: samedirection++

10: end if
11: last direction = direction
12: if samedirection > start exp move after then
13: VMs increase = 2 * VMsincrease;
14: else
15: VMs increase = 1;
16: end if
17: if direction == “Up” then
18: if last VM count + VMs increase> VMs thresholdthen
19: VMs count = lastVM count + 1
20: samedirection = 0
21: else
22: VMs count = lastVM count + VMs increase
23: end if
24: else
25: VMs count = lastVM count - VMs increase
26: end if
27: return VMs count

Price/hour

A

B

MR

MC

VMsB’

A’

D

D’

Revenue (R)

Fig. 3. Equilibrium shift in light of revenue reduction

the entity (consumer or cloud administration) that employsour
approach:

• Cloud: When the cloud administration employs our ap-
proach it achieves maximum profit per user. We ex-
pect lower-level mechanisms, such as CPU scheduling
and network bandwidth quota, to favor well-paying cus-
tomers.

• Users: In caseMC=MR is reached for each user sep-
arately, cloud’s physical resources are assigned in such
a way that any deviation from that would result in
placing at least one of the consumers at a disadvantage
(Pareto optimality). If we were to provide more physical
resources at the same cost –without changing the con-
sumers VM number– to a specific consumer we would be
decreasing her jobs’ response times. However, the rest of
the consumers would be deprived of some portion of their

resources due to the cloud’s resource sharing policies.
These consumers will be at a disadvantage as their value-
for-money ratio would deteriorate.

B. Proportional Share – Price Discrimination

The equilibrium point our approach reaches displays a
number of properties examined both in the context of eco-
nomics and resource sharing. With our approach the cloud
“sells” resources at a different price to each user. This type
of market resembles a variation of the monopoly where the
monopolist enforces price discrimination among buyers [30].
Selling at different prices allows for maximizing profit per
consumer. In this case, the total financial gain is greater than
the financial gain the provider would have with a single
price for all consumers. The main difference between our
approach and monopolistic markets with price discrimination
is that in our approach, we do not exert control over the
resource/product supply, the amount of resources is fixed and
we only need to distribute them among users/consumers. In
contrast, the monopolist in markets with price discrimination is
able to produce more products to satisfy the demand up to the
point where profit is maximized for each customer separately.

We now show how our approach manages to share re-
sources proportionally to the funds each consumer is willing
to pay. This resource sharing policy property indicates that
our approach treats users in a fair way. To show that our
approach performs this type of fair resource sharing, we
have to make certain assumptions. The overall goal of these
assumptions is to model the user behavior and the cloud’s
runtime performance. These assumptions are:

Assumption 1: Each VM has a fixed costK.

Assumption 2: The response time a single user would get out
of the cloud if she were usingv VMs is:

T (v) =
M

ln(v) + 1
, (1)

whereM corresponds to the time it would take the application
to complete with only one VM. With this function we model
the fact that response time will reach a saturation point and
will improve only marginally after reaching a certain number
of VMs [10].

Assumption 3: Each useri has a budget of the form

Bi(t) =
λi

t
(2)

whereλi is a per user-constant andt is the response time.

From assumption 1, we have that the cost is fixed per VM
therefore:

MC = K (3)

From equations 2 and 1, we can compute the revenue for
useri given that she usesv VMs:

Bi(t) = Bi(T (v)) = Bi(
M

ln(v) + 1
) =

λi

M
∗ (ln(v) + 1) (4)

Starting from the maximum profit point and using equa-
tions 3 and 4:

MC(v) = MR(v) ⇒

dC(v)

dv
=

dR(v)

dv
⇒(3)

K =
dR

dv
⇒(4)

K =
d(λi

M
∗ (ln(v) + 1))

dv
⇒

K =
λi

M
∗

1

v
⇒

v =
λi

M
∗

1

K
(5)

In case we haven users each one with her own budget
function (Bi(t) = λi

t
) the ratio of the VMs allotted to userk

is:

vk∑n

i=1 vi

=
λk/(M ∗ K)

∑n

i=1 λi/(M ∗ K)
=

λk∑n

i=1 λi

(6)

Equation 6 shows that this VM allotment is proportional
to the maximum amount of money each user is willing to
pay. We acknowledge that the above modeling is inaccurate.
Nevertheless, the modeling and its assumptions are used only
for the needs of demonstrating the resource sharing properties.
In practice, our approach makes no such assumptions as it con-
stantly monitors the cloud’s performance through the response
times of the applications. The proportional share properties are
also verified through our experimentation portion of which we
discuss in Section VI.

