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Abstract

As peer-to-peer networks become more popular, the use of meta-
data to achieve a variety of tasks (e.g. content location, pricing, auc-
tioning) becomes more important. In this paper, we argue that prop-
agating updates to cached metadata provides benefits beyond sim-
ple caching with a fixed expiration, yet requires application-specific
incentive-based policies to moderate this propagation. We describe
the issues involved in performing such propagation, provide a couple
of examples where we have experimental evidence of the benefits of
metadata update propagation, and propose a couple more examples
where this propagation could be beneficial.

1 Introduction

As peer-to-peer networks gain more interest, the use of metadata to achieve
certain tasks becomes more important. For example, one of the fundamen-
tal operations in current popular peer-to-peer networks is that of locating
content: given the name or a set of keyword attributes of an object of inter-
est, how do you locate the object within the peer-to-peer network? Many
peer-to-peer networks push a set of metadata in response to a search query
[gnu, RFH101, SMK*01, RD01, ZKJ01]. This metadata typically consists
of index entries that point to the locations of nodes that serve replicas of the
content of interest, but could also include other information such as pricing,
reputation or load information of each these serving nodes.

The peer-to-peer model assumes that the global set of valid metadata
(index entries, pricing, etc.) will change constantly as peer nodes join and
leave the network and content is continuously added to and deleted from the
network. Nodes that use metadata to serve queries in a more timely fash-
ion need to know about changes to the metadata to perform well. “Well” is



application-dependent, and could for example mean faster content download
time or higher integrity of downloaded content. Keeping cached metadata
up-to-date requires tracking which metadata items change, as well as track-
ing when interest in updating particular items at each cache has died down
so as to avoid unnecessary update propagation.

In this paper, we argue that in a peer-to-peer network, propagation of up-
dates to cached metadata provides significant benefits beyond simple caching
with a fixed expiration, yet requires application-specific incentive-based poli-
cies to moderate this propagation. These policies cannot be assumed to be
universally applied by all peers since each peer will have different capacity
and/or motivation for participation in the peer-to-peer application.

Our work with CUP [RB03], a protocol for performing Controlled Up-
date Propagation in a peer-to-peer network has allowed us to explore this
possibility. CUP asynchronously builds caches of metadata while answer-
ing search queries. It then propagates updates of metadata to maintain
these caches. A key feature of CUP is that it allows nodes to use their own
incentive-based policies to determine when to receive and when to propagate
updates.

We describe how CUP works and give a couple of examples where the
use of CUP to propagate metadata updates has been very beneficial. Specif-
ically, we first describe how CUP can be used to maintain caches of index
entries, since this is the metadata many researchers have recently advocated
caching (e.g. [RFHT01, SMK*01]). We show that by using propagation
policies where the incentive to cut off propagation is popularity-driven, CUP
can greatly reduce the average search query latency while recovering update
propagation overhead. We then describe how we have leveraged CUP to
deliver metadata required for effective load-balancing of content demand
across replica nodes.

We also describe other kinds of metadata that could be propagated and
other kinds of incentives that could drive the propagation decision including
capacity-driven and value-driven incentives. Our main goal here is to present
evidence that controlled propagation of metadata updates is crucial and to
open discussion on new services we can achieve in a peer-to-peer network
through effective metadata update propagation.

2 The CUP Protocol

We describe how CUP works using the example of maintaining caches of
index entries. CUP is not tied to any particular search mechanism and



therefore can be applied in both networks that perform structured search as
well as networks that perform unstructured search. In this paper, we will
describe how CUP works for structured peer-to-peer networks. In structured
search, queries follow a well-defined path from the querying node to an
authority node that holds the index entries pertaining to the query [RFH01,
RDO1, SMK*01, ZKJO01].

The basic idea of CUP is that every node in the peer-to-peer network
maintains two logical channels per neighbor: a query channel and an update
channel. The query channel is used to forward lookup queries for content
of interest to the neighbor that is closest to the authority node holding
the entries for that content. The update channel is used to forward query
responses asynchronously to a neighbor. These query responses contain sets
of index entries that point to nodes holding the content in question. The
update channel is also used to update index entries that are cached at the
neighbor.

