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Abstract

A peer-to-peer system is a self-organizing distributed system where a group of Internet
hosts both provide and receive services from each other in a cooperative effort without
distinguished roles as pure clients or pure servers. A fundamental problem in peer-
to-peer networks is that of locating content. Given the name or a set of keyword
attributes (metadata) of an object of interest, how do you locate the object within
the peer-to-peer network? Most peer-to-peer networks return a set of index entries in
response to a search query. These index entries point to the locations of replica nodes
in the network that serve the content whose metadata satisfies the search query.

Once the location algorithm is decided upon, two basic problems emerge. First,
can we improve upon the time it takes to resolve a search query? Second, after we
resolve the search query to obtain a set of index entries, how do we choose from
amongst them?

To address the first problem of improving search query time, many peer-to-peer
designers suggest caching index entries at intermediate nodes that lie on the path
taken by a search query. However, little attention has been given to how to maintain
these intermediate caches. To this end, we propose a new protocol, CUP, for perform-
ing Controlled Update Propagation in a peer-to-peer network. CUP asynchronously
builds and maintains caches of index entries while answering search queries. CUP
controls and confines propagation to updates whose cost is likely to be recovered by
subsequent queries. CUP allows peer nodes to use their own incentive-based policies
to determine when to receive and when to propagate updates. We develop CUP and
compare its performance against caching with expiration at intermediate nodes. We

show that CUP significantly reduces average query latency and that CUP update



overhead is compensated for many times over by its savings in cache misses.

The second part of the thesis focuses on how to choose amongst the returned
index entries. This choice is important, because the demand for particular content
should be balanced across the set of replica nodes serving that content. Previous
decentralized load balancing techniques in distributed systems base their decisions on
periodic updates containing information about load or available capacity. We show
that these techniques do not work well in the peer-to-peer context; either they do not
handle peer node heterogeneity, or they suffer from significant load oscillations. We
propose a new decentralized algorithm, Max-Cap, based on the maximum inherent
capacities of the replica nodes and show that unlike previous algorithms, it is not tied
to the timeliness or frequency of updates. Yet, Max-Cap can handle the heterogeneity

of a peer-to-peer environment without suffering from load oscillations.
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Chapter 1
Introduction

This chapter motivates two problems observed in peer-to-peer networks, lists the

major contributions of this thesis, and presents the outline for this dissertation.

1.1 Problem Statement

Peer-to-peer networks are self-organizing distributed systems where participating
nodes both provide and receive services from each other in a cooperative effort with-
out distinguished roles as pure clients or pure servers. Peer-to-peer networks are
receiving much attention primarily because of the great number of features they offer
applications that are built on top of them. One of the primary features is that they al-
low applications to exploit the aggregate processing power and storage capabilities of
participating peer nodes [4]. For example, distributing content has been a dominant
use of peer-to-peer networks [18, 3, 1].

Other features of peer-to-peer networks include:

e Decentralized administration: Participating nodes are widely-distributed hosts
(typically PCs) that live at the edge of the Internet. These nodes form and
maintain an overlay network without depending on a particular global entity or

set of entities being in place to administer changes in network membership.

e Scalability: A peer node joining or leaving the network is a local operation
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involving only a few nodes. This gives peer-to-peer networks the potential to

scale to thousands of nodes.

o Awailability: Peer nodes are equal in functionality. This means that any one
of a set of “replica” nodes can provide the requested content, increasing the
availability of content without requiring the presence of any particular serving

node.

o Fault tolerance: The self-organizing, decentralized nature of peer-to-peer net-
works allows them to continue to function even as nodes fail or depart the

network.

o Autonomy from DNS servers: Since peer nodes can be home PCs with unsta-
ble connectivity and unpredictable IP addresses, peer-to-peer networks do not

depend on the presence of the DNS system to function [4].

o Anonymity: Peer-to-peer networks allow users to publish or request content
anonymously or pseudonymously to protect their privacy [18, 59]. This is be-
cause in a peer-to-peer network, content-distribution does not depend on having
a well-known set of nodes to which users are obligated to submit requests to
publish or receive content. Instead, any peer node can handle such requests
or forward them on to other peer nodes. In a large peer-to-peer network with
thousands of nodes, tracing the traversal of a particular request to the source

of the request can be quite difficult.

Along with these features has come an array of technical challenges. For example,
a fundamental problem in peer-to-peer networks is that of locating content. Given
the name or a set of keyword attributes (metadata) of an object of interest, how do
you locate the object within the peer-to-peer network? Most peer-to-peer networks
push a set of index entries in response to a search query. These index entries point to
the locations of replica nodes in the network that serve the content whose metadata

satisfies the search query.
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The search algorithm used to retrieve these index entries differs from system to
system. The algorithm can be unstructured as in Gnutella [3] where there is no or-
ganization in where index entries are stored. In such networks, search queries travel
haphazardly through the network via flooding or random walks. The algorithm can
also be structured (e.g., as in CAN [45]). This type of algorithm uses a distributed
hash table where index entries are dynamically allocated across nodes in a very or-
ganized manner such that every node is the authority node for a specific set of index
entries. Search queries travel along a well-defined path between the querying node
and the authority node responsible for the index entries pertaining to this query.

Once the search algorithm is decided upon, there arise two fundamental problems.
First, how can we improve upon the time it takes to resolve a search query? That is,
how can we reduce search query latency? Second, after we resolve the search query
to obtain a set of index entries, how do we choose from amongst them? This choice
is important for load-balancing. Ideally, you want to choose a replica node such that
the overall demand for content is distributed fairly across the set of replicas serving

this particular content. We motivate these problems in turn.

1.1.1 Reducing Query Latency

Recent work suggests that metadata-based search queries for index entries can be
a significant performance bottleneck in peer-to-peer systems [17]. As a result, to
make search query resolution more timely, designers of peer-to-peer systems suggest
caching index entries at intermediate nodes that lie on the path taken by a search
query [3, 54, 45, 57]. We refer to this as Path Caching with Ezpiration (PCX) because
index entries typically have expiration times after which they are considered stale and
require a new search.

PCX is desirable because it balances query load for popular entries across multiple
nodes, it reduces latency, and it alleviates hot spots. However, little attention has
been given to how to maintain these intermediate caches. The cache maintenance
problem is interesting because the peer-to-peer model assumes that the index will

change constantly as peer nodes continuously join and leave the network, content is
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continuously added to and deleted from the network, and replicas of existing content
are continuously added to alleviate bandwidth congestion at nodes holding the con-
tent. Each of these events causes a change in the current global set of valid index
entries. Keeping cached index entries up-to-date therefore requires tracking which
entries need to be updated, as well as tracking when interest in updating particular
entries at each cache has died down so as to avoid unnecessary update messages.

In this thesis we propose a new protocol, CUP, for performing Controlled Up-
date Propagation to maintain caches in a peer-to-peer network. CUP asynchronously
builds caches of index entries while answering search queries. It then propagates
updates of index entries to maintain these caches. CUP controls and confines prop-
agation to updates whose cost is likely to be recovered by subsequent queries. CUP
allows peer nodes to use their own incentive-based policies to determine when to
receive and when to propagate updates.

We develop the CUP protocol in detail and perform extensive experiments com-
paring CUP against PCX under typical workloads that have been observed in mea-
surements of real peer-to-peer networks. We show that CUP often reduces average
search query latency manifold. Moreover, CUP overhead is more than compensated
for by its savings in cache misses. The cost of saved misses can be two orders of

magnitude greater than the cost of updates pushed.

1.1.2 Choosing Amongst Returned Index Entries

After retrieving the set of index entries in response to a local search query, the peer
node must choose which of the index entries to use to forward the client content
request. This is the second problem we focus on in this thesis. One reason for
considering this choice is load balancing. Some replica nodes may have more capacity
to answer queries for content than others, and the system can serve content in a
more timely manner by directing queries to lightly loaded replica nodes. Until now,

however, there has been little focus on how to make this choice.
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In this thesis we study the problem of load-balancing demand for content in a peer-
to-peer network. This problem is challenging for several reasons. First, in the peer-
to-peer scenario there is no centralized dispatcher that performs the load-balancing
of requests; each peer node individually makes its own decision on how to allocate
incoming requests to replicas. Second, nodes do not typically know the identities
of all other peer nodes in the network, and therefore they cannot coordinate this
decision with those other nodes. Finally, replica nodes in peer-to-peer networks are
not necessarily homogeneous. Some replica nodes may be very powerful with great
connectivity, whereas others may have limited inherent capacity to handle content
requests.

Previous load-balancing techniques in the literature base their decisions on peri-
odic or continuous updates containing information on load or available capacity. We
refer to this information as load-balancing information (LBI). These techniques have

not been designed with peer-to-peer networks in mind and thus
e do not take into account the heterogeneity of peer nodes (e.g., [32, 43]), or

e use techniques such as migration or handoff of tasks that cannot be used in a

peer-to-peer environment (e.g., [35]), or

e can suffer from significant load oscillations, or “herd behavior” [43], where peer
nodes simultaneously forward an unpredictable number of requests to replicas
with low reported load or high reported available capacity causing them to
become overloaded. This herd behavior defeats the attempt to provide load-

balancing.

Most of these techniques also depend on the timeliness of LBI updates. The wide-
area nature of peer-to-peer networks and the variation in transfer delays among peer
nodes makes guaranteeing the timeliness of LBI updates difficult. Peer nodes will
experience varying degrees of staleness in the LBI updates they receive depending
on their distance from the source of updates. Moreover, guaranteeing timeliness of
LBI updates is also costly, since all updates must travel across the Internet to reach

interested peer nodes. The smaller the inter-update period and the larger the overlay
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peer network, the greater the network traffic overhead incurred by LBI updates.
Therefore, in a peer-to-peer environment, an effective load-balancing algorithm should
not be critically dependent on the timeliness of updates.

To this end we propose a practical load-balancing algorithm, Max-Cap, based on
the inherent maximum capacities of the replica nodes. We define maximum capacity
as the maximum number of requests per time unit a replica allocates for answering
requests for its content. = The maximum capacity is like a contract by which the
replica agrees to abide. If the replica cannot sustain its advertised rate, then it may
choose to advertise a new maximum capacity.

We evaluate load-based and availability-based load-balancing algorithms and com-
pare them with Max-Cap in the context of CUP. Specifically, we leverage the update
propagation mechanism of the CUP protocol by piggybacking load-balancing informa-
tion onto the updates CUP propagates. We demonstrate that Max-Cap is a practical
algorithm for load-balancing in a peer-to-peer environment. Max-Cap handles hetero-
geneity, is not tied to the timeliness or frequency of updates as algorithms based on
load or available capacity are, and does not suffer from oscillations when the workload
rate is within 100 percent the total maximum capacities of the replicas. Moreover,
Max-Cap adjusts better to constantly changing replicas sets and to very large fluctu-
ations in the workload where the rate of requests suddenly increases to several times

the total maximum capacities one instant and then drops dramatically the next.

1.2 Primary Contributions of this PhD Thesis

The primary contributions of this thesis are:

1. The development of a new protocol, CUP, for maintaining caches of index entries

in a peer-to-peer network through Controlled Update Propagation.

2. A comprehensive suite of experiments demonstrating that CUP greatly reduces
average search query latency with overhead that is many times recovered by its

savings in cache misses.
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3. A demonstration through experimental evidence and detailed explanation of
why previous load-balancing techniques can suffer when applied in a peer-to-

peer environment.

4. A new and practical algorithm, Max-Cap, for load-balancing in a peer-to-peer

network.

1.3 Outline of Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 defines some background information on search in peer-to-peer networks
and introduces some terminology used throughout this dissertation. This chapter also
describes previous work related to the CUP protocol as well as previous load-balancing
work in distributed systems.

Chapter 3 describes the design of the CUP protocol and provides an extensive
experimental evaluation of the protocol.

Chapter 4 introduces the Max-Cap load-balancing algorithm and shows how this
algorithm compares to previous load-balancing algorithms in a peer-to-peer envi-
ronment. This chapter also provides a detailed explanation of why previous load-
balancing algorithms can suffer in the peer-to-peer environment.

Chapter 5 concludes the dissertation.