C. Rapidly Changing Conditions

As is the case with any autonomic system [8], the period
length chosen to monitor the response time plays a key role. In
light of rapidly changing average response times, our method
might not converge to the point of maximum profit. As a
remedy, we could consider increasing the monitoring period
length. Factors influencing the response time include:

• Variations in the workloads/jobs submitted to the virtual
infrastructure. These variations include not only different
execution tasks but also changing input parameters.

• Abrupt fluctuations in the amount of concurrentIaaS
cloud consumers.

Our approach adapts to mild changes in the response time
since Algorithm 1 computesMR at runtime. The period length
between two successive suggestions must be such that the
average response time indicates changes in workloads and
resource availability.

VI. EVALUATION

We have implemented our framework as a Java library
so that it can be embedded in either consumer or cloud
resource management systems. Our evaluation is two-fold.

First, we simulate a number of different cloud infrastructures
serving multiple users. Second, we use our framework to assist
resource management in a real cloud infrastructure setup in
our lab. With the simulation we examine the behavior of our
framework when used in large data centers while in the real
cloud we show how our approach enables users to submit
jobs to an “elastic” Hadoop infrastructure capable of growing
or shrinking on demand.

A. Simulated Cloud Environment

We have simulated the behavior of a typical cloud middle-
ware that serves user requests for VMs. The cloud middleware
assigns the requested VMs evenly to physical machines usinga
load balancing algorithm. We assume that all users arrive atthe
same time and they submit the same workload continuously
for a pre-defined number of periods. During the first period
all users are assigned the same number of VMs. This may
change according to the suggestions our approach provides.
Of key importance to our simulation is the model used to
estimate the workload execution time based on the resources
provided by the cloud. The turnaround time of a job execution
is given by the following formula:

Runtime(u) =
1

∑N

i=0
VMs(u,i)

TotalVMs(i)

+ Gauss(µ, σ)

With N being the number of VMs useru owns, VMs(u, i)
returns the portion of the VMs deployed on the physical node
i. TotalVMs(i)is the total number of VMs deployed on nodei.
We also apply a Gaussian noise. The optimal amount of VMs
per user is calculated at the end of every period and is used
in the upcoming execution.

Table I shows all parameters of our simulation. We have
three types of users, Richies, Bobs and Scrooges. Richies pay
more than Bobs, and Bobs pay more than Scrooges. Users 1,
4, 7, 10 are Richies, users 2, 5, 8 are Bobs and Users 3, 6, 9
are Scrooges.

TABLE I
SIMULATION PARAMETER SETTINGS

Parameter Value
Number of physical nodes 100
Number of users 10
Initial number of VMs per user 3
Maximum number of VMs per user 100
VM cost 0.15 $
Gauss µ = 0,

σ = 0.001
Richie budget function B(t) = 5√

t

Bob budget function B(t) = 3√
t

Scrooge budget function B(t) = 1√
t

Figure 4 shows 10 plots, each one corresponding to a
different user. The figure shows the percentage of time the user
has at her discretion a specific number of VMs. For example,

Ritchie User 10 spends 25% of her time using on average 50
VMs. When the system reaches the equilibrium point, we see
that the number of VMs assigned to each user is proportional
to the amount of money she is willing to pay. Thus, more VMs
are assigned to Richies and fewer to Scrooges. The deviation
from the equilibrium point increases as more VMs are used in
our virtual infrastructure. This behavior is expected since in
large virtual infrastructures the addition or removal of a single
VM has minor impact on the overall performance.

