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ABSTRACT
Emerging Web services, such as email, photo sharing, and
web site archives, must preserve large volumes of quickly ac-
cessible data indefinitely into the future. The costs of doing
so often determine whether the service is economically vi-
able. We make the case that these applications’ demands on
large scale storage systems over long time horizons require
us to reevaluate traditional system designs. We examine
threats to long-lived data from an end-to-end perspective,
taking into account not just hardware and software faults
but also faults due to humans and organizations. We present
a simple model of long-term storage failures that helps us
reason about various strategies for addressing some of these
threats. Using this model we show that the most important
strategies for increasing the reliability of long-term storage
are detecting latent faults quickly, automating fault repair
to make it cheaper and faster, and increasing the indepen-
dence of data replicas.

Categories and Subject Descriptors
E.5 [Data]: Files—backup/recovery ; D.4.5 [Software]: Op-
erating Systems—reliability ; H.3.7 [Information Systems]:
Digital Libraries—systems issues

General Terms
Design, Management, Reliability
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Digital Preservation, Storage Systems

∗Work performed while at Stanford University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

1. INTRODUCTION
In this paper we make the case that long-term reliable

storage presents challenges that differ from traditional prob-
lems in the storage literature, warranting increased interest
from systems and storage researchers.

Frequent headlines remind us that bits, even bits stored
in expensive, professionally administered data centers, are
vulnerable to loss and damage [20,22] 1. The vulnerabilities
grow when large volumes of data must be stored indefinitely
into the future, as required by emerging web services such
as e-mail (e.g., Gmail)2, photo sharing (e.g., Ofoto), and
archives (e.g., The Internet Archive). The economic viability
of these services depends on storing data at low cost, while
acceptance by their customers depends on their keeping data
unaltered and accessible with low latency.

Doing so over long periods of time would be easy if fast,
cheap, reliable disks were available, and if threats to the data
were confined to the storage subsystem. Unfortunately, nei-
ther is true. The economics of high-volume manufacturing
provide a choice between consumer-grade drives, which are
cheap, fairly fast, and fairly reliable, and enterprise-grade
drives, which are vastly more expensive, much faster but
only a little more reliable (§6.1). For short-lived data, cur-
rent levels of drive reliability might not pose a problem, but
for long-lived data, faults are inescapable. Further, long-
term storage faces many threats beyond the storage system:
obsolescence of data formats, malicious attacks, and eco-
nomic and structural volatility of the host organizations.

To make our case, we start by motivating the need for
digital preservation – storing immutable data over long pe-
riods (§2). We then list the threats to data survival using
examples from real systems (§3), and examine mismatches
between the design philosophy of many current storage sys-
tems and these threats (§4).

To explore the implications of this problem, we introduce
a simple reliability model (§5) of long-term replicated stor-
age systems. Though inspired by the reliability model for
RAID [38], we take a more end-to-end – rather than device-

1All URLs in the references were verified 13 March 2006.
Except for [25, 30, 33, 41, 48, 51, 52], their pages were also
archived at the Internet Archive Wayback Machine (http:
//www.archive.org/).
2All trademarks mentioned in this paper belong to their
respective owners.



oriented – approach and address a wider range of faults.
Our model explicitly incorporates both latent faults, which
occur long before they are detected, and correlated faults,
when one fault causes others or when one error causes mul-
tiple faults (§4).

Our model is simplistic but useful; it highlights needed
areas for gathering reliability data, and helps to evaluate
strategies for improving long-term storage reliability (§6).
For example, we would like to be able to answer questions
such as: Do latent faults occur frequently enough that we
need to worry about them? (Yes, §5.4.) How often should we
search for latent faults if doing so can itself cause damage?
(The increase in fault rate must be balanced by a quadratic
reduction in the time to detect and repair the faults, §5.4.2.)
Is it better to increase the mean time between visible faults
or between latent faults? (Perhaps neither if it significantly
decreases the other, §5.4.) Is it better to increase replica-
tion in the system or increase the independence of existing
replicas? (Both, but replication without increasing indepen-
dence does not help much, §5.5.) Some of these strategies
have been proposed before (§8), but we believe they are
worth revisiting in the context of long-term storage.

We conclude (§9) that the most important strategies for
increasing the reliability of long-term storage are detect-
ing latent faults quickly, automating repair to be faster and
cheaper, and increasing the independence of replicas at all
levels. Our analysis and conclusions should motivate a
renewed look at the design of storage systems that must
preserve data for decades in volatile and even hostile envi-
ronments.

2. THE NEED FOR PRESERVATION
Preserving information for decades or even centuries has

proved important. Shang dynasty (12th century BC) Chi-
nese astronomers inscribed eclipse observations on “oracle
bones” (animal bones and tortoise shells). About 3200 years
later researchers used these records, together with one from
1302BC, to estimate that the accumulated clock error was
just over 7 hours, and from this derived a value for the vis-
cosity of the Earth’s mantle as it rebounds from the weight
of the glaciers [37].

Longitudinal medical studies depend upon accurate preser-
vation of detailed patient records for decades. In 1948 sci-
entists began to study the residents of Framingham, Mas-
sachusetts [14] to understand the large increase in heart dis-
ease victims throughout the 1930s and 40s. Using data col-
lected over decades of research, scientists discovered the ma-
jor risk factors that modern medicine now knows contribute
to heart disease.

In 1975, the former USSR sent probes Venera 9 and 10
to the surface of Venus to collect data and imagery. The
low quality images attracted little interest. About 28 years
later, an American scientist used modern image processing
algorithms on the diligently preserved data to reveal much
more detail [57].

These timescales of many decades, even centuries, con-
trast with the typical 5-year lifetime for computing hard-
ware and digital media. Beyond just scientific data, legisla-
tion such as Sarbanes-Oxley [2] and HIPPA [1] require many
organizations to keep electronic records over decades. Con-
sumers used to analog assets such as mail and photographs,
which persist over many decades, are now happily entrust-
ing their digital versions to online services. The associated

marketing literature [17] encourages them to expect similar
longevity.

3. THREATS TO PRESERVATION
In this section we list threats to long-term storage and

provide real examples to motivate them. While some apply
also to short-term storage, others are unique to long-term
preservation (e.g., media obsolescence).

Large-scale disaster. During the life of archival data we
must expect large-scale disasters (floods, fires, earthquakes,
acts of war). Such disasters typically trigger other types of
threat, such as media, hardware, and organizational faults,
as was the case with many data centers affected by the 9/11
attack.

Human error. Users or operators often accidentally
delete content they still need, or purposefully delete data
for which they later discover a need. Sometimes the er-
rors affect preservation hardware (e.g., losing tapes in tran-
sit [41]), software (e.g., uninstalling a required driver), or
infrastructure (e.g., turning off the air-conditioning system
in the server room or swapping out the wrong disk in an
array that has suffered a disk failure). Human error is in-
creasingly the cause of system failures [40].