Chapter 2

Background and Related Work

In this chapter we give some background information about peer-to-peer networks
and the indexing and routing mechanisms they use to support search queries. We
introduce some terminology we use throughout the thesis which will be helpful in
Chapter 3 in understanding the CUP protocol and how it works on top of the routing
and indexing mechanisms in place. We then describe previous work related to the

CUP protocol, as well as previous load-balancing work in distributed systems.

2.1 Terminology

A peer-to-peer system is a self-organizing distributed system where a group of Inter-
net hosts both provide and receive services from each other in a cooperative effort
without distinguished roles as pure clients or pure servers. The hosts form and main-
tain an overlay network that may constantly change as new hosts enter and existing
hosts leave the network. Hosts join the peer-to-peer network to partake in a specific
application: for example, to share content (e.g., songs or documents) or to share
computation.

Peer-to-peer systems are receiving much attention primarily because of the great
number of features they offer applications that are built on top them. These features
include: scalability, availability, fault tolerance, decentralized administration, and

anonymity.



CHAPTER 2. BACKGROUND AND RELATED WORK 9

We next introduce some terminology we use throughout the thesis and explain
the basic search mechanism used in peer-to-peer networks:

Node: This is a host participating in the peer-to-peer network. Each node period-
ically exchanges “keep-alive” messages with its neighbors to confirm their existence
and to trigger recovery mechanisms should one of the neighbors fail.

Structured vs. Unstructured Search: Peer-to-peer search algorithms have been
classified into three categories: structured, unstructured and hybrid [37, 63]. In a
structured search, search queries follow a well-defined path from the querying node
to an authority node that holds the index entries pertaining to the query. Examples
of structured networks include: CAN, Chord, Pastry, and Tapestry [45, 57, 48, 64].

In an unstructured search, search queries haphazardly travel through the network
via flooding or random walks in search of index entries. Examples of such networks
include the original Gnutella specification [3] as well as modifications proposed by Lv
et al [37].

In structured networks, the number of overlay hops traversed by a query is bounded
and each hop traversed by a query brings the query closer to the answer. Structured
networks are best suited to handle exact-match search queries where the name or
identifier of the content is known in advance. Keyword-based search is possible, but
requires several parallel searches for each keyword. Unstructured networks are more
flexible in the type of search queries they can handle. Essentially, they allow any kind
of query including exact-match queries, keyword-based queries as well as queries over
the actual content stored. This flexibility comes at the cost of less efficient search
since queries do not have a well-defined path they can take to reach the answer and
travel without direction.

In this thesis we primarily focus on structured peer-to-peer networks. We define
the remaining terms for structured networks only.

Search Query: A fundamental operation in a peer-to-peer network is search. A
search query posted at a node N is a request to locate a peer node in the network
that holds particular content of interest. The search query typically consists of the
name of the content or a set of keyword attributes describing the content of interest.

The response to such a search query is a set of index entries pointing to replica nodes
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that serve content whose metadata satisfies the query.

Global Inder: In structured peer-to-peer networks a hashing scheme maps keys
(names of content files or keywords) onto a virtual coordinate space using a uniform
hash function that evenly distributes the keys to the space. The coordinate space
serves as a global index that stores index entries which are (key, value) pairs. The
value in an index entry is a pointer (typically an IP address) to the location of a
replica that stores the content file associated with the entry’s key. There can be
several index entries for the same key, one for each replica of the content.

Authority Node: Each node N in a structured peer-to-peer system is dynamically
allocated a subspace of the coordinate space (i.e., a partition of the global index)
and all index entries mapped into its subspace are owned by N. We refer to N as
the authority node of these entries. Replicas of content whose key corresponds to an
authority node N send birth messages to N to announce they are willing to serve the
content. Depending on the application supported, replicas might periodically send
refresh messages to indicate they are still serving a piece of content. They might also
send deletion messages that explicitly indicate they are no longer serving the content.
These deletion messages trigger the authority node to delete the corresponding index
entry from its local index directory.

Search/Routing Mechanism: In structured networks, when a node issues a query
for key K, the query will be routed along a well-defined path with a bounded number
of hops from the querying node to the authority node for K. The routing mechanism
is designed so that each node on the path hashes K using the same hash function to
choose deterministically which of its neighbors will serve as the next hop.

The CUP protocol, described in Chapter 3 is not tied to the underlying routing
mechanism and can be applied in both structured and unstructured networks.

Query Path for Key K: This is the path a search query for key K takes. In a
structured network, each hop on the query path is in the direction of the authority
node that owns K. If an intermediate node on this path has unexpired entries cached,
the path ends at the intermediate node; otherwise the path ends at the authority
node. The reverse of this path is the Reverse Query Path for key K.

Local index directory: This is the subset of global index entries owned by a node
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in a structured network.

Cached index entries: This is the set of index entries cached by a node N in the
process of handling queries and propagating updates for keys for which N is not the
authority. The set of cached index entries and the local index directory are disjoint
sets.

Lifetime of index entries: Each index entry cached at a node typically has as-
sociated with it a lifetime during which it is considered fresh and after which it is

considered expired.

2.2 Previous Index Caching Work

To our knowledge, CUP is the first protocol aimed at maintaining caches of index
entries to improve search queries in peer-to-peer networks. While designers of peer-to-
peer systems [3, 45, 57, 48, 64] advocate caching index entries to improve performance,
there has been little follow-up work studying when and where to cache the entries
and how to maintain these cached entries.

Cox et al. study providing DNS service over a peer-to-peer network [23]. They
cache index entries which are DNS mappings along search query paths. Similarly,
the TerraDir Distributed Directory caching scheme has nodes along the search query
path cache pointers to other nodes previously traversed by the query [54]. In each of
these examples, cached index entries have expiration times and are not refreshed or
maintained until a miss or failure occurs.

Path caching of content in peer-to-peer systems has received more attention.
Freenet [18], CFS [24], PAST [47], and Lv et al. [37] each perform path caching,
or caching of content along the search path of a query. These studies do not focus
on cache maintenance, but rather depend on expiration or cache size constraints to
limit the use of stale content.

To maintain caches, CUP periodically sends updates down a conceptual tree whose
branches are formed by queries traveling up toward the node (or nodes) holding the
answer. CUP trees are similar to application-level multicast trees, particularly those

built on peer-to-peer networks. (For a survey of application-level multicast work, see
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[16].) These include Scribe [49] built on top of Pastry [48] and Bayeaux built on top
of Tapestry [64]. Here, we focus on Scribe. For a survey of application-level multicast
work, see [16].

Scribe is a publish-subscribe infrastructure where subscribers interested in a topic
join its corresponding multicast group. Scribe creates a multicast tree rooted at the
rendez-vous point of each multicast group. Publishers send a message to the rendez-
vous point which then transmits the message to the entire group by sending it down
the multicast tree. The multicast tree is formed by joining the Pastry routes from
each subscriber node to the rendez-vous point. Scribe could apply the ideas that CUP
introduces to provide update propagation for cache maintenance in Pastry.

Cohen and Kaplan study the effect that aging through cascaded caches has on the
miss rates of web client caches [19]. For each object an intermediate cache refreshes
its copy of the object when its age exceeds a fraction v of the lifetime duration. The
intermediate cache does not push this refresh to the client; instead, the client waits
until its own copy has expired at which point it fetches the intermediate cache’s copy
with the remaining lifetime. For certain values of v and request inter-arrival distri-
butions, the client cache can suffer from a higher miss rate than if the intermediate
cache only refreshed on expiration. A CUP tree could be viewed as a series of cas-
caded caches in that each node depends on the previous node in the tree for updates
to an index entry. The key difference is that in CUP, refreshes are pushed down the
entire tree of interested nodes. Therefore, barring communication delays, whenever a
parent, cache gets a refresh so does the interested child node. In such situations, the

miss rate at the child node actually improves.

2.3 Previous Load-Balancing Work

Load-balancing has been the focus of many studies described in the distributed sys-
tems literature. We first describe load-balancing techniques that could be applied in
a peer-to-peer context. We classify these into two categories, those algorithms where
the allocation decision is based on load and those where the allocation decision is

based on available capacity. We then describe other load-balancing techniques (such
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as process migration) that cannot be directly applied in a peer-to-peer context.

2.3.1 Load-Based Algorithms

Of the load-balancing algorithms based on load, a very common approach to perform-
ing load-balancing has been to choose the server with the least reported load from
among a set of servers. This approach performs well in a homogeneous system where
the task allocation is performed by a single centralized entity (dispatcher) which has
complete up-to-date load information [61, 62]. In a system where multiple dispatchers
are independently performing the allocation of tasks, this approach however has been
shown to behave badly, especially if load information used is stale [30, 40, 31, 43, 52].
Mitzenmacher talks about the “herd behavior” that can occur when servers that
have reported low load are inundated with requests from dispatchers until new load
information is reported [43].

Dahlin proposes load interpretation algorithms [25]. These algorithms take into
account the age (staleness) of the load information reported by each of a set of dis-
tributed homogeneous servers as well as an estimate of the rate at which new requests
arrive at the whole system to determine to which server to allocate a request.

Many studies have focused on the strategy of using a subset of the load information
available. This involves first randomly choosing a small number, k, of homogeneous
servers and then choosing the least loaded server from within that set [42, 30, 58, 10,
33]. In particular, for homogenous systems, Mitzenmacher [42] studies the tradeoffs
of various choices of k£ and various degrees of staleness of load information reported.
As the degree of staleness increases, smaller values of k are preferable.

Genova et al. [32] propose an algorithm that first randomly selects &k servers.
The algorithm then weighs the servers by load information and chooses a server with
probability that is inversely proportional to the load reported by that server. When
k = n, where n is the total number of servers, the algorithm is shown to perform better
than previous load-based algorithms and for this reason we focus on this algorithm
in this thesis.

As we will see in Chapter 4, algorithms that base the decision on load do not
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handle heterogeneity.

2.3.2 Available-Capacity-Based Algorithms

Of the load-balancing algorithms based on available capacity, one common approach
has been to exclude servers that fail some utilization threshold and to choose from
the remaining servers. Mirchandaney et al. [41] and Shivaratri et al. [52] classify
machines as lightly-utilized or heavily-utilized and then choose randomly from the
lightly-utilized servers. This work focuses on local-area distributed systems. Cola-
janni et al. use this approach to enhance round-robin DNS load-balancing across
a set of widely distributed heterogeneous web servers [22], Specifically, when a web
server surpasses a utilization threshold it sends an alarm signal to the DNS system
indicating it is out of commission. The server is excluded from the DNS resolution
until it sends another signal indicating it is below threshold and free to service re-
quests again. In this work, the maximum capacities of the most capable servers are
at most a factor of three that of the least capable servers.

In Chapter 4 we show that when applied in the context of a peer-to-peer network
where many nodes are making the allocation decision and where the maximum capac-
ities of the replica nodes can differ by two orders of magnitude, excluding a serving
node temporarily from the allocation decision can result in load oscillation.

Another approach is to choose amongst a set of servers based on the available ca-
pacity of each server [65] or the available bandwidth in the network to each server [14].
The server with the highest available capacity/bandwidth is chosen by a client with a
request. The assumption here is that the reported available capacity /bandwidth will
continue to be valid until the chosen server has finished servicing the client’s request.
This assumption does not always hold; external traffic caused by other applications
can invalidate the assumption, but more surprisingly the traffic caused by the ap-
plication whose workload is being balanced can also invalidate the assumption. We

demonstrate this in Chapter 4.
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2.3.3 Other Load-balancing Techniques

We now describe load-balancing techniques that appear in the literature but cannot
be directly applied in a peer-to-peer context.

There has been a large body of work devoted to the problem of load-balancing
across a set, of servers residing within a cluster. In some cluster systems there is one
centralized dispatcher that has full control over the allocation of requests to servers
(31, 27, 2]. In other systems there are multiple dispatchers that make the allocation
decision. One common approach is to have front-end servers sit at the entrance of the
cluster intercepting incoming requests and allocating requests to the back-end servers
within the cluster that actually satisfy the requests [15]. Still others have requests
be evenly routed to servers within the cluster via DNS rotation (described below) or
via a single IP-switch sitting at the front of the cluster (e.g., [5]). Upon receiving a
request each server then decides whether to satisfy the request or to dispatch it to
another server [65]. Some cluster systems have the dispatchers(s) poll each server or
a random set of servers for load/availability information just before each allocation
decision [9, 51]. Others have the dispatcher(s) periodically poll servers, while still
others have servers periodically broadcast their load-balancing information. Studies
that compare the tradeoffs among these information dissemination options within a
cluster include [65, 51].