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Number of VMs

Richie, User 1

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Bob, User 2

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Scrooge, User 3

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Richie, User 4

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Bob, User 5

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Scrooge, User 6

0

25

50

10 20 30 40 50 60 70 80 90
T

im
e

 p

e
rc

e
n

ta
g

e

Richie, User 7

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Bob, User 8

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Scrooge, User 9

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Richie, User 10
0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Richie, User 10

Fig. 4. Percentage of time spent with each number of VMs

In any proportional sharing policy the following formula
holds for every useri.

Yi
∑U

u=1 Yu

−
Ri

∑U

u=1 Ru

= 0 ,

whereU is the number of users,Yi is the amount of resources
provided to useri and Ri is the revenue we get from her.
Figure 5 shows that metric for every user during the simulation
period after the equilibrium point is reached. In this way, we
establish that indeed our approach converges to a proportional
share state. The computed proportional share metric is almost
0 for all users with slightly negative values for the Riches.

The reason for this is that Riches deviate more than the rest
of the users from their equilibrium point thus they are charged
slightly more.

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Iterations

Richie, User 1

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Bob, User 2

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Scrooge, User 3

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Richie, User 4

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Bob, User 5

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Scrooge, User 6

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Richie, User 7

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Bob, User 8

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Scrooge, User 9

-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Richie, User 10
-0.1

0
0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

ce

Richie, User 10

Fig. 5. User VMs proportional sharing

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

P
ro

fit
 (

in
 $

)

Time periods

Fig. 6. Total Profit

Figure 6 illustrates the total profit of the system, when the
latter reaches its equilibrium point. For nearly 70 time periods
the cloud’s profit increases. From that point on, our framework
gradually reduces the deviation from theMC=MR equilibrium
point.

Using the simulated environment we were able to test how
long it takes our approach to reach a steady state with respect
to the number of users simultaneously entering the cloud.
Figure 7 shows the number of time periods our approach
takes to reach a steady state as we increase the number of
users contacting our simulated cloud. The estimation of the
steady state is based on when the profit stops increasing. For
each iteration, we compute the profit in our infrastructure from
all workers. By applying linear regression on the latest five
profit measurements we construct a straight line indicating
the evolution of the profit in the recent past. When the slope
of this line is below0.2 for three consecutive iterations, we
assume the system has reached a steady state. Figure 7 shows
that the system becomes more stable when more users use
it. The reason for this is that the impact of a single user’s
VM decisions on the rest of the cloud’s users is greater
when fewer users are present. In addition, a large number of
users correspond to more VM adjustment operations per time
period, and thus the steady state point is reached within fewer
iterations.

 0

 50

 100

 150

 200

 250

 4 6 8 10 12 14 16 18 20

T
im

e
pe

rio
ds

Users

Fig. 7. Convergence to Proportional Sharing

B. A Private Cloud

To evaluate our approach in a real environment, we tested
it in a private cloud setup in our lab. We have setup two types
of “elastic” virtual infrastructures one using Condor [3] and
a second with Hadoop [33]. In both infrastructure types there
is a master node acting as a gateway. Through this gateway
the user is able to submit jobs to be executed on the worker
nodes.

Worker nodes register with the master node as soon as
they become online. Both Condor and Hadoop feature a
mechanism to remove unreachable nodes from their worker
pools. Therefore, removing a worker involves shutting down
the VM hosting the respective worker services and perhaps
running additional shutdown scripts to ensure a graceful depart
of the worker from the “elastic” infrastructure.

Each user has at her disposal her own private “elastic”
infrastructure. When she contacts our cloud –apart from her
budget– she specifies the type of virtual infrastructure sheis
going to use. Our cloud instantiates a gateway featuring a
public IP and informs the user about it. Each user is aware

only of her own gateway. Users do not interact with each other,
they are entirely isolated within their set of virtual machines.
During operation, worker nodes register only with the gateway
of the user that triggered their instantiation; there are no
workers shared among users. With this setup, the resources
shared are only those of the physical nodes.