Component faults. Taking an end-to-end view of a sys-
tem, any component may fail. Hardware components suffer
transient recoverable faults (e.g., temporary power loss) and
catastrophic irrecoverable faults (e.g., a power surge fries a
controller card). Software components, including firmware
in disks, suffer from bugs affecting stored data. Ingestion
of data into a preservation system over the network may
itself fail. External license servers or the companies that
run them might no longer exist decades after an application
and its data are archived. Domain names will vanish or be
reassigned if the registrant fails to pay the registrar, and a
persistent URL [36] will not resolve if the resolver service
fails to preserve its data with as much care as the storage
system client.

Media faults. The storage medium is a vital component.
No affordable digital storage media are completely reliable
over long periods of time. They are subject to gradual ac-
cumulation of irrecoverable bit errors – often called bit rot
– and to sudden irrecoverable loss of bulk data such as disk
crashes [49].

Bit rot is particularly troublesome, because it occurs with-
out warning and might not be detected until it is too late to
make repairs. A familiar example might be CD-Rs. Man-
ufacturers claim lifetimes up to 100 years, but even when
properly stored actual lifetimes may be only 2 to 5 years [21,
31]. Similarly, a previously readable disk sector can become
unreadable or may be readable but contain the wrong infor-
mation due to firmware bugs or misplaced sector writes [5].

Media/hardware obsolescence. Over time, media and
hardware components can become obsolete – no longer able
to communicate with other system components – or irre-
placeable. This problem is particularly acute for remov-
able media, which though readable may have outlived any
suitable reader device [26]. 9-track tape and 12-inch video
laser discs are typical examples. The recently ubiquitous PC
floppy is no longer part of industry specifications and will
shortly share their fate.

Software/format obsolescence. Software obsolescence
is similar, often manifested as format obsolescence: the bits
in which the data were encoded remain accessible, but the



information can no longer be correctly interpreted. Propri-
etary formats, even popular ones, are equally vulnerable.
For instance, digital camera companies have proprietary, of-
ten undocumented “RAW” formats for recording camera
data. When a company ceases to exist or to support its
format, photographers can lose valuable data [51].

Loss of context. Metadata, or more generally “context,”
includes information about the subject and provenance of
content, the layout, location, and inter-relationships among
stored objects, and the processes, algorithms and software
needed to manipulate them. Preserving context is as impor-
tant as preserving the actual data, and it can even be hard
to recognize all required context in time to collect it. En-
crypted information is a particularly challenging example,
since the decryption keys must be preserved as well as the
encrypted data. Unfortunately, over long periods of time,
secrets (such as keys) can get lost, leak, or get broken [15].
Short-term storage applications are less vulnerable; their as-
sets rarely live long enough for the context to be lost or the
information to become uninterpretable.

Attack. Traditional repositories are subject to long-term
malicious attack, and there is no reason to expect their dig-
ital equivalents to be exempt. Attacks include destruction,
censorship, modification and theft of repositories’ contents,
and disruption of their services [52]. The attacks can be
short-term or long-term, legal or illegal, internal or external.
They can be motivated by ideological, political, financial or
legal factors, by bragging rights or by employee dissatisfac-
tion. Short-term storage is also vulnerable, but typically
to the better studied abrupt, intense attacks rather than
slowly subversive attacks. Because much abuse of computer
systems involves insiders [25], a digital preservation system
must anticipate attack even if it is completely isolated from
external networks.

Examples of attacks include US government websites be-
ing “sanitized” to match the administration’s world view [33,
50]. “Operation Cancelbunny” is an example of an attack
motivated by religion. Followers of the Church of Scientol-
ogy launched attacks against a Usenet newsgroup by cancel-
ing articles that were critical of the church [3]. Yet another
example was George Goble’s immensely popular web site
about lighting barbecues with liquid oxygen, an activity for
which he won the 1996 Ig Noble prize for chemistry. In early
2003, Goble was asked by the authorities to remove this web
site [16]. Incomplete versions of the site can still be found
at the Internet Archive.

Organizational faults. A system view of long-term
storage must include not merely the technology but also the
organization in which it is embedded. These organizations
can die out, perhaps through bankruptcy, or change mis-
sions. This can deprive the storage system of the support it
needs to survive. Planning must include data “exit strate-
gies” that envisage the possibility of the asset represented
by the preserved content being transferred to a successor
organization.

During organizational changes, a large IT company closed
a research lab and requested the lab’s research projects be
copied to tape and sent to another of its labs. Unfortu-
nately, the tapes languished without documentation of their
contents, because few knew about them. When it became
clear that some of the project data would be useful to cur-
rent researchers, enough time had passed that nobody could
identify what would be on which tape, and the volume of

data was too huge to reconstruct an index [28].
Storage services can also make mistakes, and assets de-

pendent on a single service can be lost. An Ofoto user’s
digital photographs of her wedding were deleted when she
did not make a purchase in the required interval. She had
not updated her e-mail address so did not receive the warn-
ing [29]. Even if she had, at that time Ofoto provided no
“data exit strategy” by which she could have retrieved her
high-resolution originals.

Economic faults. Organizations often stretch their lim-
ited budgets simply to get their collections online, leaving
little or nothing to ensure continued accessibility. There are
ongoing costs for power, cooling, bandwidth, system admin-
istration, equipment space, domain registration, renewal of
equipment, and so on. Information in digital form is much
more vulnerable to interruptions in the money supply than
information on paper, and budgets for digital preservation
must be expected to vary up and down, possibly even to
zero, over time. These budget issues affect our ability to
preserve as many collections as desired: many libraries now
subscribe to fewer serials and monographs [7].

The lack of tools to predict these on-going costs makes
it difficult to motivate an investment in preservation [18],
especially if the future target audience does not exist at the
time decisions are made. While budget is an issue in the
purchase of any storage system, a shorter lifespan makes
planning easier.

4. DANGEROUS ASSUMPTIONS
These threats are not new, so why are archives still losing

data? A recent study for the National Archives [48] noted
the lack of explicit threat models for archival storage sys-
tems, implying that systematic design and an end-to-end
perspective are lacking. To that issue we add common, but
potentially dangerous assumptions. These include visibility
of faults (§4.1), independence of faults (§4.2), and unlimited
budgets (§4.3), as described below.

4.1 The fault visibility assumption
While many faults are detected at the time an error causes

them, some occur silently. Media errors are the best known
of many sources of these latent faults. A disk sector might
become unreadable or bits might rot, but this will not be
detected until an attempt is made to read them.

Silent media errors and faults occur more frequently than
commonly assumed. Schwarz et al. suggest that silent block
faults occur five times as often as whole disk faults [45]. Our
study of data from the Internet Archive (IA) (§5.4) shows a
smaller but still significant rate.

In aggregate, systems like the IA might supply users with
data items at a high rate, but the average data item is ac-
cessed infrequently. Detecting loss or corruption only at
user accesses renders the average data item vulnerable to an
accumulation of latent faults.

Beyond media faults, the threats of §3 can lead to many
types of latent faults:

Human error: Accidental deletion or overwrite might
not be discovered until the affected material is needed.

Component failure: The reliance on a failed system
component or a third-party component that is no longer
available might not be discovered until data depending on
that component are accessed.

Media/hardware obsolescence: Failure of an obsolete,



seldom-used reader might not be discovered until informa-
tion on its medium needs to be read. It might then be
impossible or too costly to repair or replace the reader.

Software/format obsolescence: Upon accessing old
information we might discover it is in a format belonging
to an application we can no longer run.