Regardless of the way this information is exchanged, cluster-based algorithms
take advantage of the local-area nature of the cluster network to deliver timely load-
balancing updates. This characteristic does not apply in a peer-to-peer network where
load-balancing updates may have to travel across the Internet.

Most cluster algorithms assume that servers are homogenous. The exceptions to
this rule include work by Castro et al. [15]. This work assumes that servers will
have different processing capabilities and allows each server to stipulate a mazimum
desirable utilization that is incorporated into the load-balancing algorithm. The al-
gorithm they use assumes that servers are synchronized and send their load updates
at the same time. This is not true in a peer-to-peer network where replicas cannot
be synchronized. Zhu et al. [65] assume servers are heterogeneous and use a metric

that combines available disk capacity and CUP cycles to choose a server within the
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cluster to handle a task [65]. Their algorithm uses a combination of random polling
before selection and random multicasting of load-balancing information to a select
few servers. Both are techniques that would not scale in a large peer-to-peer network.

Another well-studied load-balancing cluster approach is to have the heavily loaded
servers handoff requests they receive to other servers within the cluster that are less
loaded or to have lightly loaded servers attempt to get tasks from heavily loaded
servers (e.g., [26, 53]). This can be achieved through techniques such as HTTP
redirection (e.g., [12, 7, 13]) or packet header rewriting (e.g., [8]) or remote script
execution [65]. HTTP redirection adds additional client round-trip latency for every
rescheduled request. TCP/IP hand-off and packet header rewriting require changes
in the OS kernel or network interface drivers. Remote script execution requires trust
between the serving entities.

Similar to task handoff is the technique of process migration. Process migration
to spread job load across a set of servers in a local-area distributed system has been
widely studied both in the theoretical literature as well as the systems literature
(e.g., [28, 36, 29, 44, 35]). In these systems overloaded servers migrate some of their
currently running processes to lighter loaded servers in an attempt to achieve more
equitable distribution of work across the servers.

Both task handoff and process migration require close coordination amongst serv-
ing entities that can be afforded in a tightly-coupled communication environment
such as a cluster or local-area distributed system. In a peer-to-peer network where
the replica nodes serving the content may be widely distributed across the Internet,
these techniques are not possible.

A lot of work has looked at balancing load across multi-server homogeneous web
sites by leveraging the DNS service used to provide the mapping between a web
page’s URL and the IP address of a web server serving the URL. Round-robin DNS
was proposed, where the DNS system maps requests to web servers in a round-robin
fashion [34, 6]. Because DNS mappings have a Time-to-Live (TTL) field associated
with them and tend to be cached at the local name server in each domain, this
approach can lead to a large number of client requests from a particular domain

getting mapped to the same web server during the TTL period. Thus, round-robin
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DNS achieves good balance only so long as each domain has the same client request
rate. Moreover, round-robin load-balancing does not work in a heterogeneous peer-
to-peer context because each serving replica gets a uniform rate of requests regardless
of whether it can handle this rate. Work that takes into account domain request rate
improves upon round-robin DNS and is described by Colajanni et al. [21].

Colajanni et al. later extend this work to balance load across a set of widely
distributed heterogeneous web servers [22]. This work proposes the use of adaptive
TTLs, where the TTL for a DNS mapping is set inversely proportional to the domain’s
local client request rate for the mapping of interest (as reported by the domain’s
local name server). The TTL is at the same time set to be proportional to the
chosen web server’s maximum capacity. So web servers with high maximum capacity
will have DNS mappings with longer TTLs, and domains with low request rates will
receive mappings with longer TTLs. Max-Cap, the algorithm proposed in this thesis,
also uses the maximum capacities of the serving replica nodes to allocate requests
proportionally. The main difference is that in the work by Colajanni et al., the
root DNS scheduler acts as a centralized dispatcher setting all DNS mappings and
is assumed to know what the request rate in the requesting domain is like. In the
peer-to-peer case the authority node has no idea what the request rate throughout
the network is like, nor how large is the set of requesting nodes.

Lottery scheduling is another technique that, like Max-Cap, uses proportional
allocation. This approach has been proposed in the context of resource allocation
within an operating system (the Mach microkernel) [60]. Client processes hold tickets
that give them access to particular resources in the operating system. Clients are
allocated resources by a centralized lottery scheduler proportionally to the number of
tickets they own and can donate their tickets to other clients in exchange for tickets
at a later point. Max-Cap is similar in that it allocates requests to a replica node
proportionally to the maximum capacity of the replica node. The main difference is
that in Max-Cap the allocation decision is completely distributed with no opportunity

for exchange of resources across replica nodes.



Chapter 3

The CUP Protocol

In this chapter we develop in detail a new protocol, CUP, for Controlled Update
Propagation in peer-to-peer networks to maintain caches of index entries. We show
through extensive experiments that CUP greatly reduces average search query latency
with recoverable propagation overhead when compared with Path Caching with eX-
piration (PCX).

First, we give an overview of the protocol. Second, we describe the protocol
semantics in detail. Third we describe experiments demonstrating the benefits of

CUP, and finally we conclude the chapter with summary results.

3.1 CUP Overview

3.1.1 Basic Idea

As described in Chapter 1, CUP is a protocol for Controlled Update Propagation
to maintain caches in a peer-to-peer network. CUP asynchronously builds caches of
index entries while answering search queries. It then propagates updates of index
entries to maintain these caches. CUP is not tied to any particular search mechanism
and therefore can be applied in both networks that perform structured search as well
as networks that perform unstructured search. In this chapter we extensively study

how CUP works on structured peer-to-peer networks.
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Figure 3.1: CUP Query & Update Channels. A; and A, are authority nodes. A
query arriving at node N, for an item for which A; is the authority is pushed onto
query channel QQn, to Ny. If V; has a cached unexpired entry for the item, it returns
it to Ny through Uy,. Otherwise, it forwards the query towards A;. Any update
for the item originating from authority node A; flows downstream to /N; which may
forward it onto N, through Uy,. The analogous process holds for queries at N; for
items for which A, is one of the authority nodes.

The basic idea is that every node in the peer-to-peer network maintains two logical
channels per neighbor: a query channel and an update channel. The query channel
is used to forward search queries for objects of interest to the neighbor that is closest
to the authority node holding the entries for those objects. The update channel is
used to forward query responses asynchronously to a neighbor and to update index
entries that are cached at the neighbor.

Queries for an item travel “up” the query channels of nodes along the path toward
the authority node for that item. Updates travel “down” the update channels along
the reverse path taken by a query. Figure 3.1 shows this process.

The query and update channels provide several benefits. The query channel en-
ables “query coalescing”. If a node receives two or more queries for an item for which

it does not have a fresh response, the node pushes only one instance of the query for
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that item up its query channel. This approach can have significant savings in traffic,
because bursts of requests for an item are coalesced into a single request. Second,
coalescing multiple queries for the same item solves the “open connection” problem
suffered by some peer-to-peer systems. The asynchronous nature of the query chan-
nel relieves nodes from having to maintain many separate open connections while
waiting for query responses; instead all responses return through the update channel.
Through simple bookkeeping (setting an interest bit) the node registers the interest
of its neighbors so it knows which of its neighbors to push the query response to when
it arrives.

The cascaded propagation of updates from authority nodes down the reverse paths
of search queries has many advantages. First, updates extend the lifetime of cached
entries allowing intermediate nodes to continue serving queries from their caches with-
out re-issuing new queries. It has been shown that up to fifty percent of content hits at
caches are instances where the content is valid but stale and therefore cannot be used
without first being re-validated [20]. These occurrences are called freshness misses.
Second, a node that proactively pushes updates to interested neighbors reduces its
load of queries generated by those neighbors. The cost of pushing the update down
is recovered by the first query for the same item following the update. Third, the
further down an update gets pushed, the shorter the distance subsequent queries need
to travel to reach a fresh cached answer. As a result, query response latency is re-
duced. Finally, updates can help prevent errors. For example, an update to delete
an index entry prevents a node from erroneously answering queries using the invalid
entry before it expires.

In CUP, nodes decide individually when to receive updates. A node only receives
updates for an item if the node has registered interest in that item. Furthermore, each
node uses its own incentive-based policy to determine when to cut off its incoming
supply of updates for an item. This way the propagation of updates is controlled and
does not flood the network.

Similarly, nodes decide individually when to propagate updates to interested
neighbors. This is necessary because a node may not always be able or willing to

forward updates to interested neighbors. In fact, a node’s ability or willingness to
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propagate updates may vary with its workload. CUP addresses this by introducing
an adaptive mechanism each node uses to regulate the rate of updates it propagates
downstream. A salient feature of CUP is that even if a node’s capacity to push up-
dates becomes zero, nodes dependent on the node for updates fall back to the case of
PCX and incur no overhead.

In this chapter, we compare CUP against PCX with coalescing under typical
workloads that have been observed in measurements of real peer-to-peer networks. In
PCX, when a search query is posted at a node N, the set of index entries returned in
response to the query will be cached with an expiration time along the reverse query
path down to N. We show that CUP significantly reduces the average query latency
over PCX by as much as an order of magnitude. Moreover, CUP overhead is more
than compensated for by its savings in cache misses. The cost of saved misses can be

two to 200 times the cost of updates pushed.

3.1.2 CUP Node Bookkeeping

At each node, index entries are grouped together by key. For each key K, the node
stores a flag that indicates whether the node is waiting to receive an update for K in
response to a query, and an interest bit vector. Each bit in the vector corresponds
to a neighbor and is set or clear depending on whether that neighbor is or is not
interested in receiving updates for K.

Each node tracks the popularity or request frequency of each non-local key K for
which it receives queries. The popularity measure for a key K can be the number
of queries for K a node receives between arrivals of consecutive updates for K or a
rate of queries of a larger moving window. On an update arrival for K, a node uses
its popularity measure to re-evaluate whether it is beneficial to continue caching and
receiving updates for K. We elaborate on this cut-off decision in Section 3.3.4.

Node bookkeeping in CUP involves no network overhead and a few tens of megabytes
for hundreds of thousands of entries. With increasing CPU speeds and memory
sizes, this bookkeeping is negligible when we consider the reduction in query latency

achieved.
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3.2 CUP Protocol Specification

3.2.1 Handling Queries

Upon receipt of a query for a key K, there are three basic cases to consider. In each of
the cases, the node updates its popularity measure for K and sets the appropriate bit
in the interest bit vector for K if the query originates from a neighbor. Otherwise,
if the query is from a local client, the node maintains the connection until it can
return a fresh answer to the client. To simplify the protocol description we use the
phrase “push the query” to indicate that a node pushes a query upstream toward the
authority node. We use the phrase “push the update” to indicate that a node pushes
an update downstream in the direction of the reverse query path.

Case 1: Fresh Entries for key K are cached. The node uses its cached entries
for K to push the response to the querying neighbor or local client.

Case 2: Key K is not in cache. The node adds K to its cache and marks
it with a Pending-Response flag. The flag’s purpose is to coalesce bursts of queries
for K into one query. A subsequent query for K will be suppressed since the node is
already waiting the response for the first query of the burst. Query coalescing results
in significant network savings, for both PCX and CUP. In some of the workloads,
coalesced queries can form up to 90 percent of the total number of queries that miss.

With every query push, a timer is set so that if the query response is lost, the
node pushes up another query.

Case 3: All cached entries for key K have expired. The node must obtain
the fresh index entries for K. If the Pending-Response flag is set, the node does not
need to push the query; otherwise, the node sets the flag and pushes the query.

3.2.2 Update Types

We classify updates into three categories: deletes, refreshes, and appends. Deletes,
refreshes, and appends originate from the replicas of a piece of content and are directed
toward the authority node that owns the index entries for that content.

Deletes are directives to remove a cached index entry. Deletes can be triggered
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by two events: 1) a replica sends a message indicating it no longer serves a piece
of content to the authority node that owns the index entry pointing to that replica.
2) the authority node notices a replica has stopped sending “keep-alive” messages
and assumes the replica has failed. In either case, the authority node deletes the
corresponding index entry from its local index directory and propagates the delete to
interested neighbors.

Refreshes are directive messages that extend the lifetimes of cached index entries.
Refreshes that arrive at a cache do not prevent errors as deletes do, but help prevent
freshness misses.