Figure 1 shows a snapshot of CUP in progress in a network of seven
nodes. The four logical channels are shown between each pair of nodes. The
left half of each node shows the set of content items for which the node is
the authority. The right half shows the set of content items for which the
node has cached index entries as a result of handling lookup queries. For
example, node A is the authority node for content K3 and nodes C,D,E,F,
and G have cached index entries for content K3. The process of querying
and updating index entries for a particular content K forms a CUP tree
whose root is the authority node for content K. The branches of the tree
are formed by the paths traveled by lookup queries from other nodes in the
network. For example, in Figure 1, node A is the root of the CUP tree for
K3 and branch {F,D,C,A} has grown as a result of a lookup query for K3
at node F.

It is the authority node A for content K3 which is guaranteed to know
the location of all nodes, called content replica nodes that serve content K 3.
Replica nodes first send birth messages to authority A to indicate they are
serving content K3. They may also send periodic refreshes or invalidation
messages to A to indicate they are still serving or no longer serving the
content. A then forwards on any birth, refresh or invalidation messages it
receives, which are propagated down the CUP tree to all interested nodes
in the network. For example, in Figure 1 any update messages for index
entries associated with content K3 that arrive at A from replica nodes are
forwarded down the K3 CUP tree to C at level 1, D and E at level 2, and
F and G at level 3.

The cascaded propagation of updates from authority nodes down the
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Figure 1: CUP Trees

reverse paths of search queries has many advantages. First, updates extend
the lifetime of cached entries allowing intermediate nodes to continue serv-
ing queries from their caches without re-issuing new queries. It has been
shown that up to fifty percent of content hits at web caches are “freshness
misses”, i.e., instances where the content is valid but stale and therefore
cannot be used without first being re-validated [CKO1]. Second, a node
that proactively pushes updates to interested neighbors reduces its load of
queries generated by those neighbors. Third, the further down an update
gets pushed, the shorter the distance subsequent queries need to travel to
reach a fresh cached answer. As a result, query response latency is reduced.

2.1 Popularity-Driven Incentives

In CUP, nodes are free to use their own incentive-based policies to determine
when to propagate and when to receive updates. The incentive depends
on the application goals and the metadata being updated. In the case of
updating index entries, we have extensively studied policies using popularity-
based incentives [RB03]. These are policies where the incentive to receive
index updates for a particular content item depends on the frequency of
queries for that item. The higher the frequency, the greater the incentive to
receive updates for that item. Therefore, by pushing popular index updates
to neighbors, the node saves itself from getting queries from those neighbors.

Popularity-based propagation policies aim to moderate the update over-
head, i.e., the number of network hops traveled by updates. We briefly



describe the cost model we use when analyzing the performance of CUP
under these policies, and we present some experimental evidence that such
policies greatly reduce the average search query latency while at the same
time recovering propagation overhead.

Consider a node A that is the authority for content K and consider the
tree generated by issuing a query for K from every node in the peer-to-peer
network. The resulting tree, rooted at A, is the spanning tree for K, S(A K).
This tree contains all possible query paths for K. We define cost in terms of
network hops traveled. From a node N’s perspective, the cost of a query for
K that incurs a cache miss at N is two hops, one hop to push the query up
to N’s parent and one hop to push the answer down to N.! The cost of an
update for K is one hop to receive the update from N’s parent.

The propagation of an update for K to a node N is justified if its cost is
recovered by a subsequent query arriving in the spanning subtree below N.
For each hop a justified update u is pushed down to the root N of subtree
S(N,K), exactly one hop is saved since without u’s propagation, entries in all
nodes of S(N,K) will expire simultaneously and the first subsequent query
landing at a node N; in S(N,K) within u’s expiration will cause two hops,
from N to its parent and back. This halves the number of hops traveled
between N and its parent which in turn reduces query latency. In fact all
subsequent queries posted somewhere in S(N,K) before u’s expiration will
benefit from N receiving u. Thus, the benefit of a justified CUP update goes
beyond just recovery of its cost.

The cumulative benefit an update u brings to subtree S(N,K) increases
when N is closer to the authority node since there is a higher probability
that queries will be posted within S(N,K). We define “investment return” as
the cumulative savings in hops achieved by pushing an update to N. As long
as the investment return is greater than 1, CUP fully recovers its overhead.