Loss of context: We might not discover we are missing
crucial metadata about saved data until we try to make
sense of them. For instance, we might not have preserved
an encryption key.

Attack: Results of a successful censorship or corruption
attack on a data repository might never be discovered, or
might only become apparent upon accessing the data long
after the attack.

4.2 The independence assumption
Data replication is necessary for preventing data loss, but

it is not sufficient. Analysis of replication schemes is often
based on the assumption that replicas fail independently.
Alas, in practice, faults are not as independent as we might
hope. Taking an end-to-end perspective, the threats of §3
provide many sources of fault correlation:

Large-scale disaster: A single large disaster might de-
stroy all replicas of the data. Geographic replication clearly
helps, but care must be taken to ensure it provides suffi-
cient independence. For example, the 9/11 disaster in New
York City destroyed a data center. The system correctly
failed over to a replica data center on the other side of
a river. Unfortunately, the replicas were not independent
enough; the chaos in the streets prevented staff from get-
ting to the backup. Eventually it was unable to continue
unattended [53].

Human error: System administrators are human and
fallible. Unfortunately, in most systems they are also pow-
erful, able to destroy or modify data without restriction. If
all replicas are under unified administrative control, a single
human error can cause faults at all of them.

Component faults: If all replicas of the information are
dependent on the same external component, the loss of that
component causes correlated faults at every replica. Ta-
lagala [49] logged every fault in a 368-disk system at UC
Berkeley over six months and showed significant correla-
tions between them due to shared failed components such
as power connections, cooling and SCSI controllers.

Media faults: Temperature and vibrations of tightly
packed devices in machine room racks [5] are sources of cor-
related media faults.

Loss of context: Losing metadata for archival content
might cause correlated faults across replicas.

Attack: Attacks can cause correlated faults, e.g., a flash
worm affecting many replicas at once, or a censorship attack
affecting the same materials in many places.

Organizational faults: Correlated organizational faults
– the simultaneous demise of all subsidiaries of the same
defunct parent company – can cause all copies of an archive
to fail at the same time.

4.3 The unlimited budget assumption
The biggest threats to digital preservation are economic.

Most of the information people would like to see live for-
ever is not in the hands of organizations with unlimited
budgets; it cannot be preserved by optimal but expensive
techniques such as synchronous mirroring of RAIDs across

widely dispersed geographic replicas. Although we mention
cost aspects of some of the strategies we explore in this pa-
per, detailed cost modeling of long-term storage will require
much more real-world data to be meaningful.

5. MODELING DATA LOSS
Abstract models such as those for RAID [10, 38] are use-

ful for reasoning about the reliability of different replicated
storage system designs. In this section, we build upon these
models, increasing the focus on issues important to long-
term storage by incorporating the effect of latent and corre-
lated faults on the overall reliability of an arbitrary unit of
replicated data. Our model is agnostic to the unit of repli-
cation; it can be a bit, a sector, a file, a disk, a collection of
objects, or an entire storage site. We therefore attempt to
develop a more abstract model that can be interpreted in a
more general, holistic fashion. The model is not intended to
provide exact answers, and its mathematical representation
is only a coarse approximation. Instead, the model provides
a conceptual methodology for reasoning about the relative
impact of a broad range of faults, their detection times, their
repair times, and their correlation. The model helps point
out what strategies are most likely to increase reliability, and
what data we need to measure to resolve trade-offs between
these strategies.

Our model also distinguishes between the size of the unit
of replication and the size of the fault. The damaged data
may be bigger or smaller than the replication unit. For
instance, while we might replicate data at the file level, a
fault might only affect a few bytes of the file. Traditionally,
in looking at block-level or disk-level replication strategies,
faults have sometimes been assumed to affect a whole disk,
even if some of the information is salvageable from the disk.
We separate replication size and fault size in our model to
make it possible to identify more generally what data are
actually damaged.

The disk has traditionally been the convenient unit to
work with, because manufacturers report MTTFs for disks.
In contrast, our model allows us to work at any granularity,
incorporating more specific information about the likelihood
of failures for different units of replication as the information
becomes available. Determining the most effective, lowest-
cost method of replication for a system might require parallel
analysis at several different choices of replication unit.

We start with a simple, abstract definition of latent faults.
We then derive the mean-time-to-failure of mirrored data in
the face of both immediately visible and latent faults. This
derivation includes both temporal and spatial coincidence
of faults. We extend this equation to include the effect of
faults correlated either temporally or spatially. Finally, we
discuss the implications of this equation on the reliability of
long-term storage under various scenarios.

5.1 Visible versus latent faults
We distinguish between immediately visible and latent

faults, as shown in Figure 1. Visible faults are those for
which the time between their occurrence and detection is
negligible. Examples of such faults include entire-disk or
controller failures. We denote the mean time to a visible
fault by MV and the associated mean time to repair by
MRV (see symbol key in Table 1). Latent faults are those
for which the time between occurrence and detection is sig-
nificant. Examples include misdirected writes, bit rot, un-
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Figure 1: Types of replica faults. Time flows from left

to right. Above, when a visible fault (sad face) is detected,

recovery begins immediately. At the end of successful recov-

ery, the fault has been corrected (happy face). Below, when

a latent fault occurs (face behind sunglasses), nothing hap-

pens until the fault is detected. Then, as with visible faults,

recovery takes place.

α Temporal correlation factor
βab Prob. a and b overlap spatially
MDL Mean time to detect latent fault
ML Mean time to latent fault
MRL Mean time to repair latent fault
MRV Mean time to repair visible fault
MTTDL Mean time to data loss
MTTF Mean time to fault
MV Mean time to visible fault
WOV Window of vulnerability
a ∩T b a coincides in time with b

Table 1: Key to symbols and acronyms in the model.

readable sectors, and obsolete data formats. We denote the
mean time to a latent fault by ML and mean time to repair
by MRL. We only consider latent faults that are detectable;
hence, they have a finite mean time between occurrence and
detection, denoted by MDL.

5.2 Assumptions in the model
The mathematical representation of our model is devel-

oped by starting with simple assumptions and adding com-
plexity in stages. Following RAID [38], we start by as-
suming that the processes generating faults are memoryless.
That is, the probability, P (t), of a fault occurring within
time t, is independent of age. This assumption leads to
the exponential distribution P (t) = 1 − e−t/MTTF, where
MTTF is the mean time to the fault. For many parts of our
derivation, we consider the case where t � MTTF, so the
following approximation holds:

1 − e−t/MTTF ≈ 1 − (1 −
t

MTTF
) =

t

MTTF
(1)

This approximation and similar ones below are used only to
simplify the expression for the exponential in the probability
and are not fundamental to the model.

Initially, we assume that all faults occur independently of
one another, both temporally and spatially. Subsequently,
we introduce correlated faults that are also exponentially
distributed but with an increased rate of occurrence. For
simplicity, we model this increase by a multiplicative corre-
lation factor, the same for both latent and visible faults. We
also accommodate faults with an increased likelihood that
resulting damage affects the same data in both replicas. This
approach accounts for faults correlated either temporally or
spatially, but does not account for cross correlations across

space and time.
Our equations provide a mean-value analysis of reliabil-

ity. If the distributions of faults, recovery times, or detection
times are not exponential (e.g., bimodal) our use of means
is inexact. A distribution analysis would provide better un-
derstanding of the distribution of data loss probability, but
we have not yet attempted it.