Finally, appends are directives to add index entries for new replicas of content.
These updates help alleviate the demand for content from the existing set of replicas

since they add to the number of replicas from which clients can download content.

3.2.3 Handling Updates

A key feature of CUP is that a node does not forward an update for K to its neigh-
bors unless those neighbors have registered interest in K. Therefore, with some light
bookkeeping, we prevent unwanted updates from wasting network bandwidth.

Upon receipt of an update for key K there are three cases to consider.

Case 1: Pending-Response flag is set. This means that the update is a query
response carrying a set of index entries in response to a query, the node stores the
index entries in its cache, clears the Pending-Response flag, and pushes the update
to neighbors whose interest bits are set and to local client connections open at the
node.

Case 2: Pending-Response flag is clear. If all the interest bits for K are
clear, the node decides whether it wants to continue receiving updates for K. The
node bases its decision on K’s popularity measure. Each node uses its own policy for
deciding whether the popularity of a key is high enough to warrant receiving further
updates for it. If the node decides K’s popularity is low, it pushes a Clear-Bit control
message to the sender of the update to notify it that is no longer interested in K'’s

updates. Otherwise, if the popularity is high or some of the neighbor’s interest bits
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are set, the node applies the update to its cache and pushes the update to those
neighbors.

Note that a greedy or selfish node can choose not to push updates for a key K
to interested neighbors. This forces downstream nodes to fall back to PCX for K.
However, by choosing to cut off downstream propagation, a node runs the risk of
receiving subsequent queries from its neighbors costing it twice as much, since it
must both receive and respond to the queries. Therefore, although each node has the
choice of stopping the update propagation at any time, it is in its best interest to
push updates for which there are interested neighbors.

Case 3: Incoming update has expired. This could occur when the network
path has long delays and the update does not arrive in time. The node does not
apply the update and does not push it downstream. If the Pending-Response flag is

set then the node re-issues another query for K and pushes it upstream.

3.2.4 Handling Clear-Bit Messages

A Clear-Bit control message is pushed by a node to indicate to its neighbor that it is
no longer interested in receiving updates for a particular key from that neighbor.

When a node receives a Clear-Bit message for key K, it clears the interest bit
for the neighbor from which the message was sent. If the node’s popularity measure
for K is low and all of its interest bits are clear, the node also pushes a Clear-Bit
message for K. This propagation of Clear-Bit messages toward the authority node for
K continues until a node is reached where the popularity of K is high or where at
least one interest bit is set.

Clear-Bit messages can be piggybacked onto queries or updates intended for the
neighbor, or if there are no pending queries or updates, they can be pushed sepa-

rately.

3.2.5 Adaptive Control of Update Push

Ideally every node would propagate all updates to interested neighbors to save itself

from having to handle future downstream misses. However, from time to time, nodes
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are likely to be limited in their capacity to push updates downstream. Therefore,
we introduce an adaptive control mechanism that a node uses to regulate the rate of
pushed updates.

We assume each node N has a capacity U for pushing updates that varies with N’s
workload, network bandwidth, and/or network connectivity. N divides U among its
outgoing update channels such that each channel gets a share that is proportional to
the length of its queue. This allocation maintains queues of roughly equal size. The
queues are guaranteed to be bounded by the expiration times of the entries in the
queues. So even if a node has its update channels completely shut down for a long
period, all entries will expire and be removed from the queues.

Under a limited capacity and while updates are waiting in the queues, each node
can re-order the updates in its outgoing update channels by pushing ahead updates
that are likely to have greater benefit. For example, a node can re-order refreshes
and appends so that entries that are closer to expiring are given higher priority. Such
entries are more likely to cause freshness misses which in turn trigger a new search
query.

The strategy for re-ordering depends on the application. For example, in an
application where query latency and accuracy are of the most importance, one can
push updates in the following order: deletes, refreshes, and appends. In an application
subject to flash crowds [56] that query for a particular item, appends might be given
higher priority over the other updates. This would help distribute the load faster
across a larger set of replicas. For all strategies, during the re-ordering any expired

updates are eliminated.

3.2.6 Node Arrivals and Departures

The peer-to-peer model assumes that participating nodes will continuously join and
leave the network. CUP must be able to handle both node arrivals and departures
seamlessly.

Arrivals. When a new node N enters a structured peer-to-peer network, it be-

comes responsible for a portion of another node M’s share of the global index and



CHAPTER 3. THE CUP PROTOCOL 26

becomes the authority node for those index entries mapped into that portion. N,
M, and all surrounding affected nodes (old neighbors of M) update the bookkeeping
structures they maintain for indexing and routing purposes. This is a necessary part
of maintaining the connectivity of any structured peer-to-peer network when the set
of nodes in the network changes. management.

For CUP, the issues at hand are updating the interest bit vectors of the affected
nodes and deciding what to do with the index entries stored at M. This may require
bit vector translation. For example, if a node that previously had M as its neighbor
now has N as its neighbor, the node must make the bit ID that pointed to M now
point to N.

To deal with its stored index entries, M could simply not hand over any of its
entries to N. This would cause entries at some of M’s previous neighbors to expire
and subsequent queries from those nodes will restart update propagations from N.
Alternatively, M could give a copy of its stored index entries to N. Both N and M
would then go through each entry and patch its bit vector.  Both solutions are
viable. The first solution requires no bit translation but temporarily loses the CUP
update benefits and behaves like PCX for the untransferred entries. = The second
solution gets the benefits of transferring the entries, at the expense of transferring
the index entries and performing the bit vector patching. The metadata and bit
vectors for thousands of index entries can be compressed into a few kilobytes and can
be piggybacked onto messages that are already being exchanged to reconfigure the
topology. Once the transfer occurs, the bit vector patching is an in-memory, local
operation that with today’s CPU and memory capacities takes only a few seconds for
a few million entries.

Departures. Node departures can be either graceful (planned) or ungraceful
(due to sudden failure of a node or its communication link). In either case the index
mechanism in place dictates that a neighboring node M take over the departing node
N’s portion of the global index. To support CUP, the interest bit vectors of all affected
nodes must be patched to reflect N’s departure.

If N leaves gracefully, N can choose not to hand over to M its index entries. Any

entries at surrounding nodes that were dependent on N to be updated will simply
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expire and subsequent queries will restart update propagations. Again, alternatively
N may give M its set of entries. M must then merge its own set of index entries
with N’s, by eliminating duplicate entries and patching the interest bit vectors as
necessary. If N’s departure is due to a failure, there can be no hand-over of entries

and all entries in the affected neighboring nodes will expire as in PCX.

3.3 Evaluation

The goal of CUP is to extend and multiply the benefits of PCX. In doing so, there are
two key performance questions to address. First, by how much does CUP reduce the
average query latency? Second, how much overhead does CUP incur in providing
this reduction?

We first define the notion of a CUP tree. We use this definition to present a cost
model based on economic incentive used by each node to determine when to cut off
the propagation of updates for a particular key. We give a simple analysis of how
the cost per query is reduced (or eliminated) through CUP. We then describe our
experimental results comparing the performance of CUP with that of PCX.

3.3.1 CUP Trees

We define two kinds of CUP trees: Real CUP Trees and Spanning CUP Trees.

Figure 3.2 shows a snapshot of CUP in progress. The left half of each node shows
the set of keys for which the node is the authority. The right half shows the set of
keys for which the node has cached index entries as a result of handling queries. For
example, node C owns K1 and K2 and has cached entries for K3, K4, and K5.

The process of querying for a key K and updating cached index entries pertaining
to K forms a tree which we refer to as the Real CUP Tree. This tree, denoted R(A,K),
is similar to an application-level multicast tree and has as its root the authority node
A for K. The exact structure of R(A,K) depends on the actual workload of queries for
K. The branches of the tree are formed by the paths traveled by queries from other
nodes in the network. For example, in Figure 3.2, the tree R(C,K1) has grown branch
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Figure 3.2: CUP Trees

{F, D, C} as the result of a query for K1 at node F. Updates for K1 originate at the
root (authority node) C and travel down the tree to interested nodes A, D, E, and
F. The entire workload of queries for all keys results in a collection of criss-crossing
Real CUP Trees with overlapping branches.

We define the Spanning CUP Tree for key K, S(A,K) as the tree that contains
all possible query paths for K. This is the tree that would be generated by issuing a
query for K from every node in the peer-to-peer network. For example, in Figure 3.2,
S(C,K1) is rooted at C (level 0), has nodes A, B, D, E at level 1, and nodes F and G

at level 2.

3.3.2 Cost Model

Consider a node N within spanning tree S(A,K) that is at distance D from A. We
define the cost per query for K at N as the number of hops in the peer-to-peer network
that must be traversed to return an answer to N. When a query for K is posted at N
for the first time, it travels toward A. If none of the nodes between N and A have a
fresh response cached, the cost of the query at N is 2D: D hops up and D hops for the

response to travel down. If a node on the query path has a fresh answer cached, the
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cost is less than 2D. Subsequent queries for K at N that occur within the lifetime of
the entries now cached at N have a cost of zero. As a result, caching at intermediate
nodes can significantly lower average query latency.

We can gauge the performance of CUP by calculating the percentage of updates
CUP propagates that are “justified”, i.e., those whose cost is recovered by a sub-
sequent query. Updates for popular keys are likely to be justified more often than
updates for less popular keys.

A refresh update is justified if a query arrives sometime between the previous
expiration of the cached entry and the new expiration time supplied by the refresh
update. An append update is justified if at least one query arrives between the time
the append is performed and the time of its expiration. Finally, a deletion update
is considered justified if at least one query arrives between the time the deletion is
performed and the expiration time of the entry to be deleted.

For each update, let T be the critical time interval described above during which
a query must arrive in order for the update to be justified. Consider a node N at
distance D from A in R(A,K). An update propagated down to N is justified if at
least one query QQ is posted within 7" time units at any of the nodes of the spanning
subtree S(N,K).

Given the distribution of query arrivals at each node in the tree S(N,K), we can
find the probability that the update at N is justified by calculating the probability
that a query will arrive at some node in S(N,K). If the queries for K arrive at each
node N; in S(N,K) according to a Poisson process with parameter )\;, then it follows
that queries for K arrive at S(N,K) according to a Poisson process with parameter A
equal to the sum of all \'s. Therefore, the probability that a query for K will arrive
within T time units is 1 — e and equals the probability that the update pushed to
N is justified. The closer to the authority N is, the higher the A and thus the higher
the probability for an update pushed to N to be justified. For A = 1 query arrival per
second and T = 6 seconds, the probability that an update arriving at N is justified is
99 percent.

The benefit of a justified CUP update goes beyond just recovery of its cost. For
each hop a justified update u is pushed down to the root N of subtree S(N,K), exactly
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one hop is saved since without the propagation, the first subsequent query landing at
a node N; in S(N,K) within 7 time units will cause two hops, from N to its parent
and back. This halves the number of hops traveled between N and its parent which in
turn reduces query latency. In fact all subsequent queries posted somewhere in S(N,K)
within 7" time units will benefit from N receiving u. The cumulative benefit an update
u brings to subtree S(N,K) increases when N is closer to the authority nodes since
there is a higher probability that queries will be posted within S(N,K). We define
“investment return” as the cumulative savings in hops achieved by pushing a justified
update to node N. The experiments show that the return is large even when CUP’s
reduction in latency is modest and is substantially large when the latency reduction
is high.

High investment return in some nodes, especially those close to the authority
nodes may provide enough benefit margin for more aggressive CUP strategies. For
example, a more aggressive strategy would be to push some updates even if they are
not justified. As long as the number of justified updates is at least fifty percent the
total number of updates pushed, the overall update overhead is completely recov-
ered. Therefore, if network load is not the prime concern, an “all-out” push strategy

achieves minimum latency.

3.3.3 Experiment Setup and Metrics

CUP can be viewed as extending the caching benefits of PCX. Therefore, we evaluate
CUP by comparing it with PCX. We perform our simulation experiments using a
wide range of parameters based on measurements of real peer-to-peer workloads [39,
50, 11, 37, 55].

For our experiments, we simulate a content-addressable network (CAN) [45] using
the Stanford Narses simulator [38]. Again, we stress that CUP is independent of the
specific search mechanism used by the peer-to-peer network and can be used as a
cache maintenance protocol in any peer-to-peer network.