To moderate propagation, we have explored two kinds of popularity-
based policies: probabilistic and history-based. In the probabilistic policy, a
node determines if a received update is justified by calculating the chances a
query will arrive somewhere in its subtree to recover the cost of the update.
In the history-based policy, a node determines if an update is justified by
comparing the ratio of query arrival rate to update arrival rate in a sliding
window of the last n update arrivals. If the ratio of queries to updates is
greater than some threshold, the update is deemed justified. In either of

!We assume query responses flow down and are cached along the reverse query path.
The cost model changes slightly if query responses flow directly from the authority node
to the original querying node.
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the two policies, if the update is not justified, the node cuts off its intake of
updates.

We have found that both types of popularity-based policies bring bene-
fits. For example, when n = 2, the history-based policy can reduce search
latency by as much as an order of magnitude when compared with path
caching with fixed expiration [RB03]. Furthermore the update overhead
this policy incurs is more than compensated for by its investment return.
We see this in Figure 2 which shows the overall investment return for in-
creasingly large networks and Poisson query arrival rates of 1, 10, 100, and
1000 queries per second. From the figure we see that for a particular network
size, if we increase the query rate the investment return increases, and for a
particular query rate, if we increase the network size, the investment return
also increases. This demonstrates that CUP can scale to higher query rates
and higher network sizes.

2.2 Load-Balancing Incentives

Having seen the benefits index updates bring, we have used the CUP proto-
col to study the problem of load balancing in a peer-to-peer network where
the goal is to distribute the demand for a particular content fairly across
the set of replica nodes that serve that content. In the literature, little focus
has been given on how an individual node should choose among the set of
index entries returned by a search query to forward client requests. This
choice is important because peer nodes tend to be heterogeneous [SGG02]
and some replica nodes will tend to have more capacity to satisfy requests
for content than others. If nodes choose from the returned index entries



carefully, the system can serve content in a more timely fashion by directing
content requests to more capable replica nodes.

Previous load-balancing techniques in the literature base their decisions
on periodic or continuous updates containing information on load (e.g. [GC00,
Mit97] or available capacity (e.g., [ZYZ98]. We have leveraged the CUP
protocol to deliver load-balancing metadata to see the efficacy of these algo-
rithms when applied in a peer-to-peer context.

The incentive for a node N to receive a load-balancing update is driven
by two factors: the popularity of the particular update at the subtree below
N and how well the update contributes to balancing the demand for content
across the set of replica nodes. By receiving a load-balancing update for
a popular item, N not only benefits the replica nodes serving the content,
but benefits itself as well. This is because without accurate load-balancing
information, N might point clients to an overloaded replica. After failing
to obtain the desired content from the replica, clients would then query N
again for a different replica. N could thus save itself from getting such re-try
queries if it receives the appropriate load-balancing updates.

When applied in a peer-to-peer context, each update propagated by pre-
viously proposed algorithms heavily depends on preceding updates propa-
gated. For example, if some replicas report a high available capacity, this
may cause peer nodes to forward an unpredictable number of requests to
these replicas causing them to overload. The shift of the workload to these
replicas increases the available capacities of other replicas who report higher
availability at the next propagation causing requests to flock to them instead.
This load oscillation can occur even when the workload request rate is as
low as 60% of the total capacities of the replicas.

To avoid oscillation, we developed a new load-balancing algorithm, Max-
Cap, that makes decisions based on the inherent maximum capacities of the
replica nodes. We define maximum capacity as the maximum number of
content requests per time unit that a replica claims it can handle. The max-
imum capacity is like a contract by which the replica agrees to abide. If the
replica cannot sustain its advertised rate, then it may choose to advertise a
new maximum capacity, which is propagated down the CUP tree. Max-Cap
does not suffer from load oscillations as previous techniques do because the
load-balancing updates it sends are independent of each other. Moreover,
experiments show that Max-Cap incurs less propagation overhead than pre-
vious algorithms since load-balancing updates are only propagated when
replicas choose to change their contracts or when replicas enter or leave the
network [Rou02].

We cite our load-balancing work with CUP as more evidence that prop-



agation of metadata updates can be beneficial in that it provides the oppor-
tunity to achieve better application performance in a peer-to-peer network.
In this case, better application performance means faster content transfer.
However, this work is also an example of how controlled propagation of
updates is necessary. Propagating all load-balancing updates as done by
previously proposed algorithms based on available capacity does not guar-
antee good load-balancing performance in a peer-to-peer network. Max-Cap
propagates load-balancing metadata updates in moderation, and it is this
moderation we advocate here.