Finally, we also make assumptions about detection and
repair of latent faults. Latent errors manifest themselves in
two basic ways: as inaccessible data or as corrupted data.
If data are inaccessible, then noticing the fault upon access
is straightforward. We can repair this fault by creating a
new copy from the remaining redundant copies. If the data
are corrupted, then noticing the fault requires further work
such as comparing the data to a copy. To decide which
copy is corrupted, though, we need additional information.
For instance, we might use the information that one copy
decrypts or decompresses to something sensible, while the
other produces gibberish. We might replicate content more
aggressively and use majority consensus among the replicas.
Or we might use collision-resistant checksums. Although
checksums cannot be used to repair a damaged copy, they
can provide votes for the consensus. For the model described
in the next section, we assume that we can detect damage
by comparing two copies of the content, and that we have
sufficient information to determine which copy to use for
repair.

5.3 The model
Our model only considers redundancy schemes that repli-

cate the entire body of data. For most of this section we
concentrate on mirroring, the simplest form of replication.

Mirrored data become irrecoverable when there are two
successive faults, one in each copy, such that a) the second
fault occurs before the initial fault can be repaired (temporal
overlap) and b) the damaged portions of the copies intersect
(spatial overlap).

MTTDL is the mean time to data loss, and 1
MTTDL

is
equal to the rate of double faults that lead to data loss. In
this section, we derive an expression for this quantity, which
represents the reliability of mirrored data, to understand
how it is affected by visible, latent, and correlated faults.
We first estimate the probability of temporal overlap and
subsequently account for the probability of spatial overlap.
Note that a double fault may occur without a user being
aware of the data loss. Nevertheless, it still counts toward
the double-fault rate.

In our model, we experience temporal overlap when a
fault occurs at a second replica during the window of vulner-
ability (WOV) after a fault at the first replica. The WOV
is the time during which the first fault remains unrepaired.
We denote this intersection in time by ∩T . Since faults may
be visible or latent, we need to consider the WOV after each
type, as illustrated in Figure 2.

First, consider the WOV after a visible fault, V1, which
on average is MRV. During this WOV, both latent and
visible faults can occur. The probability that another visible
fault, V2, overlaps in time with the WOV of the first fault,
given that the first fault has occurred, is

P (V2 ∩T V1|V1) ≈
MRV

MV
(2)

where MRV � MV. We obtain this result by using the
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Figure 2: Temporal overlap of faults causing data loss. The

y axis indicates the type of the first fault (first sad face) and

the x axis indicates the type of the second fault (second sad

face). After the first fault occurs, there is a window of

vulnerability during which the occurrence of a second fault

can lead to data loss. After visible faults, this window only

consists of the recovery period. After latent faults (faces

behind sunglasses), this window also includes the time to

detect the fault.
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Figure 3: Spatial overlap of faults. Both replicas have

suffered areas of damage. Intersecting damage causes data

loss.

approximation in Equation 1.
The probability that another latent fault, L2, occurs is

P (L2 ∩T V1|V1) ≈
MRV

ML
(3)

where MRV � ML. The difference between P (V2 ∩T V1|V1)
and P (L2 ∩T V1|V1) arises only from the different rates of
visible and latent fault occurrence.

Next, consider the WOV after a latent fault, L1, which
on average is MDL + MRL. Again both latent and visible
faults can occur in this WOV.

The probability that another visible fault, V2, overlaps
with the WOV of the first fault, given that the first fault
has occurred, is

P (V2 ∩T L1|L1) ≈
MDL + MRL

MV
(4)

and the probability that another latent fault, L2, occurs is

P (L2 ∩T L1|L1) ≈
MDL + MRL

ML
(5)

As before, MDL + MRL � {MV, ML}.
To obtain MTTDL, we need the overall probability that

a second fault overlaps with a first fault; hence, we next

account for spatial overlap of the damaged areas, as il-
lustrated in Figure 3. For instance, the likelihood that two
faults overlapping in time would also damage the same ma-
terials in two replicas depends on their size and the areas
they affect. Assuming that failures across replicas are not
cross-correlated with space and time, we obtain the overall
probability by multiplying each term for temporal overlap
with a term, β, representing the probability that the faults
overlap spatially. For example, for two successive visible
faults,

P (V2 ∩ V1|V1) ≈ βV V · P (V2 ∩T V1|V1) (6)

where ∩ denotes the overall overlap.
Spatial overlap may be either physical or logical. An ex-

ample of physical overlap is where the same sectors on mir-
rored disks suffer faults. An example of logical overlap is
where the same files hosted at two sites suffer faults; the
same materials, regardless of their physical layout, are dam-
aged at both replicas. Moreover, β can be a function of
time. The amount of damage in a replica will accrue over
time, and the longer the detection and recovery times, the
more likely it becomes that damage in the second replica
overlaps with the damage in the first replica.

To estimate the total double-fault failure rate we mul-
tiply the rate of the first fault by the probability that a sec-
ond fault overlaps with the first, and then sum the products
for each fault-type. Thus, 1

MTTDL
is approximately

P ((V2 ∨ L2) ∩ V1|V1)

MV
+

P ((V2 ∨ L2) ∩ L1|L1)

ML
(7)

where the first term counts the fraction of the visible faults
that result in double-failures, and the second term counts
the fraction of latent faults that result in double-failures.
This equation actually reports the mean time to the first
fault resulting in data loss, which approximates the mean
time to the second fault when detection and recovery times
are short. Substituting using Equation 6 and its counter-
parts and leaving out second-order terms, 1

MTTDL
is approx-

imately

βV V ·P (V2∩T V1|V1)+βLV ·P (L2∩T V1|V1)
MV

+

βV L·P (V2∩T L1|L1)+βLL·P (L2∩T L1|L1)
ML

(8)

Note that if MDL becomes large – latent faults are not de-
tected – the approximations in Equations 4-5 in the second
term do not hold. Instead, the combined P ((V2∨L2)∩L1|L1)
approaches 1.

To account for temporally correlated faults, we as-
sume that the probability of the second fault (conditioned on
the occurrence of the first) is also exponentially distributed,
but with a faster rate parameter, as illustrated in Figure 4.
We introduce a multiplicative correlation factor 0 < α ≤ 1
that reduces the mean time to the subsequent fault once an
initial fault occurs. In this case, Equations 2–5 are multi-
plied by 1/α. Note that Equation 8 folds the α’s into the
temporal overlap probabilities.

To account for spatially correlated faults, such as might
result from a successful censorship attack, we increase the
probability that spatial overlap occurs by adjusting β closer
to 1.

This is undoubtedly a vast simplification of how faults
correlate in practice. We are not alone in using this simpli-
fication [12], because more accurate modeling of correlations
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Figure 4: Temporal correlation of faults. This state ma-

chine models temporal correlation of faults. In the first

state, both replica R1 and R2 are good. Then one of the

replicas suffers a fault at a rate based on the mean time to a

visible or a latent fault. We represent correlation of faults

through the increased rate (multiplied by 1
α

where 0 < α ≤ 1)

at which the second replica also experiences a fault.