In our lab, the cloud’s hardware is setup on a rack where
six dedicated nodes serve VM instantiation requests. All phys-
ical systems are connected through a1 GBps Ethernet switch.
Each such node is equipped with8 GB of RAM. Two nodes
are each equipped with an Intel(R) Core(TM)2 CPU 6600 at
2.40GHz while the other four have an Intel(R) Xeon(R) CPU
X3220 at 2.40GHz. Live migration is not available and VM
disk images are fetched on-demand from a file server when
they are to be deployed.

The VM hypervisor we use isXen 3.2-1 [34]. In order to
treat all hardware nodes as a cloud we have setup theOpen-
Nebula v.1.2.0[35] middleware. WithOpenNebulawe are able
to automate the instantiation, migration and shutdown of VMs.
These operations include the transparent copy or removal of
disk images to/from the proper physical hosting nodes and
the issue of respectiveXen commands. To harvest physical
resources in the best possible way, virtual worker nodes should
be evenly distributed among physical VM hosting nodes. To
this end, we do not rely on the default VM scheduling and
placement policy ofOpenNebula; instead we useNefeli [36].
Nefeli allows us to set VM deployment hints and constraints
when entire virtual infrastructures are to be instantiated. All
instantiated VMs use 512MB of RAM and a single CPU
core. To achieve this, we make use of theXen VCPU-option
to restrict the utilization of CPU cores.

In the experiments presented here, we focus on the Hadoop
infrastructure. As with the simulated workloads, user interac-
tion with the cloud consists of fixed time periods during which
a job is submitted. The response time of each submission is
tracked so as to set the exact number of the deployed VMs.
At the beginning of each period, we request the addition or
removal of VMs. As soon as a new node comes on-line it
automatically registers with the Hadoop JobTracker running
on the user’s gateway using a predefined IP address.

A real job submission on a real cloud:
With this first use case of our approach we show: a) how a
long lasting job can be split into several smaller ones to decide
the optimal number of VMs to use, and b) how our approach
functions in a real cloud environment.

The jobs submitted to our framework perform data pro-
cessing on portions ofWikipedia. First, we make sure that
data are properly stored on Hadoop’s file-system (HDFS) so
that subsequent data processing operations will not fail. The
CPU intensive part of the job a executes thegrep program
on a 500 MB Wikipedia corpus file. Grep is shipped as
part of the Hadoop example programs. Here, two map/reduce
operations are executed in sequence. The first operation counts

the occurrences of the query regular expression and the
second operation sorts the matching strings according to their
frequency. The submitted job proceeds with the distributed
creation of a full textLucene [37] index usingKatta [38].
This operation functions on a different segment ofWikipedia,
a 100 MB file, although it could use the results of the first
grep operation.

Repeated job submissions of the aforementioned formation
are used to index parts ofWikipedia while at the same time
use our approach to efficiently use cloud resources.

During our experimentation, the budget function we
choose to quantify the user need for performance is set to
B(t) = 1000 ∗ 1/t, wheret is the response time. The cost per
VM is set to $0.085, the amount Amazon EC2 [13] charges
for a small VM instance.

Figure 8(a) shows the number of VMs our approach
designates to the user’s job. Starting from3 VMs our algorithm
quickly converges to an average of around7 VMs, with a
maximum of9 and a minimum of4 VMs. In Figure 8(b) we
present the response times the user gets from the cloud. Rapid
deviations in response time such as the ones measured during
periods 34 and 45 are the product of other users consuming
cloud’s resources.

Figure 8(c) shows the internal operation of Algorithm 1.
Using the user’s budget function and the response times we
present in Figure 8(b) we are able to compute the marginal
revenue. Figure 8(c) shows howMR pivots aroundMC in an
attempt to maximize profit.

Impact of interaction among users:
With this second experiment we show what is the reaction of
our approach to shortage of resources caused by the sharing of
the clouds hardware. In order to have a clear view of the shared
resource we have used a CPU intensive job. This job estimates
the value ofπ by executing a MapReduce program on our
“elastic” Hadoop infrastructure. The MapReduce program
used is shipped as part of Hadoop examples and employs a
quasi-Monte Carlo method to distribute computation. Random
points are placed within a unit square. Comparing the amount
of points inside the inscribed circle to those outside givesus
an estimate ofπ.