As in previous studies (e.g., [45, 57, 47, 17, 49, 48]), we measure both CUP and

PCX performance in terms of the number of hops traversed in the overlay network.
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We justify this metric shortly. Miss cost is the total number of hops incurred by all
misses, i.e. freshness and first-time misses. CUP overhead is the total number of hops
traveled by all updates sent downstream plus the total number of hops traveled by
all clear-bit messages upstream. (We assume clear-bit messages are not piggybacked
onto updates. This somewhat inflates the overhead measure.) Total cost is the sum
of the miss cost and all overhead hops incurred. Note that in PCX, the total cost is
equal to the miss cost. Average query latency is the average number of hops a query
must travel to reach a fresh answer plus the number of hops the answer must travel
downstream to reach the node where the query was posted. (For coalesced queries we
count the number of hops each coalesced query waits until the answer arrives.) Thus,
the average latency is over all queries, including hits, coalesced and non-coalesced
misses.

Measuring average query latency in overlay hops allows us to fairly evaluate CUP
relative to PCX. A hop traversal avoided by CUP clearly translates into savings
in actual traversal time. Since peer nodes vary in their network connectivities and
thus network link delays, the question is how does CUP’s reduction in overlay hops
traversed translate to reduction in actual-clock query latency? We claim that for
increasingly large network sizes, an X percent CUP reduction in average hops traveled
per query translates into an X percent CUP reduction in average actual traversal time
per query. The reasoning for this is as follows. Each overlay hop corresponds to some
amount of network delay. By examining all pairs of adjacent neighbors in the overlay
network, we can find the distribution of delays between adjacent neighbors. For
increasingly large networks, if we reduce the overlay hop traversal by X percent, the
distribution of neighbor delays for the remaining hops will continue to be the same.
Therefore, the average query latency in actual clock time should be roughly reduced
by X percent as well.

We compute investment return (IR) as the overall ratio of saved miss cost to
overhead incurred by CUP:

IR — MissCostpcx — MissCostcyp

OverheadCostcyp
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Thus, as long as IR is greater than 1, CUP fully recovers its cost.

The simulation takes as input the number of nodes in the overlay peer-to-peer
network, the number of keys owned per node, the distribution of queries for keys, the
distribution of query inter-arrival times, the number of replicas per key, the lifetime
of replicas in the system, and the fraction of the replica lifetime remaining at which
refreshes are pushed out from the authority node. We present experiments for n = 2*
nodes where k ranges from 7 to 14. After a warm-up period for allowing the peer-to-
peer network to connect, the measured simulation time is 3000 seconds. We present
results for experiments with index entry lifetimes of five minutes to reflect the dynamic
nature of peer-to-peer networks where it is prudent to assume nodes might only serve
content for a few minutes at a time [50]. Refreshes of index entries occur one minute
before expiration. Since both Poisson and Pareto query inter-arrival distributions
have been observed in peer-to-peer environments [37, 39], we present experiments for
both distributions. Nodes are randomly selected to post queries. We also present
experiments where queries are posted at particular “hot spots” in the network.

We present seven sets of experiments. First, we compare the effect on CUP
performance of different incentive-based cut-off policies and compare the performance
of these policies to those of PCX. Second, using the best cut-off policy of the first
experiment, we study how CUP performs as we scale the network. Third, we study the
effect on CUP performance of varying the topology of the network by increasing the
average node degree, thus decreasing the diameter of the network. Fourth, we study
the effect on CUP performance of limiting the outgoing update capacities of nodes.
Fifth, we study how CUP performs when queries arrive in bursts, as observed with
Pareto inter-arrivals. Sixth, we study how CUP performs when there are hot spots of
querying nodes in the network. These six experiments show the per-key benefits of
CUP according to the query rates observed by each key. In the last experiment, we
show the overall benefits of CUP when keys are queried for according to a Zipf-like

distribution.
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3.3.4 Varying the Cut-Off Policies

As discussed in Section 3.3.2, the propagation of updates is beneficial only if the
updates are justified; when a node’s incentive to receive updates for a particular key
fades, continuing to propagate updates to that node simply wastes network band-
width. Therefore, each node needs an independent and decentralized way of control-
ling its intake of updates.

We base a node’s incentive to receive updates for a key on the popularity of the
key at the node. The more popular a key is, the more incentive there is to receive
updates for that key, because the more likely it is that updates for that key will be
justified. For a key K, the popularity is the number of queries a node has received for
K since the last update for K arrived at the node. (Note that the popularity metric is
node-dependent and could be defined in another way such as with a moving average
of query arrivals for K.)

We examine two types of thresholds against which to test a key’s popularity when
making the cut-off decision: probability-based and log-based.

A probability-based threshold uses the distance of a node N from the authority
node A to approximate the probability that an update pushed to N is justified. Per
our cost model of section 3.3.2, the further N is from A, the less likely an update at
N will be justified. We examine two such thresholds, a linear one and a logarithmic
one. With a linear threshold, if an update for key K arrives at a node at distance
D and the node has received at least aD queries for K since the last update, then
K is considered popular and the node continues to receive updates for K. Otherwise,
the node cuts off its intake of updates for K by pushing up a clear-bit message. The
logarithmic popularity threshold is similar. A key K is popular if the node has received
alg(D) queries since the last update. The logarithmic threshold is more lenient than
the linear in that it increases at a slower rate as we move away from the root.

A log-based threshold is one that is based on the recent history of the last n
update arrivals at the node. If within n updates, the node has not received any
queries, then the key is not popular and the node pushes up a clear-bit message. A
specific example of a log-based policy is the “second-chance policy”, n = 2. When

an update arrives, if no queries have arrived since the last update, the policy gives
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Table 3.1: Total cost per key per query rate for varying cut-off policies.

Policy 1 q/s Total Cost | 10 q/s Total Cost | 100 q/s Total Cost | 1000 q/s Total Cost
PCX 61568 (1.00) 154502 (1.00) 476420 (1.00) 2296869 (1.00)
Linear, a = 0.10 41281 (0.67) 34311 (0.22) 47132 (0.10) 196650 (0.09)
Linear, a = 0.01 31110 (0.51) 24697 (0.16) 48330 (0.10) 196797 (0.09)
Logarithmic, o = 0.25 30683 (0.50) 24695 (0.16) 18330 (0.10) 196797 (0.09)
Logarithmic, & = 0.10 30683 (0.50) 24695 (0.16) 48330 (0.10) 196797 (0.09)
Second-chance 16958 (0.28) 23702 (0.15) 48330 (0.10) 196797 (0.09)
Optimal push level 15746 (0.26) 23696 (0.15) 45325 (0.095) 153309 (0.07)

the key a “second chance” and waits for the next update. If at the next update,
still no queries for K have been received, the node pushes a clear-bit message. The
philosophy behind this policy is that pushing these two updates down from the node’s
parent costs the same as one query miss occurring at the node, since a query miss
incurs one hop up to the parent and one hop down. This means that just one query
arriving at the node between the two updates is enough to recover the propagation
cost.

Table 3.1 compares the total cost of PCX with CUP using the linear and logarith-
mic polices for various « values, with CUP using second chance, and with a version
of CUP that does not use any cut-off policy but instead pushes updates until the
optimal push level is reached. To determine the optimal push level we make CUP
propagate updates to all querying nodes that are at most p hops from the authority
node. By varying the push level p, we determine the level which achieves minimum
total cost. This is shown by the row labeled optimal push level and used as a baseline
against which to compare PCX and CUP with the cut-off policies described.

In Table 3.1 we show cut-off policy results for a network of 2! nodes and Poisson
A rates of 1, 10, 100 and 1000 queries per second. In each table entry, the first number
is the total cost and the number in the parentheses is the total cost normalized by
the total cost for PCX. First, we see that regardless of the cut-off policy used, CUP
outperforms PCX. Second, for the lower query rates, the performance of the linear
and the logarithmic policies is greatly affected by the choice of parameter «, whereas
for the higher query rates, the choice of « is less dramatic. These results show that

choosing a priori an « value for the linear and logarithmic policies that will perform
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Table 3.2: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 1 query/second.

Network Size 128 256 512 1024
CUP / PCX MissCost 0.10 0.10 0.15 0.17
PCX AvgLat (o) 1.51 (2.8) | 2.67 (4.0) | 4.49 (5.9) | 6.74 (3.3)
CUP AvgLat (o) 0.21 (1.1) | 0.46 (1.6) | 1.25 (3.2) | 2.17 (4.4)
IR 4.15 4.88 6.29 7.83

Table 3.3: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 1 query/second.

Network Size 2048 4096 8192 16384
CUP / PCX MissCost 0.19 0.22 0.20 0.21
PCX AvgLat (0) 11.01 (12.1) | 17.47 (17.5) | 29.29 (27.8) | 45.56 (40.3)
CUP AvgLat () 418 (7.1) | 770 (11.3) | 11.48 (15.1) | 19.17 (23.7)
IR 11.43 16.14 24.85 35.98

well across all workloads is difficult.

For the higher query rates, the log-based second-chance policy performs compa-
rably to the probability-based policies, and for the lower query rates outperforms the
probability-based policies. In fact, across all rates, the second-chance policy achieves
a total cost very near the optimal push level total cost. This is because, unlike
the probability-based policies, the second-chance policy adapts to the timing of the
queries within the workload in a manner that is independent of the distance of the

node. In all remaining experiments, we use second-chance as the cut-off policy.

3.3.5 Scaling the Network

In this section we study CUP performance as we scale the size of the network.
Tables 3.2 and 3.3 compare CUP and PCX for network sizes between 128 and
16384 nodes for a Poisson A rate of 1 query per second. The first row shows the

CUP miss cost as a fraction of the PCX miss cost. The second and third rows show
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Table 3.4: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 10 queries/second.

Network Size 128 256 512 1024
CUP / PCX MissCost 0.08 0.09 0.09 0.08
PCX AvgLat (o) 0.37 (1.58) | 0.87 (2.89) | 2.28 (5.72) | 4.21 (8.78)
CUP AvgLat (o) 0.03 (0.44) | 0.09 (0.96) | 0.26 (2.14) | 0.47 (3.17)
IR 6.79 8.30 11.76 13.00

Table 3.5: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 10 queries/second.

Network Size 2048 4096 8192 16384
CUP / PCX MissCost 0.09 0.09 0.10 0.11
PCX AvgLat (o) 7.48 (13.35) | 14.42 (21.37) | 25.87 (32.73) | 43.85 (48.33)
CUP AvgLat (o) 1.14 (5.74) | 2.53 (9.93) | 5.26 (16.23) | 9.97 (25.09)
IR 14.89 21.52 30.88 50.52

Table 3.6: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 100 queries/second.

Network Size 128 256 512 1024
CUP / PCX MissCost 0.08 0.08 0.09 0.08
PCX AvgLat (o) 0.16 (1.07) | 0.33 (1.87) | 0.91 (3.65) | 1.77 (5.99)
CUP AvgLat (o) 0.01 (0.28) | 0.03 (0.53) | 0.08 (1.14) | 0.14 (1.73)
IR 28.41 29.05 39.80 39.96
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Table 3.7: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 100 queries/second.

Network Size 2048 4096 8192 16384
CUP / PCX MissCost 0.10 0.08 0.09 0.10
PCX AvgLat (o) 3.91 (10.79) | 8.60 (18.65) | 17.94 (30.63) | 35.96 (49.28)
CUP AvgLat (o) 0.36 (3.51) | 0.76 (5.92) | 2.06 (11.98) | 5.50 (21.89)
IR 44.08 52.62 60.48 83.34

Table 3.8: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 1000 query/second.

Network Size 128 256 512 1024
CUP / PCX MissCost 0.08 0.08 0.08 0.08
PCX AvgLat (o) 0.12 (0.88) | 0.23 (1.42) | 0.54 (2.54) | 0.92 (3.89)
CUP AvgLat (o) 0.01 (0.26) | 0.02 (0.41) | 0.05 (0.75) | 0.07 (1.10)
IR 202.45 185.99 226.84 192.11

Table 3.9: Per-key Comparison of CUP with PCX for varying network sizes, Poisson
arrivals of 1000 query/second.