Mirrored disk Mirrored archive

MV 120,000 hrs 20 hrs
ML 9.7 yrs 1531 hrs
MRV 1.4 hrs 4.4 hrs
α 1 1
βV V , βLV , βV L 1 1/1795
βLL 0 0

Table 2: Parameters used for reliability estimation.

is still very difficult; it relies on modeling a particular sys-
tem instantiation and its component interactions, as well as
external influences such as attacks. We are instead seeking
a more general way to reason about replicated materials re-
gardless of the level of replication. An alternative would be
to introduce a distinct MTTF for correlated faults that is
less than the independent MTTF, as done for RAID [10].

5.4 Implications
To understand the implications of Equation 8, we investi-

gate the behavior of two systems – a single pair of mirrored
disks and a large geographically replicated archive. To do so,
we parameterize the model with real data to explore the dif-
ferences in reliability under three scenarios: 1) the effect of
latent errors is ignored, 2) latent errors exist but the system
does not try to detect or repair them, and 3) latent errors
exist and the system detects and repairs them. Proactively
searching for latent disk errors is often called “scrubbing.”
We prefer to use “auditing” to apply to all system levels and
avoid confusion with deleting data. Our analysis confirms
that the assumptions behind these scenarios lead to orders
of magnitude differences in reliability. In this Section, we
first explain how we obtain the parameters to calculate re-
liability, as shown in Table 2, for each of the two systems.
Then, we proceed with the reliability estimation.

In the first example system, we consider replicated con-
sumer ATA drives and take into account only faults from
media errors. We base the visible fault rate on operations
at a large disk farm as reported by Gray and van Ingen
[19]. Assuming an exponential failure distribution and a 7%
per year disk failure rate, we calculate an MV of 120K. We
derive ML from one of several quoted worst-case unrecover-
able error rates of 1 bit in 1015. This is a read error rate,
but for lack of additional information we assume this rate is

the rate of latent errors. Using an analysis similar to Chen
et al. [10], this bit error rate results in a .164% probabil-
ity of an unrecoverable read of a 200 GB disk. Assuming
the disk is 99% idle and supports a 40 MB/s [19] transfer
rate, we would read a disk capacity worth of data approx-
imately 63 times a year. This results in an unrecoverable
read once every 9.7 years, which we use for ML. Moreover,
the mean time to recovery, MRV, for mirrored disks (read-
ing the whole of the surviving replica and in parallel writing
a hot standby) takes about 1.4 hours. To calculate the spa-
tial overlap parameters for this system, we assume that all
visible faults affect a whole disk, which is an entire replica.
Thus, βV V = βV L = βLV = 1. Since latent faults affect
at a minimum a single sector and there are 4 × 108 sectors,
we assume βLL ≈ 0 because it is small and its effect in the
upcoming reliability equations is insignificant compared to
the effect of the other β parameters.

Our second example system consists of two geographically
separate just-a-bunch-of-disks (JBOD) replicas networked
together, each with 1795 200GB drives. We base this exam-
ple on a preliminary analysis of failure data collected from
the IA. We derive our parameters from aggregate statistics
computed over a subset of this failure data. A more detailed
analysis that accounts for numerous other factors, such as
growth of the archive during the data collection period or
correlations among failures, is still pending.

Although the IA does not yet routinely audit replicas, IA
staff collected 27.7K hours of monthly checksums and other
data on about 1.5M immutable files, each on average about
43MB in size with about 836 files per disk. We observed 1366
unexplained checksum changes. Of these changed files, 1218
had been moved from one drive to another by the normal
archive maintenance mechanisms without an error being de-
tected during migration. Assuming these could be fixed by
simple end-to-end checks after transfers, the remaining 148
are latent faults that were distributed across 18 disks. Fur-
ther assume these disks experience latent faults that obey
an exponential probability of failure. Using Equation 1, we
obtain an ML of 2.7 × 106 hours for each disk or an ML of
1531 hours for a replica. From the IA data, we observe a
mean time to disk replacement of 36×103 hours, resulting in
a replica MV of 20 hours. We assume visible faults affect an
entire disk, but latent faults affect a file. In this case if either
of two temporally overlapping faults is visible, then their
spatial overlap probability is βV V = βLV = βV L = 1/1795,
because there are 1795 disks in a replica. If the two tem-
porally overlapping faults are both latent, then their spatial
overlap probability is much smaller, βLL = 1/(1.5M), since
there are 1.5M files. At this magnitude we assume βLL ≈ 0,
because its effect in the reliability equations is insignificant.
In this scenario, MRV is longer because recovery involves
copying data over a wide-area network. Assuming a trans-
fer rate of 100 Mbps, MRV for a 200GB disk is 4.4 hours.

These parameters incorporate faults arising from the day-
to-day operation of a large archive. Such faults may result
from errors at all levels of the storage stack, from low-level
media up to the human operator. Thus, although not com-
parable to the ones in the first system, these parameters
may be more realistic. In what follows we assume that all
faults are independent (α = 1).

5.4.1 No latent errors
First, consider the scenario most often explored in the lit-



erature, in which latent faults are completely ignored. Be-
cause we are ignoring the effects of latent faults, we assume
MV � ML and MDL + MRL � MV. As a result, the sec-
ond term in Equation 8 becomes negligible compared to the
first, which simplifies to

MTTDL ≈
α · MV2

βV V · MRV
. (9)

Plugging in the parameters for our mirrored disks, MTTDL
is 1.2× 106 years. This seems optimistic. Using the param-
eters for the replicated archive, we calculate MTTDL to be
18.6 years. Note, even if we were to remove all possible la-
tent errors, this is the best reliability we could achieve for a
replicated archive of this scale and type. This points to the
need for additional redundancy, perhaps at the level of the
entire archive or perhaps at lower levels, e.g., using RAID
within an archive replica to boost MV.

5.4.2 Latent errors without auditing
Next, given the evidence that latent errors occur in prac-

tice, we show their impact on reliability by removing some
assumptions. First, we remove our neglect of latent faults.
Without auditing, latent errors in archival systems will typ-
ically be discovered only by infrequent user accesses (§4.1).
In this case, MDL + MRL � ML, which means the numer-
ator in the second term of Equation 7 approaches 1. This
limit results because of an increasing chance of both spatial
and temporal overlap when detection times for latent faults
are large. Second, we remove the constraint MV � ML
from above. Then, MTTDL simplifies to:

MTTDL ≈
α · MV2

MRV · βV V ML+βLV MV
ML

+ αMV2

ML

. (10)

This equation provides a quantitative metric for determining
when latent errors are negligible. To achieve the same relia-
bility as before, ML must be large enough so that the right
half of the denominator is negligible compared to the left
half, i.e., ML � MV2. Moreover, when recovery and detec-
tion times are long, this equation underestimates MTTDL
because it actually reports the mean time to first fault. To
get a better estimate on the mean time to second fault,
i.e., data loss, we add in a correction factor of at most
min(MV, ML) to the MTTDL obtained from Equation 7.
We omit the result due to space.