3 Other Incentives

3.1 Capacity-Driven Incentives

Nodes may not always be able to propagate all updates to all interested
neighbors. When a node’s outgoing capacity is limited, the incentive to
propagate is capacity-driven. In this case, the cost model we introduced
in Section 2.1 is extended to include the node’s propagation capacity. For
example, suppose a node N receives an update to be propagated to each
of its child neighbors but N only has capacity to propagate to one of the
children. The child, C, most justified in receiving this update is the one
whose subtree S(C,K) will reap the largest investment return from receiving
the update.

There are many other examples of possible capacity-driven propagation
behavior. A node may favor pushing updates to neighbors that have higher
connectivity over neighbors with lower connectivity. A node may favor
neighbors that have been a good source of justified updates over neighbors
that are less reliable or less cooperative. Or still a node may treat all neigh-
bors equally but choose to re-order updates such that updates that provide
higher benefits are pushed out first. For example, a node may push out
older updates ahead of others that have more time left before they expire.

3.2 Metadata-Value-Driven Incentives

CUP can be leveraged to propagate other kinds of metadata as well. For
example, the authority nodes could propagate prices advertised by replicas
for services they offer. As the replica nodes change their offered price, the
price updates could be propagated down the CUP trees to interested nodes.
Replica prices may be a function of the replica’s current connectivity, load,



or even the willingness of the replica to provide service. Clients then choose
from amongst the replicas depending on the offered price advertised.?

Here, the incentive a node uses to cut off incoming price updates may
be both popularity-driven as well as metadata-value-driven. Some kinds of
metadata, such as price information may change frequently enough that re-
ceiving an update for every change is neither necessary nor desired. Whereas
popularity-driven incentive policies mainly aim to reduce network overhead,
value-driven incentive policies aim to reduce overhead incurred in processing
and filtering unwanted or irrelevant fine-grained updates. Depending on the
application, this overhead might consume computer resources (e.g., CPU,
battery, etc.) but more importantly, may also consume human resources (if
the filtering requires manual user intervention). The benefit of a justified
update is thus not only reduced network hops traveled, but also reduced
computer /human resources. The cost model of Section 2.1 must therefore
take these into account as well.

Value-driven incentives to receive updates work much like current publish-
subscribe applications, where subscribers indicate their interest in particular
events or items (e.g., [RKCDO01]). For example, a leaf node, N, may inform
its parent that it would only like to receive price updates for replicas whose
advertised price is less than some maximum value set by N’s local clients.
This way N’s parent will not propagate updates for replicas whose service
cannot be afforded by N’s clients. Such a condition set at a leaf node would
be propagated upward toward the authority root node. That is, a non-leaf
node would cut off its intake of updates for replicas whose price exceeds the
maximum price allowed by its local clients and the clients of nodes in the
subtree below it.

Metadata update propagation can also enhance auctioning or bidding
for service within a peer-to-peer network [CGMO02]. Replicas that provide a
particular service and receive bids for that service, can propagate these bids
down the CUP tree. Nodes with clients interested in bidding for service join
the CUP tree to receive these bid updates, allowing clients to set their bids
accordingly. A variation of this bidding scenario is to have nodes with clients
interested in bidding for service push updates to the authority node. The
authority node then propagates these bid updates down the tree to serving
nodes that are interested in providing the service.

As a final example, metadata update propagation can also enhance the
integrity of content that is exchanged in a peer-to-peer network. Clients

2Connectivity and load information could be advertised by replicas and used together
with price information in the client decision.



that receive service from replica nodes could report to authority nodes about
the quality of the service received and this reputation information could be
propagated down the CUP tree in effort to identify replica nodes that serve
content cooperatively and with integrity.

4 Discussion

In this paper, we argue that propagation of metadata updates can be very
beneficial in a peer-to-peer network. This propagation should be controlled,
however, and should be guided by individual incentive-based policies. We
propose CUP, a protocol for propagating metadata updates that allows peer
nodes to use their own incentive-based policies to control update propa-
gation. We present a couple of experimental examples of the benefits of
moderated propagation as well as other potential applications that could
take advantage of this. We hope this article opens up discussion concern-
ing new services we can provide in a peer-to-peer network through effective
propagation of metadata updates.
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