We start with a cloud where the only tenant is the user
submitting the above job. Eventually the maximum profit equi-
librium point is reached and the number of VMs designated
pivots around it. Then we initiate a CPU intensive operation
consuming a considerable amount of the cloud’s resources.
This second job causes the equilibrium point of the first job
to change and we monitor how our approach adjusts to this
change.

In this experiment the cost per VM is also set to $0.085.
We use a step budget function presented in Figure 9. Note that
with this function the user states that she is not willing to pay
extra for any time improvements in the range of0 to 200 secs.
As a consequence our approach does not fully utilize all cloud

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

N
um

er
 o

f V
M

s

Periods

(a) VMs allocated per period

 300

 310

 320

 330

 340

 350

 360

 370

 380

 0 5 10 15 20 25 30 35 40 45

R
es

po
ns

e
tim

e
(in

 s
ec

)

Periods

(b) Response time per period

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45

Periods

 MR
 MC

(c) Marginal Revenue & Cost

Fig. 8. Evaluation in a real private cloud infrastructure.

resources.

 0

 2

 4

 6

 8

 10

 12

50 150 250 350 450

M
on

ey
 a

fo
rd

ed
 (

in
 $

)

Response time (in secs)

Fig. 9. Step budget function

In Figure 10 we show the VMs assigned to the user in each
execution period. There are 3 phases: From period 1 to 18 our
approach converges to the first equilibrium point. There is an
exponential increase in the VM count until period 6. Then a
linear decrease (periods 7 to 12) and then again an exponential
decrease. From period 19 to 34 our approach suggests the
use of 9 VMs on average, this is the first equilibrium point.
On period 34 we start the background process. That process
uses more than half of the the cloud’s CPU resources. This
causes the consumption not only of the idle CPU cycles but
also part of the resources our job requires. Therefore, a new
equilibrium point develops around the 5 VMs margin. Since
the second maximum profit point is close to the first one our
approach does not enter the exponential decrease mode, rather
it decreases the number of VMs linearly. From period 38 to
56 our approach has reached the second equilibrium point.

C. Discussion on “Tiny” Clouds

Although the experiments shown here reached a stable
state around the equilibrium point, our prior experience with
a private cloud comprising of fewer physical nodes shows that
such a point is not easily found. Often, in clouds with limited
resources, the equilibrium point either exceeds the cloud’s
capacity or suggests that the users should not use the cloud
at all since their profits are maximized for less than1 VM.
Moreover, in small cloud infrastructures, deploying VMs un-
evenly on physical systems results in seemingly unreasonable

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

N
um

be
r

of
 V

M
s

Time periods

Fig. 10. Our approach following changes in the equilibrium point

performance penalties. For example, three VMs co-deployed
on the same physical node will perform worse than two VMs
running on different hosting machines. Similar abnormalities
emerge in the case of VM failures. Due to job re-submissions,
a failing VM would stall the overall execution. However, in
large infrastructures both uneven VM deployment and node
failure have a reduced impact. Large numbers of VMs tend
to be evenly distributed even under random-based scheduling
policies. Also, VM failures can be effectively handled by the
simultaneous submission of the same job to multiple workers.

VII. C ONCLUSIONS- FUTURE WORK

Combining resources fromIaaS-Clouds with modern dis-
tributed computing frameworks allows for the effective han-
dling of massively parallel problems. However, this combi-
nation introduces new challenges regarding both efficient use
of cloud resources as well as user satisfaction. In this paper,
we provide an answer to the key question of how many
virtual machines (VMs) a user should request from anIaaS-
Cloud given that users have a limited budget and that there
are speed-up barriers set by the available physical resources.
We follow a microeconomic-inspired approach to determine
the number of VMs alloted to each user according to her
financial capacity. Since the underlying physical resources are
shared among all cloud tenants, the performance the users get
out of the cloud may significantly vary over time. Therefore,
our approach continuously monitors the response time of user
applications and adjusts the amount of resources accordingly.