Substituting our parameters for the mirrored disks, with-
out auditing, MTTDL is 8.5×104 hours or 9.7 years. For the
replicated archive example, MTTDL is 1517 hours without
the correction factor, and 1537 hours with the correction fac-
tor (add 20 hours), or a little more than 64 days. Compared
to the previous reliability numbers, the benefit of redun-
dancy in the presence of latent errors is undermined.

5.4.3 Latent errors with auditing
Given that latent errors are not negligible, we examine

the effect of auditing on reliability. Following Schwarz et
al. [45], we assume a periodic process that checks and fixes
all data every 4 months, which leads to an MDL of 1460
hours (half the auditing period). Since recovery of latent
faults involves a sector copy or file copy of at most 100MB,
we assume MRL ≈ 0 in both cases. Moreover, we substitute
MV = kML into Equation 8 and simplify. In the mirrored
disk case, k = 1.41 and in the replicated archive case, k =

.013. This substitution simplifies MTTDL to

α · k2 · ML2

MRV(βV V + kβLV ) + k(MDL + MRL)(βV L + kβLL)
.

(11)
For the mirrored disk case with auditing, MTTDL is 7.0 ×
106 hours or 795 years. For the IA example, if we audit
every 4 months, MTTDL is 3.0 × 104 hours or 3.4 years.
Auditing every two weeks (MDL = 168 hours) improves the
overall reliability to 12.3 years. We see that a sufficiently
proactive detection process may increase reliability by orders
of magnitude.

In this equation, MDL+MRL plays a role similar to MRV.
With all other variables fixed, this result implies that reduc-
ing detection time can be as beneficial as reducing recovery
times.

Since detecting latent errors is a proactive process that
can tax and wear out compute and storage resources, audit-
ing can potentially induce an increase in the rate of visible
or latent errors. The above equation implies that any mul-
tiplicative increase in the error rate due to auditing must
be accompanied by a quadratic reduction in detection and
repair time of latent errors. That is, assuming MDL+MRL
dominates the denominator, if MLnew = MLold/x, then
(MDL + MRL)new < (MDL + MRL)/x2 for auditing to be
effective.

Finally, these three specializations of the model point out
an additional trade-off between the rates of occurrence of
latent and visible faults. In Equations 9-11 MTTDL varies
strongly with both MV and ML and in particular is lim-
ited by the smaller of MV and ML. Thus, we must consider
occurrence rates for both fault types to improve overall sys-
tem reliability. We must be careful not to sacrifice one for
the other, which might happen in practice, since MV and
ML can often be anti-correlated depending upon hardware
choice and detection strategy.

5.5 Replication and correlated faults
In this section, we show that additional replication does

not offer much additional reliability without independence.
To simplify our reliability analysis for higher degrees of repli-
cation, we assume that we have instrumented the system so
that MDL is short, and we assume that latent and visible
faults have similar rates and repair times, MV. We roughly
estimate the MTTDL of a system with a degree of replica-
tion, r, by extending the analysis along the same lines as for
mirrored data. We calculate the probability that r − 1 suc-
cessive, compounding faults after an initial fault will leave
the system with no integral copy from which to recover.

To do so, we calculate the probability of r − 1 successive
faults occurring within the vulnerability windows of each
previous fault. For simplicity, this analysis assumes that the
vulnerability windows, each of length MRV, overlap exactly.
In that case, the probability that the k-th copy fails within
the WOV of the previous (k − 1) failed copies is roughly
MRV
α·MV

. Thus, the probability that successive r − 1 copies
all fail within the WOV of previously failed copies is the
product of those r − 1 probabilities, ( MRV

α·MV
)r−1. Since the

first fault occurs with rate 1
MV

, the overall mean-time-to-
data-loss is

MTTDL ≈ MV · (
α · MV

MRV
)r−1 ≈

αr−1 · MVr

MRVr−1 (12)

This equation shows that although increasing the level of



replication, r, geometrically increases MTTDL, a high de-
gree of correlated errors (α � 1) would also geometrically
decrease MTTDL, thereby offsetting much or all of the gains
from additional replicas.

6. STRATEGIES
This simple model reveals a number of strategies for re-

ducing the probability of irrecoverable data loss:

• Increase MV by, for example, using storage media less
subject to catastrophic data loss.

• Increase ML by, for example, using storage media less
subject to data corruption.

• Reduce MDL by, for example, auditing the data more
frequently to detect latent data faults.

• Reduce MRL by, for example, automatically repairing
latent data faults rather than alerting a human oper-
ator to do so.

• Reduce MRV by, for example, providing hot spare
drives so that recovery can start immediately rather
than once a human operator has replaced a drive.

• Increase the number of replicas enough to survive more
simultaneous faults.

• Increase α and decrease β by increasing the indepen-
dence of the replicas.

While we generally describe these strategies in terms of
the more familiar hardware and media faults, they are also
applicable to other kinds of faults. For instance, in addition
to detecting faults due to media errors, auditing can detect
corruption and data loss due to attack. As another example,
we can use a similar process of cycling through the data,
albeit at a reduced frequency, to detect data in endangered
formats and convert to new formats before we can no longer
interpret the old formats. In the rest of this section we
examine the practicality and costs of some techniques for
implementing these strategies.

6.1 Increase MV or ML

Increasing MV and ML will provide higher reliability, but
the cost trade-offs must be considered in each case. For
example, should we build an archive using more reliable,
but more expensive, enterprise drives, or use lower-cost con-
sumer drives and more replication? Based on Seagate’s spec-
ifications, a 200GB consumer Barracuda drive has a 7% vis-
ible fault probability in a 5-year service life [46], whereas a
146GB enterprise Cheetah has a 3% fault probability [47].
But the Cheetah costs about 14 times as much per byte
($8.20/GB versus $0.57/GB – prices from TigerDirect.com
6/13/05). The Barracuda has a quoted irrecoverable bit er-
ror rate of < 10−14 and the Cheetah of < 10−15. Instead
of using Cheetahs we could implement the archive using
RAID5 arrays of Barracudas, increasing the archive’s MV,
and also replicate the entire archive, increasing MTTDL
given the MV.

6.2 Reduce MDL

A potentially less expensive approach to addressing latent
faults is to detect the faults as soon as possible and repair
them. The only way to detect these faults is to audit the
replicas by reading the data and either computing checksums
or comparing against other replicas.

Assuming (unrealistically) that the detection process is
perfect and the latent faults occur randomly, MDL will be
half the interval between audits, so the way to reduce it is
to audit more frequently. In other words, one can reduce
MDL by devoting more disk read bandwidth to auditing
and less to reading the data. Recent work suggests that
in many systems a reasonable balance of auditing versus
normal system usage [39,45] can be achieved.

On-line replicas such as disk copies have two significant
advantages over off-line copies such as tape backups. First,
the cost of auditing an off-line copy includes the cost of re-
trieving it from storage, mounting it in a reader, dismount-
ing it and returning it to storage. This can be considerable,
especially if the off-line copy is in secure off-site storage. Sec-
ond, on-line media are designed to be accessed frequently
and automatically. Auditing off-line copies, on the other
hand, is a significant cause of highly correlated faults, from
the error-prone human handling of media [41] to the media
degradation caused by the reading process [4].