Network Size 2048 4096 8192 16384
CUP / PCX MissCost 0.12 0.08 0.09 0.09
PCX AvgLat (o) 1.90 (6.77) | 4.01 (11.67) | 8.55 (19.93) | 18.36 (34.40)
CUP AvgLat (0) 0.16 (2.05) | 0.34 (3.59) | 0.79 (6.55) | 2.22 (12.29)
IR 192.01 207.12 221.55 264.80
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the average query latency in hops for PCX and CUP respectively. The number in
parentheses is the standard deviation. As can be observed, CUP reduces average
query latency respectively by 9.77, and 17.81, and 26.39 hops for the 4096, 8192, and
16384 node networks. This shows a substantial reduction in average query latency
that improves with increasing network size. Comparing the standard deviations of
CUP and PCX we see that PCX also has more variability around its average query
latency than CUP does.

The fourth row in the tables shows the IR per overhead push performed by CUP.
We observe a growth in the rate of return with returns of 16.14, 24.85, and 35.98 for
the last three network sizes. These numbers are significant, especially considering the
overhead investment is completely recovered.

Tables 3.4-3.9 show the corresponding tables for A rates of 10, 100, and 1000
queries per second.

To get a quick idea of how CUP performs across all four query rates, Figure 3.3
shows the IR of CUP versus network size for Poisson with A = 1, 10, 100, and 1000
queries per second. From the figure we see that for a particular network size, if we
increase the query rate the IR increases, and for a particular query rate, if we increase
the network size, the IR also increases. This demonstrates that CUP scales to higher

query rates and higher network sizes.
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3.3.6 Varying the Network Topology

In general, different peer-to-peer networks exhibit different topologies and thus differ-
ent network diameters. The particular topology created depends on the protocol the
peer nodes use to join the network and to keep it connected. The CAN (Content-
Addressable Network) design is based on a d-dimensional coordinate space, with our
experiments thus far having been for d = 2. Increasing the number of dimensions
results in a topology where nodes have higher degree and the network has smaller
diameter. Smaller diameter implies that the average path length of a query on a
miss is shorter for both PCX and CUP. Shorter query paths means that PCX miss
latencies decrease, which implies that the benefits of CUP may be less pronounced.
On the other hand, CUP total update cost also decreases since there will be shorter
distances for updates to travel. As a result, we find that CUP continues to provide
significant savings in terms of both overall total cost, latency reduction, and IR per
overhead push.

In this set of experiments we study the effect of increasing the number of CAN
dimensions on a network with 1024 nodes. The dimensions chosen for this experiment
are 2, 3, 5, and 10. These dimensions result in network diameters of 24, 12, 8, and 8
respectively. (For a network of 1024 nodes, increasing beyond five dimensions does not
reduce the network diameter any further.) The queries arrive according to a Poisson
process with A rate of 1, 10, 100, and 1000 queries per second for a network of 1024
nodes. Figure 3.4 shows the IR versus the query rate for each dimension. From the
figure we see that the curves for dimensions 5 and 10 are very similar because they
have equal network diameters. We also see that dimension 2 achieves the highest IR
across all query rates, and that the IR decreases with dimension. However, even for
the higher dimensions (5 and 10), the IR per overhead hop is at least 2.1 per overhead
hop for 1 q/s and increases to 36.6 per overhead hop for 1000 q/s.

In Tables 3.10-3.13, for these dimensions, we show the CUP miss cost as a fraction
of PCX miss cost, the CUP miss latency, the PCX miss latency, and the ratio of saved
misses to CUP update cost.
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Table 3.10: Comparison of CUP with PCX for varying dimensions

Average Rate (q/s) 1 1 1 1
Number of dimensions) 10 5 3 2
CUP / PCX MissCost 0.33 0.33 0.26 0.17
PCX AvgLat (o) 2.09 (2.27) | 2.21 (2.38) | 3.14 (3.49) | 6.74 (8.25)
CUP AvgLat (o) 1.04 (1.53) | 1.10 (1.59) | 1.37 (2.22) | 2.17 (4.37)
IR 2.01 2.08 3.26 7.83
Table 3.11: Comparison of CUP with PCX for varying dimensions
Average Rate (q/s) 10 10 10 10
Number of dimensions) 10 5 3 2
CUP / PCX MissCost 0.09 0.09 0.09 0.08
PCX AvglLat (o) 0.94 (1.80) | 0.95 (1.82) | 1.51 (3.15) | 4.21 (8.78)
CUP AvgLat (o) 0.11 (0.68) | 0.11 (0.67) | 0.17 (1.14) | 0.47 (3.17)
IR 3.03 3.06 4.78 13.00
Table 3.12: Comparison of CUP with PCX for varying dimensions
Average Rate (q/s) 100 100 100 100
Number of dimensions) 10 5 3 2
CUP / PCX MissCost 0.08 0.08 0.09 0.08
PCX AvgLat (0) 0.31 (1.41) | 0.30 (1.37) | 0.61 (2.50) | 1.77 (5.99)
CUP AvgLat (0) 0.03 (0.40) | 0.03 (0.42) | 0.06 (0.78) | 0.14 (1.73)
IR 7.16 6.75 13.82 39.96
Table 3.13: Comparison of CUP with PCX for varying dimensions
Average Rate (q/s) 1000 1000 1000 1000
Number of dimensions) 10 5 3 2
CUP / PCX MissCost 0.08 0.08 0.08 0.08
PCX AvgLat (o) 0.16 (0.97) | 0.14 (0.90) | 0.30 (1.59) | 0.92 (3.89)
CUP AvgLat (o) 0.01 (0.28) | 0.01 (0.25) | 0.02 (0.46) | 0.07 (1.10)
IR 36.68 31.46 66.81 192.11
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Figure 3.4: IR vs. query rate, varying dimensions. (Log-scale axes.)

3.3.7 Varying Outgoing Update Capacity

Our experiments thus far show that CUP outperforms PCX under conditions where
all nodes have full outgoing update capacity. A node with full outgoing capacity is a
node that can and does propagate all updates for which there are interested neighbors.
In reality, an individual node’s outgoing capacity will vary with its workload, network
connectivity, and willingness to propagate updates. In this section we study the effect
on CUP performance of reducing the outgoing update capacity of nodes.

We present an experiment run on a network of 1024 nodes. In this experiment,
after a five minute warm up period, we randomly select twenty percent of the nodes
and reduce their outgoing capacity to a fraction of their full capacity. These nodes
operate at reduced capacity for ten minutes after which they return to full capacity.
After another five minutes for stabilization, we randomly select another set of twenty
percent of the nodes and reduce their capacity for ten minutes. We proceed this way
for the entire 3000 seconds during which queries are posted, so capacity loss occurs
three times during the simulation.

Figure 3.5 shows the ratio of CUP total cost to PCX total cost versus reduced
capacity c¢ for this experiment and for four different Poisson query rates A. The
capacity reduction ¢ ranges from 0, implying that no updates are propagated to 1
in which nodes have full outgoing capacity. ¢ = .25 means that a node is only

capable/willing of pushing out one-fourth the updates it receives.
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Figure 3.5: Total cost ratio vs. update propagation capacity

Note that even when one fifth of the nodes do not propagate any updates, the
total cost incurred by CUP is about half that of PCX. As the outgoing capacity
increases, the total cost decreases smoothly until ¢ = 1 where CUP achieves its full
potential. A key observation from these experiments is that CUP’s performance
degrades gracefully as the capacity ¢ decreases. This is because reduction in update
propagation also results in reduction of its associated overhead. Therefore, the
capacity reduction should be seen as a missed opportunity for higher returns rather
than as an overall loss. Clearly though, CUP achieves its full potential when all nodes

have maximum propagation capacity.

3.3.8 Pareto Query Arrivals

Recent work has observed that in some peer-to-peer networks, query inter-arrivals
exhibit burstiness on several time scales [39], making the Pareto distribution a good
candidate for modeling these inter-arrival times. Therefore, in this section we compare
CUP with PCX under Pareto inter-arrivals.

The Pareto distribution has two parameters associated with it: the shape param-
eter a > 0 and the scale parameter x > 0. The cumulative distribution function of

inter-arrival time durations is F(z) = 1 — ((xin))a. This distribution is heavy-tailed
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Table 3.14: Per-key, per-query rate comparison of CUP with PCX for Pareto arrivals.

Average Rate (q/s) 1 1 10 10
Pareto rate (a) 1.25 1.1 1.25 1.1
CUP / PCX MissCost 0.24 0.14 0.08 0.07
PCX AvgLat (o) 777 (9.3) | 6.99 (9.4) | 3.84 (8.4) | 4.01 (8.8)
CUP AvgLat (o) 316 (5.7) | 1.71 (4.4) | 0.42 (3.0) | 0.37 (2.8)
IR 6.41 7.49 13.09 16.03

with unbounded variance when o < 2. For o > 1, the average number of query ar-
rivals per time unit is equal to @ For @ <=1, the expectation of an inter-arrival
duration is unbounded and therefore the average number of query arrivals per time
unit is 0.

We ran experiments for a range of @ and k values and present representative
results here. Tables 3.14 and 3.15 compare CUP with PCX for « equal to 1.1 and

1.25 respectively for a network of 1024 nodes. We set the value of x in each run so

that the average rate of arrivals @ equals 1, 10, 100, and 1000 queries per second
to match the A rate of the Poisson experiments in previous sections.

As a decreases toward 1, query interarrivals become more bursty. Queries arrive
in more frequent and more intense bursts, followed by idle periods of varying lengths.
If an idle period occasionally falls in the heavy-tail portion of the Pareto distribution
(i.e. very long idle period), then second chance CUP propagation cost could be un-
recoverable, since the next query may arrive long after the cached entry has expired.
However, CUP does well under bursty conditions because when it is able to refresh
a cache before a burst of queries, it saves a large penalty which by far outweighs any
unrecovered overhead that occurs during the occasional, very long idle period. There-
fore, refreshing the cache in time provides greater benefits with increasing burstiness.
The table results confirm this. In going from o = 1.25 to o = 1.1, we see that the av-
erage query latency reduction CUP achieves generally improves and the IR increases

for all query rates.
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Table 3.15: Per-key, per-query rate comparison of CUP with PCX for Pareto arrivals.

Average Rate (q/s) 100 100 1000 1000
Pareto rate (a) 1.25 1.1 1.25 1.1
CUP / PCX MissCost 0.07 0.09 0.08 0.08
PCX AvgLat (o) 1.75 (5.9) | 1.61 (5.6) | 1.00 (4.0) | 1.10 (4.2)
CUP AvgLat (o) 0.13 (1.7) | 0.15 (1.7) | 0.08 (1.2) | 0.09 (1.2)
IR 43.25 53.57 223.97 293.30

3.3.9 Query Hot Spots

In this experiment we show how CUP performs when there are hot spots in the
network, that is when a small portion of the network is posting queries for particular
keys. It is possible that some portions of the network will have high interest whereas
others will show only low interest for a particular key. We examine how CUP performs
in such a scenario.

We show results for an experiment for a 1024 node network in which queries for
a particular key were generated according to a Poisson process with 1, 10, 100, and
1000 queries per second. Nodes to post the queries were chosen according to a zipf
distribution of the node IDs. This has the effect of having a small number of active
querying nodes and a large number of nodes which issue very few queries for the key
throughout the simulation.

Table 3.16 compares CUP with PCX. From the table we see that the results of
the hot spot experiment are similar to those where nodes are randomly chosen to
post queries. This is because the CUP tree simply grows branches in the direction of
nodes that have interest in the key. Each node decides individually when to cut off its
intake of updates and this decision is independent of the query rates or propagation
behavior of other nodes that lie in a different part of the network.

Table 3.17 compares CUP with PCX in a network with hot spots and Pareto
arrivals, with o = 1.1 and average rate of arrivals of 1, 10, 100, and 1000 queries per
second. Again the results here are similar to those observed when nodes are randomly

selected to post queries.
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Table 3.16: Comparison of CUP with PCX for varying query rates and Hot Spot,
Poisson Arrivals

Average Rate (q/s) 1 10 100 1000
CUP / PCX MissCost 0.16 0.08 0.08 0.09
PCX AvgLat (0) 7.07 (3.85) | 3.58 (7.76) | 1.62 (5.57) | 0.96 (3.95)
CUP AvgLat (o) 2.06 (4.29) | 0.39 (2.40) | 0.13 (1.59) | 0.08 (1.22)
IR 8.87 11.47 32.35 193.89

Table 3.17: Comparison of CUP with PCX for varying query rates and Hot Spot,
Pareto Arrivals

Average Rate (q/s) 1 10 100 1000
CUP / PCX MissCost 0.16 0.08 0.08 0.09
PCX AvgLat (o) 6.87 (9.41) | 3.56 (7.93) | 1.59 (5.42) | 1.13 (4.23)
CUP AvgLat (o) 1.68 (4.39) | 0.35 (2.40) | 0.14 (1.63) | 0.10 (1.32)
IR 7.98 14.20 47.56 294.89

3.3.10 Zipf-like Key Distributions

A recent study has shown that queries for multiple keys in a peer-to-peer network
can follow a Zipf-like distribution, with a small portion of the keys getting the most
queries [55]. That is, the number of queries received by the 7’th most popular key is
proportional to = for constant c.