At its equilibrium point, the suggested approach maximizes
profit. From the provider’s point of view this profit corresponds
to financial benefit whereas from the consumer’s point of view,
the same profit corresponds to quality of service received. Our
experimental evaluation with both a detailed prototype anda
simulator demonstrates that our proposed method converges
to a fair resource sharing equilibrium point. At that point,the
number of VMs provided to each user is proportional to the
amount of money the same user is willing to pay.

In the future, we plan to investigate methods that reduce
the time required to reach the maximum profit point and
enrich pertinent approaches from the fields of both autonomic
systems and economics. We also plan to examine the effects
of open- and closed-loop markets on our approach. Finally,
we wish to apply the same ideas on other resource sharing
frameworks that do not rely on clouds to accommodate user
needs.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” inOSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, Dec. 2004.

[2] HP Labs, “Dynamic Hadoop Clusters,” http://wiki.smartfrog.org/
/wiki/display/sf/Dynamic+Hadoop+Clusters, Feb. 2010.

[3] http://www.cs.wisc.edu/condor/, “The Condor Project,” 2010.
[4] http://www.clusterresources.com/pages/products/torque-resource

manager.php, “TORQUE Resource Manager,” 2010.
[5] D. Grosu and A. Das, “Auctioning resources in Grids: model and

protocols: Research Articles,”Concurrent Computation : Practice and
Experience, vol. 18, no. 15, pp. 1909–1927, 2006.

[6] C. Chen, M. Maheswaran, and M. Toulouse, “Supporting Co-allocation
in an Auctioning-based Resource Allocator for Grid Systems,” in Proc.
of the International Parallel and Distributed Processing Symposium, Fort
Lauderdale, Florida, USA, Apr. 2002, pp. 89–96.

[7] K. Subramoniam, M. Maheswaran, and M. Toulouse, “Towards a Micro-
Economic Model for Resource Allocation,” inIn IEEE Canadian
Conference on Electrical and Computer Engineering. IEEE Press,
2002, pp. 782–785.

[8] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[9] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of Scientific Workflows,” in3rd Workshop
on Workflows in Support of Large-Scale Science, Austin, TX, November
2008, pp. 1–10.

[10] D. L. Eager, J. Zahorjan, and E. D. Lozowska, “Speedup Versus
Efficiency in Parallel Systems,”IEEE Transactions Computers, vol. 38,
no. 3, pp. 408–423, 1989.

[11] D. J. DeWitt and J. Gray, “Parallel Database Systems: The Future of
High Performance Database Systems,”Commun. ACM, vol. 35, no. 6,
pp. 85–98, 1992.

[12] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “G-commerce: Market
Formulations Controlling Resource Allocation on the Computational
Grid,” in International Parallel and Distributed Processing Symposium
(IPDPS 01). San Francisco: IEEE, April 2001.

[13] Amazon, “Elastic Cloud,” http://aws.amazon.com/ec2/, 2010.
[14] http://aws.amazon.com/ec2/spot instances/, “Amazon EC2 Spot In-

stances,” 2010.
[15] V. Marbukh and K. Mills, “Demand Pricing & Resource Allocation in

Market-Based Compute Grids: A Model and Initial Results,” in ICN ’08:
Proceedings of the Seventh International Conference on Networking.
Cancun, Mexico: IEEE Computer Society, Apr. 2008, pp. 752–757.

[16] C. E. Volker, V. Hamscher, and R. Yahyapour, “Economic Scheduling in
Grid Computing,” inJSSPP ’02: Revised Papers from the 8th Interna-
tional Workshop on Job Scheduling Strategies for Parallel Processing.
London, UK: Springer, 2002, pp. 128–152.

[17] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken, “Using
a Market Economy to Provision Compute Resources Across Planet-
wide Clusters,” inProc. for the International Parallel and Distributed
Processing Symposium, Rome, Italy, May 2009.