The audit strategy is particularly important in the case of
digital preservation systems, where the probability that an
individual data item will ever be accessed by a user during
a disk lifetime is vanishingly small. The system cannot de-
pend on user access to trigger fault detection and recovery,
because during the long time between accesses latent faults
will build up enough to swamp recovery mechanisms. A sys-
tem must therefore proactively audit its replicas to minimize
MDL. The LOCKSS system [32] is an example.

Note that relying on off-line replicas for security is not
foolproof. Off-line storage may reduce the chances of some
attacks, but it may still be vulnerable to insider attacks.
Because it is harder to audit, the damage due to such attacks
may persist for longer.

6.3 Reduce MRL or MRV

Reducing the mean time to repair a visible fault is impor-
tant in reducing the window of vulnerability, and therefore
in improving reliability. Although the mean time to repair
a latent media fault will normally be far less than the mean
time to detect it, it is important that we do not inadver-
tently increase MRL to be as big as MDL.

Again, on-line replicas have the major advantage that re-
pair times for media faults can be short – a few media access
times. No human intervention is needed, and the process of
repair is in itself less likely to cause additional correlated
faults. Repairing from off-line media incurs the same high
costs, long delays and potential correlated faults as auditing
off-line media.

6.4 Increase replication
Off-line media are the most common approach to increas-

ing replication. But the processes of auditing and recovering
from faults using off-line backup copies can be slow, expen-
sive, and error-prone.

Some options for disk-based replication strategies include
replication within RAID systems, across RAID systems, and
across simple mirrored replicas. Replication within RAID



systems does not provide geographical or administrative in-
dependence of the replicas. If we require these kinds of in-
dependence, a global view of system reliability and costs
must weigh the costs of increasing the reliability of individ-
ual sites versus increasing the level of geographic replication
using cheaper components. OceanStore [27] is an example
of using a large number of replicas on cheap disks.

6.5 Increase independence
In just the six months of the Talagala study [49], many

correlated faults were observed, apparently caused by disks
sharing power, cooling, and SCSI controllers, and systems
sharing network resources. Our model suggests that in most
cases, even with far lower rates of correlated faults, increas-
ing the independence of replicas is critical to increasing the
reliability of long-term storage.

Long-term storage systems can reduce the probability of
correlated faults by striving for diversity in hardware, soft-
ware, geographic location, and administration, and by avoid-
ing dependence on third-party components and single orga-
nizations. Examples include:

Hardware: Disks in an array often come from a single
manufacturing batch, exhibiting similar fault characteris-
tics. However, the increased cost that would be incurred by
giving up supply chain efficiencies of bulk purchase might
make hardware diversity difficult. Note, though, that re-
placing all components of a large archival system at once is
likely to be impossible. If new storage is added in “rolling
procurements” over time [8], then differences in storage tech-
nologies and vendors over time naturally provide hardware
heterogeneity.

Software: Systems with the same software are vulner-
able to epidemic failure; Junqiera et al. have studied how
the natural diversity of systems on a campus can be used to
reduce this vulnerability [23]. However, the increased costs
caused by encouraging such diversity, in terms not merely of
purchasing, but also of training and administration, might
again make this a difficult option for some organizations.
The system at the British Library (BL) [8] is unusual in ex-
plicitly planning to develop diversity of both hardware and
software over time. Nevertheless, given the speed with which
malware can find all networked systems sharing a vulnerabil-
ity, increasing the diversity of both platform and application
software is an effective strategy for increasing α.

Geographic location: Many systems that use off-line
backup store replicas off-site, despite the additional storage
and handling charges that implies. Digital preservation sys-
tems, such as the BL’s, establish each of their on-line replicas
in a different location, again despite the possible increased
operational costs of doing so.

Administration: Human error is a common cause of
correlated faults among replicas. Again, the BL’s system is
unusual in ensuring that no single administrator will be able
to affect more than one replica. This is probably more ef-
fective and more cost-effective than attempts to implement
“dual-key” administration, in which more than one admin-
istrator has to approve each potentially dangerous action.
In a crisis, shared pre-conceptions are likely to cause both
operators to make the same mistake [40].

Components: System designs should avoid dependence
on third-party components that might not themselves be
preserved over time. Determining all sources of such depen-
dence can be tricky, but some sources can be detected by

running systems in isolation to see what breaks. For exam-
ple, running a system in a network without a domain name
service or certificate authority can determine whether the
system is dependent on those services. Such an example is
the LOCKSS system, which is built to be independent of
the survival of these services.

Organization: Taking an end-to-end view of preserva-
tion systems, it is also important to support their organi-
zational independence. For instance, if the importance of
a collection extends beyond its current organization, then
there must be an easy and cost-effective “exit strategy” for
the collection if the organization ceases to exist. For exam-
ple, a bickering couple might not want to store their babies’
photos on a home server that requires their continued co-
habitation for access.

Unfortunately, these strategies are not necessarily orthog-
onal, and some can have adverse effects on reliability. Audit-
ing media to detect latent faults increases reliability but can
introduce other channels for data corruption. An example
would be attacking a distributed system through the audit
protocol itself [32], which therefore must be designed as care-
fully as any other distributed protocol. Automated recovery
can reduce costs and speed up recovery times, but if buggy
or compromised by an attacker, it can also introduce latent
faults. This can be dangerous because even visible faults can
now (though seemingly having been recovered) turn into la-
tent ones. Strategies such as increasing the independence
of administrative domains and diversity of hardware and
software also come with increased costs and organizational
overhead.

In summary, the main techniques for increasing the re-
liability of long-term storage are replication, independence
of replicas, auditing replicas to detect latent faults, and au-
tomation to reduce repair times and costs.

7. FUTURE WORK
There is much more to be done. Our simple reliability

model points out areas where we are in great need of further
data to validate the model and to evaluate the potential
utility of the reliability strategies described in this paper.
In particular, there is little published about the types and
distribution of latent faults, both due to media errors and
also due to the other threats we describe. Moreover, the
correlations between faults are poorly understood.

We have started to analyze logs from the IA that contain
periodic monitoring data about the file system, checksums
of individual files, SMART records, and loads on individual
hosts. While we use initial results in Section 5.4, we hope to
extract the distribution of faults and their correlations with
loads on the hosts and drives. However, this data set lacks
information about workload, system administration activi-
ties, root causes of failure, and costs in terms of machine and
human effort. The data set only relates to this unique sys-
tem. Logging these details for a range of systems is essential
to developing better long-term storage systems.

We should thus instrument a range of existing systems.
We should log visible faults and detected latent faults, and
occurrences of data loss, for example by following the IA
in regularly logging a checksum for each immutable object.
Ideally, the log entries would include timestamps and infor-
mation about the location of the fault: block, sector, disk,
file, application, etc. We should also log information about



recovery procedures performed (e.g., replacement of disks
or recovery from tape), their duration, and outcomes. To-
gether these logs would allow us to validate our model. If we
were also able to collect cost data we could start to compare
the cost-effectiveness of the strategies of §6. Finally, logging
SMART data from disks, workload data, and administrative
actions together would allow us to identify correlated faults
and perform root cause analysis.

8. RELATED WORK
In this section we review related work, showing how oth-

ers address problems, such as correlated and latent faults,
that arise when large volumes of data must remain unaltered
yet accessible with low latency at low cost. We start with
low-level approaches that focus on single devices and RAID
arrays and then move up the stack.