In this section we compare CUP with PCX in a network of 1024 nodes, where each
node owns one key. The query distribution among the 1024 keys follows a Zipf-like
distribution with parameter @ = 1.2. Table 3.18 shows results for Poisson arrivals
where the A rates are 100, 1000, 10000, and 100000 queries per second. (We also ran
simulations with o = 0.80 and 2.40 and with Pareto arrivals with equivalent average
rates and the results were similar.)

From the table we see that CUP outperforms PCX with IR ranging from 6.57 to
30.02. The latency reduction ranges from 3.2 (for 100 q/s) to an order of magnitude
reduction (for 100000 q/s, latency dropped from 1.53 to 0.13). The Zipf-like distribu-

tion causes some of the keys to get a large percentage of the queries, leaving others to
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Table 3.18: Cross-Key comparison of CUP with PCX, for Poisson arrivals and Zipf-
like key distribution.

Avg Rate (q/s) 100 1000 | 10000 100000
CUP / PCX MissCost 0.45 0.23 0.10 0.08
PCX AvgLat (0) 10.6 (9.9) | 6.9 (8.9) | 3.4 (7.5) | 1.53 (5.47)
CUP AvgLat (o) 74 (85) | 2.6 (5.2) | 0.4 (2.7) | 0.13 (1.67)
IR 6.57 8.52 10.98 30.02

be asked for quite rarely. For such keys, caching does not help since the entry expires
by the time the key is queried for again, and the query rate for these keys is not high
enough to recover the update propagation. However, the IR for the very hot keys is
high enough to by far offset the unrecoverable cost of other less popular keys. As a
result, CUP achieves an overall IR of at least 6.57 for 100 q/s and as much as 30.02
for 100000 q/s.

3.4 Summary

CUP is a protocol for maintaining caches of index entries in peer-to-peer networks.
CUP query channels coalesce bursts of queries for the same item into a single query.
CUP update channels asynchronously transport query responses and refresh inter-
mediate caches. Through light book-keeping and incentive-based propagation cut-off
policies, CUP controls and confines propagations to updates that are likely to be
justified. In fact, CUP’s overhead is compensated for by a factor of 2 to 300 times in
terms of savings in cache misses.

When compared with path caching with expiration (PCX), CUP significantly re-
duces the average query latency over a wide variety of workloads, including Poisson
and Pareto query arrivals, networks of increasing size and various topologies, and uni-
form and Zipf-like multi-key query distributions. We have also shown that even with
limited update propagation, CUP continues to outperform PCX. The overall con-

clusion is that CUP benefits increase with network size and query rates. Although
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Poisson query interarrivals may result in less unrecovered overhead than Pareto ar-
rivals, the sheer force of Pareto bursts results in higher CUP benefit (investment
return).

We believe that CUP provides a general purpose framework for maintaining meta-
data in peer-to-peer networks. We demonstrate this in the next chapter where we
leverage the CUP protocol to deliver metadata required for effective load-balancing

of content demand across replica nodes.



Chapter 4

Practical Load Balancing in P2P
Networks

In this chapter we study the problem of load-balancing demand for content in a peer-
to-peer network. We propose a new algorithm, Max-Cap, and demonstrate through
experiments that Max-Cap avoids the problems observed by current load-balancing
algorithms when applied in a peer-to-peer environment.

First, we give an overview of the Max-Cap algorithm. Second, we explain how
we leverage the CUP protocol to enable load-balancing. Third we describe the three
algorithms compared in our load-balancing study, a load-based algorithm, an algo-
rithm based on available capacity, and Max-Cap. Fourth, we describe experiments
that demonstrate the practicality of Max-Cap for load-balancing in a peer-to-peer

environment and finally, we conclude the chapter with summary results.

4.1 Max-Cap Overview

Max-Cap is a load-balancing algorithm based on the inherent maximum capacities of
the replica nodes. We define maximum capacity as the maximum number of requests
per time unit a replica allocates for answering requests for its content. Alternative
measures such as maximum (allowed) connections can also be used. The maximum

capacity is like a contract by which the replica agrees to abide. If the replica cannot
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sustain its advertised rate, then it may choose to advertise a new maximum capacity.
Max-Cap is not critically tied to the timeliness or frequency of LBI updates, and as
a result, when applied in a peer-to-peer environment, outperforms algorithms based
on load or available capacity, whose benefits are heavily dependent on the timeliness
of the updates.

In this chapter, we show that Max-Cap takes peer node heterogeneity into ac-
count unlike algorithms based purely on load. While algorithms based on available
capacity also take heterogeneity into account, we show that they can suffer from load
oscillations in a peer-to-peer network in the presence of small fluctuations in the work-
load, even when the workload rate is well within the total maximum capacities of the
replicas. On the other hand, Max-Cap avoids overloading replicas in such scenarios
and is more resilient to very large fluctuations in workload. This is because a key
advantage of Max-Cap is that it uses information that is not affected by changes in
the workload.

In a peer-to-peer environment the expectation is that the set of participating
nodes will change constantly. Since replica arrivals to and departures from the peer
network can affect the information carried in load-balancing updates, we also compare
Max-Cap against availability-based algorithms when the set of replicas continuously
changes. We show that, Max-Cap is less affected by changes in the replica set than
the other algorithms.

Since it is most probable that each replica node in a peer-to-peer environment will
run other applications besides the content distribution application, Max-Cap must
also be able to handle fluctuations in “extraneous load” observed at the replicas. This
is load caused by external factors such as other applications the users of the replica
node are running or network conditions occurring at the replica node.

We modify Max-Cap to perform load-balancing using the “honored maximum ca-
pacity” of each replica. This is the maximum capacity minus the extraneous load
observed at the replica. Although the honored maximum capacities may change fre-
quently, the changes are independent of fluctuations in the content request workload.
As a result, Max-Cap continues to provide better load-balancing than availability-

based algorithms even when there are large fluctuations in the extraneous load.
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We evaluate load-based and availability-based algorithms and compare them with
Max-Cap in the context of CUP. We describe how we leverage CUP’s update propa-

gation mechanism to transport load-balancing information (LBI) in the next section.

4.2 Leveraging CUP for Load-Balancing

As described in Chapter 3, CUP periodically sends updates down a conceptual tree
(similar to an application-level multicast tree) whose branches are formed by queries
traveling up toward the authority node holding the answer. Replica nodes send birth,
refresh (i.e., renewal), and invalidation messages to the authority node to indicate they
have started serving, continue to serve, or are no longer serving particular content.
The authority node then propagates these updates down the CUP tree to all interested
nodes.

To enable load-balancing, we leverage this propagation mechanism to transport
load-balancing information such as replica load or available capacity down the CUP
tree. Peer nodes then use the load-balancing information when choosing to which

replica a client request should be forwarded.

4.3 The Algorithms

We evaluate two different algorithms, Inv-Load and Avail-Cap. Each is representative
of a different class of algorithms that have been proposed in the distributed systems
literature. We study how these algorithms perform when applied in a peer-to-peer
context and compare them with our proposed algorithm, Max-Cap. These three
algorithms depend on different LBI being propagated, but their overall goal is the
same: to balance the demand for content fairly across the set of replicas providing
the content. In particular, the algorithm should avoid overloading some replicas while
underloading others, especially when the aggregate capacity of all replicas is enough
to handle the content request workload. Moreover, the algorithm should prevent
individual replicas from oscillating between being overloaded and underloaded.

Oscillation is undesirable for two reasons. First, many applications limit the
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number of requests a host can have outstanding. This means that when a replica
node is overloaded, it will drop any request it receives. This forces the requesting
client to resend its request which has a negative impact on response time. Even for
applications that allow requests to be queued while a replica node is overloaded the
queueing delay incurred will also increase the average response time. Second, in a
peer-to-peer network, the issue of fairness is sensitive. The owners of replica nodes are
likely not to want their nodes to be overloaded while other nodes in the network are
underloaded. An algorithm that can fairly distribute the request workload without
causing replicas to oscillate between being overloaded and underloaded is preferable.

We describe each of the algorithms we evaluate in turn:

Allocation Proportional to Inverse Load (Inv-Load). There are many load-balancing
algorithms that base the allocation decision on the load observed at and reported
by each of the serving entities (see Related Work Section 2.3). The representative
load-based algorithm we examine in this thesis is Inv-Load, based on the algorithm
presented by Genova et al. [32]. In this algorithm, each peer node in the network
chooses to forward a request to a replica with probability inversely proportional to the
load reported by the replica. This means that the replica with the smallest reported
load (as of the last report received) will receive the most requests from the node.
Load is defined as the number of request arrivals at the replica per time unit. Other
possible load metrics include the number of request connections open at the replica
at reporting time [8] or the request queue length at the replica [25].

The Inv-Load algorithm has been shown to perform as well as or better than other
proposed algorithms in a homogeneous environment and for this reason we focus on
this algorithm in this study. As we will see in Section 4.4.1, Inv-Load, as is, is not
designed to handle replica node heterogeneity. We can slightly modify Inv-Load so
that replicas are chosen with probability inversely proportional to the load and at the
same time proportional to the maximum capacity of the replicas. This results in an
algorithm that is essentially equivalent to Avail-Cap, which we describe next.

Allocation Proportional to Available Capacity (Avail-Cap). In this algorithm, each
peer node chooses to forward a request to a replica with probability proportional to

the available capacity reported by the replica. Available capacity is the maximum
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request rate a replica can handle minus the load (actual request rate) experienced at
the replica. This algorithm is based on the algorithm proposed by Zhu et al. [65]
for load sharing in a cluster of heterogeneous servers. Avail-Cap takes into account
heterogeneity because it distinguishes between nodes that experience the same load
but have different maximum capacities.

Intuitively, Avail-Cap seems like it should work; it handles heterogeneity by send-
ing more requests to the replicas that are currently more capable. Replicas that are
overloaded report an available capacity of zero and are excluded from the allocation
decision until they once more report a positive available capacity. Unfortunately, as
we will show in Section 4.4.2, this exclusion can cause Avail-Cap to suffer from wild
load oscillations.

Both Inv-Load and Avail-Cap implicitly assume that the load or available capac-
ity reported by a replica remains roughly constant until the next report. Since both
these metrics are directly affected by changes in the request workload, both algo-
rithms require that replicas periodically update their LBI. (We assume replicas are
not synchronized in when they send reports.) Decreasing the period between two con-
secutive LBI updates increases the timeliness of the LBI at a cost of higher overhead
(in number of updates pushed through the peer-to-peer network). In large peer-to-
peer networks, there may be several levels in the CUP tree down which updates will
have to travel, and the time to do so could be on the order of seconds.

Allocation Proportional to Mazimum Capacity (Max-Cap). This is the algorithm
we propose. In this algorithm, each peer node chooses to forward a request to a
replica with probability proportional to the maximum capacity of the replica. The
maximum capacity is a contract each replica advertises indicating the number of re-
quests the replica claims to handle per time unit. Unlike load and available capacity,
the maximum capacity of a replica is not affected by changes in the content request
workload. Therefore, Max-Cap does not depend on the timeliness of the LBI updates.
In fact, replicas only push updates down the CUP tree when they choose to adver-
tise a new maximum capacity. This choice depends on extraneous factors that are
unrelated to and independent of the workload (see Section 4.4.4). If replicas rarely

choose to change contracts, Max-Cap incurs near-zero overhead. We believe that this
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independence of the timeliness and frequency of updates makes Max-Cap practical

and elegant for use in peer-to-peer networks.