[18] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes, J. Shnei-
dman, A. C. Snoeren, and A. Vahdat, “Mirage: A Microeconomic
Resource Allocation System for Sensornet Testbeds,” inProc. of the
2nd IEEE Workshop on Embedded Networked Sensors, May 2005.

[19] A. Danak and S. Mannor, “Resource Allocation with Supply Adjustment
in Distributed Computing Systems,” inProceedings of the 30th IEEE
International Conference on Distributed Computing Systems (ICDCS),
Genoa, Italy, June 2010.

[20] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented Grids and
Utility Computing: The state-of-the-art and future directions,” Journal
of Grid Computing, vol. 6, no. 3, pp. 255–276, Sep. 2008.

[21] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing Risk and Reward in
a Market-Based Task Service,” inProc. of the 13th IEEE International
Symposium on High Performance Distributed Computing. Munich,
Germany: IEEE Computer Society, 2004, pp. 160–169.

[22] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman,
“Tycoon: An Implementation of a Distributed, Market-basedResource
Allocation System,”Multiagent Grid Systems, vol. 1, no. 3, 2005.

[23] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya, “Libra: A
Computational Economy-Based Job Scheduling System For Clusters,”
Software: Practice and Experience, vol. 34, no. 6, pp. 573–590, 2004.

[24] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-OrientedCloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities,” in Proc of the 10th International Conference on
High Performance and Communications(HPCC 08). Dalian, China:
IEEE Computer Society, Sept 2008.

[25] D. Dash, V. Kantere, and A. Ailamaki, “An Economic Modelfor
Self-Tuned Cloud Caching,” inProc of the 25th IEEE International
Conference on Data Engineering, Shanghai, China, Mar. 2009.

[26] B. N. Chun and D. E. Culler, “Market-based ProportionalResource
Sharing for Clusters,” University of California at Berkeley, Berkeley,
CA, USA, Tech. Rep., 2000.

[27] B. Urgaonkar, B. Urgaonkar, P. Shenoy, P. Shenoy, T. Roscoe, and
T. Roscoe, “Resource Overbooking and Application Profilingin Shared
Hosting Platforms,” inProc. of the 5th USENIX Symposium on Operat-
ing Systems Design and Implementation, 2002, pp. 239–254.

[28] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-
hal, and A. Merchant, “Automated Control of Multiple Virtualized
Resources,” inProceedings of the 4th ACM European Conference on
Computer Systems. New York, USA: ACM, 2009, pp. 13–26.

[29] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem, “Adaptive Control of Virtualized Resources in
Utility Computing Environments,” inProc. of the European Conference
on Computer Systems, Nuremberg, Germany, 2007, pp. 289–302.

[30] H. R. Varian, Intermediate Microeconomics : A Modern Approach,
7th ed. W. W. Norton and Company, Dec. 2005, ch. 25, Monopoly
Behavior.

[31] T. Sandholm and K. Lai, “MapReduce Optimization Using Regulated
Dynamic Prioritization,” in SIGMETRICS ’09: Proceedings of the
eleventh international joint conference on Measurement and modeling
of computer systems. New York, NY, USA: ACM, 2009, pp. 299–310.

[32] V. Jacobson, “Congestion avoidance and control,” inSIGCOMM ’88:
Symposium proceedings on Communications architectures and proto-
cols. Stanford, California, United States: ACM, 1988, pp. 314–329.

[33] Apache, “Hadoop,” http://hadoop.apache.org/, July 2010.
[34] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Proc. of the 19th ACM Symposium on Operating Systems Principles.
Lake George, NY: ACM, October 2003, pp. 164–177.

[35] “OpenNebula,” http://www.opennebula.org, March 2010.
[36] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis, “Nefeli:

Hint-based Execution of Workloads in Clouds,” inProcedings of the
30th IEEE International Conference on Distributed Computing Systems
(ICDCS 2010), June 2010.

[37] Apache, “Lucene,” http://lucene.apache.org/, July 2010.
[38] J. Zillman, M. Bauhardt, M. Schaaf, and S. Groschupf, “Katta,”

http://katta.sourceforge.net/, July 2010.