Evidence of correlated faults comes from studies of disk
farms. Talagala [49] logs every fault in a large disk farm
(of 368 disk drives) at UC Berkeley over six months and
shows significant correlations between them. The study fo-
cuses primarily on media (drive failures), power failures, and
system software/dependency failures.

Gray and van Ingen share our interest in looking at failure
rates in storage systems and have been monitoring failures
at many levels in disks arrays [19].

Chen et al. [10] explore the tradeoffs between performance
and reliability in RAID systems, noting that system crashes
(i.e., correlated faults) and uncorrectable bit errors (i.e., la-
tent faults) can greatly reduce the reliability predicted in
the original RAID paper [38]. Kari’s dissertation [24] ap-
pears to be the first comprehensive analysis of latent disk
failures. His model also shows that they can greatly reduce
the reliability of RAID systems, and presents four auditing
algorithms that adapt to disk activity, using idle time to
flush out latent errors. In contrast with these works, we ex-
plore a broader space that includes application faults and
distributed replication.

Enterprise storage systems have recognized the need to
address latent and correlated faults. Many high-end storage
arrays perform block-level data audits [30]. Network Appli-
ance’s storage threat model includes two whole-disk failures,
and a whole-disk failure with a latent fault discovered during
recovery (our P (L2∩T V1)), but seems to ignore the cases in
which latent faults occur first. They employ row-diagonal
parity and suggest periodic auditing of disks to improve re-
liability [12]. Schwarz et al. [45] show that opportunistic
auditing, piggy-backed on other disk activity, performs well.
Like us, they do not depend on the disk to detect a latent
fault but actually check the data. Our exploration also in-
cludes higher-layer failures.

Database vendors have implemented some application-
level techniques to detect corruption. DB2’s threat model
includes a failure to write a database page spanning mul-
tiple sectors atomically. It sprinkles page consistency bits
through each page, modifying and checking them on each
read and write. This scheme only detects forms of corrup-
tion that affect the consistency bits [34]. Tandem NonStop
systems write checksums to disk with the data, and compare
them when data are read back [9].

The IRON File System’s [39] threat model includes la-
tent faults and silent corruption of the disk. It protects the
file system’s metadata using checksums and in-disk replica-
tion. Moreover, it employs checksums for data blocks and

a single-block parity for a user file which enables recovery
from the failure of at most one block. Although much better
than traditional file systems, this design is still vulnerable to
correlated corruption of multiple blocks on a storage device.

An alternative to tightly-coupled replication such as RAID
is more loosely-coupled distributed replication. Saltzer sug-
gested in 1990 that digital archives need geographically dis-
tributed replicas to survive natural disasters, that they must
proactively migrate to new media to survive media obsoles-
cence, and that heavy-duty forward error correction could
correct corruption that can accumulate when data are rarely
accessed [44]. More recently, these ideas inform the design
of the BL’s digital archive [8].

Many distributed peer-to-peer storage architectures have
been proposed to provide highly-available and persistent
storage services, including the Eternity Service [6], Inter-
memory [11], CFS [13], OceanStore [27], PAST [43], and
Tangler [54]. Their threat models vary, but include powerful
adversaries (Eternity Service) and multiple failures. Some
(OceanStore) use cryptographic sharing to proliferate n par-
tial replicas from any m < n of which they can recover
the data. Others (PAST) replicate whole files. Weath-
erspoon’s [55] model compares the reliability of these ap-
proaches. The model does not include latent errors or cor-
related errors, but instead takes into account the storage and
bandwidth requirements of each approach. Later work [56]
identifies correlations among replicas (e.g., geographic or ad-
ministrative) and informs the replication policy to reduce
correlation.

Deep Store [58] and the LOCKSS system [32] share the
belief that preserving large volumes of data for long pe-
riods affordably is a major design challenge. Deep Store
addresses the cost issues by eliminating redundancy. The
LOCKSS system addresses costs by using a “network appli-
ance” approach to reducing system administration [42] and
large numbers of loosely coupled replicas on low-cost hard-
ware. Both recognize the threats of “bit rot” and format
obsolescence to long-term preservation.

9. CONCLUSIONS
We have examined the need for, and threats to, long-term

storage of digital information. Using an extended reliabil-
ity model that incorporates latent faults, correlated faults,
and the detection time of latent faults, we reason about pos-
sible strategies for improving reliability. The cost of these
strategies is important, since limited budget is one of the key
threats. We find that the most important strategies are au-
diting to detect latent faults as soon as possible, automating
repair so that it is as fast, cheap, and as reliable as possible,
and increasing the independence of data replicas.

Many of the systems we describe in §8 incorporate a sub-
set of the strategies we outline in §6 to counter a subset of
the threats we identify in §3. Thus far, none has identi-
fied the tradeoffs of incorporating all of the strategies nor
demonstrated over a long period of time the ability to bal-
ance these tradeoffs in defending against all the threats. We
conclude with a possible system architecture that would do
so.

A good architecture will maintain replicas that are geo-
graphically independent, administratively independent, and
heterogeneous in platform. Geographic replication increases
the chance content will survive large-scale disasters. Admin-
istrative independence ensures that no single administrator



can damage more than one replica. Platform independence
provides resistance to many attacks and some component
and obsolescence faults. Such independence of replicas can
be a hard position to take for large repositories while the
IT industry is promoting increased consolidation and homo-
geneity of systems, but it is important for digital preserva-
tion.

A good architecture will permit inexpensive audit of its
content to root out and fix latent faults before they accrue
to the extent that repair is impossible. This means that we
cannot rely on backup to high-latency off-line media such
as tape for detecting faults in the system; we must have
some replicas accessible with relatively low latency for audit
purposes. Currently, this suggests that disk-based replicas
are a good choice, even if the disks are not kept spinning
continuously. Furthermore, it means we cannot rely solely
on local auditing of replicas within a single site; crossing
platform, format, or organizational boundaries is essential
to identify latent errors that monocultures mask away.

A good architecture will also allow for on-going intro-
duction of new components, avoiding lock-in to any exotic
technology or particular vendor’s system. As the repository
grows in size, or as it becomes appropriate to decommission
old components, it must be possible to add new storage in
whatever is a widely-used technology at the time. These
“rolling procurements” imply that the architecture will al-
ways consist of heterogeneous components, as it is infeasible
to convert large repositories all at once to entirely new sys-
tems.

Finally, a good architecture will include background pro-
cesses at many levels of the storage system to detect endan-
gered content, including formats that are becoming obsolete,
access controls that no longer have meaning and metadata
that must be updated. Digital archives are not static sys-
tems. To survive, they require continual vigilance, auditing
and refreshing.

Data loss in systems designed on this basis should be ex-
tremely infrequent, but it will surely happen. The host insti-
tution will typically cover up such incidents. The experience
base on which to improve the architecture will thus grow
slowly and with difficulty. A system similar to NASA’s Avi-
ation Safety Reporting System [35] should be established,
through which operators of storage systems could submit
reports of incidents, even those not resulting in data loss,
for others to read in anonymized form and from which they
can learn how to improve the reliability of their own systems.
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