4.4 Experiments

In this section we describe experiments that measure the ability of the Inv-Load,
Avail-Cap and Max-Cap algorithms to balance requests for content fairly across the
replicas holding the content. We simulate a content-addressable network (CAN) [45]
using the Stanford Narses simulator [38]. A CAN is an example of a structured peer-
to-peer network, defined in Section 2.1. In each of these experiments, requests for a
specific piece of content are posted at nodes throughout the CAN network for 3000
seconds. Using the CUP protocol described in Section 2.1, a node that receives a
content request from a local client retrieves a set of index entries pointing to replica
nodes that serve the content. The node applies a load-balancing algorithm to choose
one of the replica nodes. It then points the local client making the content request
at the chosen replica.

The simulation input parameters include: the number of nodes in the overlay
peer-to-peer network, the number of replica nodes holding the content of interest, the
maximum capacities of the replica nodes, the distribution of content request inter-
arrival times, a seed to feed the random number generators that drive the content
request arrivals and the allocation decisions of the individual nodes, and the LBI
update period, which is the amount of time each replica waits before sending the
next LBI update for the Inv-Load and Avail-Cap algorithms.

We assign maximum capacities to replica nodes by applying results from recent
work that measures the upload capabilities of nodes in Gnutella networks [50]. This
work has found that for the Gnutella network measured, around 10% of nodes are
connected through dial-up modems, 60% are connected through broadband connec-
tions such as cable modem or DSL where the upload speed is about ten times that
of dial-up modems, and the remaining 30% have high-end connections with upload
speed at least 100 times that of dial-up modems. Therefore we assign maximum ca-

pacities of 1, 10, and 100 requests per second to nodes with probability of 0.1, 0.6,
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and 0.3, respectively.

In all the experiments we present in this chapter, the number of nodes in the
network is 1024, each individually deciding how to distribute its incoming content
requests across the replica nodes. We use both Poisson and Pareto request inter-
arrival distributions, both of which have been found to hold in peer-to-peer networks
[11, 39].

We present five experiments. First we show that Inv-Load cannot handle hetero-
geneity. We then show that while Avail-Cap takes replica heterogeneity into account,
it can suffer from significant load oscillations caused by even small fluctuations in the
workload. We compare Max-Cap with Avail-Cap for both Poisson and bursty Pareto
arrivals. We also compare the effect on the performances of Avail-Cap and Max-Cap
when replicas continuously enter and leave the system. Finally, we study the effect
on Max-Cap when replicas cannot always honor their advertised maximum capacities

because of significant extraneous load.

4.4.1 Inv-Load and Heterogeneity

It should be intuitive that algorithms based purely on load do not handle hetero-
geneity. To confirm this intuition, in this experiment, we examine the performance of
Inv-Load in a heterogeneous peer-to-peer environment. We use a fairly short inter-
update period of one second, which is quite aggressive in a large peer-to-peer network.
We have ten replica nodes that serve the content item of interest, and we generate
request rates for that item according to a Poisson process with an arrival rate that
is 80% of the total maximum capacities of the replicas. Under such a workload,
a good load-balancing algorithm should be able to avoid overloading some replicas
while underloading others. Figure 4.1 shows a scatterplot of how the utilization of
each replica proceeds with time when using Inv-Load. We define utilization as the
request arrival rate observed by the replica divided by the maximum capacity of the
replica. In this graph, we do not distinguish among points of different replicas. We
see that throughout the simulation at any point in time, some replicas are severely
overutilized (over 250%) while others are lightly underutilized (around 25%).
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Figure 4.1: Replica Utilization versus Time for InvLoad with heterogeneous replicas.
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Figure 4.2: Percentage Overloaded Queries versus Replica ID for Inv-Load with heteroge-
neous replicas.

Figure 4.2 shows for each replica, the percentage of all received requests that arrive
while the replica is overloaded. This measurement gives a true picture of how well
a load-balancing algorithm works for each replica. In Figure 4.2, the replicas that
receive almost 100% of their requests while overloaded (i.e., replicas 0-6) are the low
and middle-end replicas. The replicas that receive almost no requests while overloaded
(i.e., replicas 7-9) are the high-end replicas. We see that Inv-Load penalizes the less
capable replicas while giving the high-end replicas an easy time.

Inv-Load is designed to perform well in a homogeneous environment. When ap-

plied in a heterogeneous environment such as a peer-to-peer network, it fails. As we
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will see in the next section Max-Cap is much better suited. Apart from showing that
Max-Cap has comparable load balancing capability with no overhead in a homoge-
neous environment (see Appendix), we do not consider Inv-Load in the remaining

experiments as our focus here is on heterogeneous environments.

4.4.2 Avail-Cap versus Max-Cap

In this set of experiments we examine the performance of Avail-Cap and compare it
with Max-Cap.

Poisson Request Arrivals

In Figures 4.3 and 4.4 we show the replica utilization versus time for an experiment
with ten replicas with a Poisson request arrival rate of 80% the total maximum
capacities of the replicas. For Avail-Cap, we use an inter-update period of one second.
For Max-Cap, this parameter is inapplicable since replica nodes do not send updates
unless they experience extraneous load (see Section 4.4.4). We see that Avail-Cap
consistently overloads some replicas while underloading others. In contrast, Max-
Cap tends to cluster replica utilization at around 80%. We ran this experiment with
a range of Poisson lambda rates and found similar results for rates that were 60-
100% the total maximum capacities of the replicas. Avail-Cap consistently overloads
some replicas while underloading others whereas Max-Cap clusters replica utilization
at around X% utilization, where X is the overall request rate divided by the total
maximum capacities of the replicas.

It turns out that in Avail-Cap, unlike Inv-Load, it is not the same replicas that
are consistently overloaded or underloaded throughout the experiment. Instead, from
one instant to the next, individual replicas oscillate between being overloaded and
severely underloaded.

We can see a sampling of this oscillation by looking at the utilizations of some
individual replicas over time. In Figures 4.5-4.10, we plot the utilization over a one
minute period in the experiment for a representative replica from each of the replica

classes (low, medium, and high maximum capacity). We also plot the ratio of the
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Figure 4.4: Replica Utilization v. Time for Max-Cap with heterogeneous replicas.

6 T
100% Utilization
Replica Utilization ~ +
5F ]
4t ]
c
2
=
.g 3F + . 4
= +
=
S . ++ +
2F e e . B N
L R ]
1 et e + - +
i e %;*;r** &, ;§+*+@ﬁ%;#+ pAY o+ E R *A}m +
1 ]
0 e

1000 1500
Time (seconds)

2000

o7

Utilization versus Time for Avail-Cap with heterogeneous replicas.

Utilization
w

100% Utilization

Replica Utilization ~ +

B o
+ v +

+ o+ + +
L L L L L

251

1.5

Utilization

0.5

1000 1500 2000
Time (seconds)

" Low Cap R‘eplica‘
RequestRate/SumMaxCaps
100% Utilization

o o)

kA

270 280 290 300 310 320 330
Time (seconds)

Figure 4.5: Low-end Replica Utilization versus Time for Avail-Cap, Poisson arrivals.
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Figure 4.6: Low-end Replica Utilization versus Time for Max-Cap, Poisson arrivals.
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Figure 4.7: Medium-end Replica Utilization versus Time for Avail-Cap, Poisson arrivals.

overall request rate to the total maximum capacities of the replicas and the line
y = 1 showing 100% utilization. We see that for all replica classes, Avail-Cap suffers
from significant oscillation when compared with Max-Cap which causes little or no
oscillation. This behavior occurs throughout the experiment.

Figures 4.11 and 4.12 show the percentage of requests that arrive at each replica
while the replica is overloaded for Avail-Cap and Max-Cap respectively. We see that
Max-Cap achieves much lower percentages than Avail-Cap.

We also see in Figure 4.12 that Max-Cap exhibits a step-like behavior where the
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Figure 4.8: Medium-end Replica Utilization versus Time for Max-Cap, Poisson arrivals.
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Figure 4.9: High-end Replica Utilization versus Time for Avail-Cap, Poisson arrivals.
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Figure 4.10: High-end Replica Utilization versus Time for Max-Cap, Poisson arrivals.



CHAPTER 4. PRACTICAL LOAD BALANCING IN P2P NETWORKS 60

% Queries Over
l L
- 08}
Q
e}
&
o
2 06t
(o]
1]
2
S 04t
(o4
X
0.2 -
0
0 2 4 6 8 10

Replica ID

Figure 4.11: Percentage Overloaded Queries versus Replica ID for Avail-Cap, with inter-
update period of 1 second.
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Figure 4.12: Percentage Overloaded Queries versus Replica ID for Max-Cap.



CHAPTER 4. PRACTICAL LOAD BALANCING IN P2P NETWORKS 61

11 ‘ % Querieé Over -

0.8 r

0.6 r

% Queries Overloaded

0 20 40 60 80 100
Replica ID

Figure 4.13: Percentage Overloaded Queries versus Replica ID for Max-Cap for ten exper-
iments.

low-capacity replica (replica 1) is overloaded for about 35% of its queries, the middle-
capacity replicas (replicas 0 and 2-6) are each overloaded for about 14% of their
queries, and the high-capacity replicas (replicas 7-9) are each overloaded for about
0.1% of their queries. To verify that this step effect is not a random coincidence, we
ran a series of experiments, with ten replicas per experiment, and Poisson arrivals of
80% the total maximum capacity, each time varying the seed fed to the simulator.
In Figure 4.13, we show the overloaded percentages for ten of these experiments. On
the x-axis we order replicas according to maximum capacity, with the low-capacity
replicas plotted first (replica IDs 1 through 10), followed by the middle-capacity
replicas (replica IDs 11-70), followed by the high-capacity replicas (replica IDs 71-
100). From the figure we see that the step behavior consistently occurs. This step
behavior occurs because the lower-capacity replicas have less tolerance for noise in
the random coin tosses the nodes perform while assigning requests. They also have
less tolerance for small fluctuations in the request rate. As a result, lower-capacity
replicas are overloaded more easily than higher-capacity replicas.

Figure 4.11 shows that Avail-Cap with an inter-update period of one second causes
much higher percentages than Max-Cap (more than twice as high for the medium
and high-end replicas). Avail-Cap also causes fairly even overloaded percentages at

around 40%. Again, to verify this evenness, in Figure 4.14, we show for a series of ten
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Figure 4.14: Percentage Overload Queries versus Replica ID for Avail-Cap with inter-
update period of 1 second, for ten experiments.

experiments, the percentage of requests that arrive at each replica while the replica
is overloaded. We see that Avail-Cap consistently achieves roughly even percentages
(at around 40%) across all replica types in contrast to the step effect observed by
Max-Cap. This can be explained by looking at the oscillations observed by replicas
in Figures 4.5-4.10. In Avail-Cap, each replica is overloaded for roughly the same
amount of time regardless of whether it is a low, medium or high-capacity replica.
This means that while each replica is getting the correct proportion of requests, it is
receiving them at the wrong time and as a result all the replicas experience roughly the
same overloaded percentages. In Max-Cap, we see that replicas with lower maximum
capacity are overloaded for more time that higher-capacity replicas. Consequently,
higher-capacity replicas tend to have smaller overload percentages than lower-capacity
replicas.

The performance of Avail-Cap is highly dependent on the inter-update period
used. We find that as we increase the period and available capacity updates grow
more stale, the performance of Avail-Cap suffers more. As an example, in Figure 4.15,
we show the overloaded query percentages in the same series of ten experiments for
Avail-Cap with a period of ten seconds. The overloaded percentages jump up to
about 80% across the replicas.

In a peer-to-peer environment, we argue that Max-Cap is a more practical choice
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Figure 4.15: Percentage Overload Queries versus Replica ID for Avail-Cap with inter-
update period of 10 seconds, for ten experiments.

than Avail-Cap. First, Max-Cap typically incurs no overhead. Second, Max-Cap can
handle workload rates that are below 100% the total maximum capacities and can
handle small fluctuations in the workload as are typical in Poisson arrivals.

A question remaining is how do Avail-Cap and Max-Cap compare when workload
rates fluctuate beyond the total maximum capacities of the replicas? Such a scenario
can occur for example when requests are bursty, as when inter-request arrival times

follow a Pareto distribution. We examine Pareto arrivals next.

Pareto Request Arrivals

Recent work has observed that in some peer-to-peer networks, request inter-arrivals
exhibit burstiness on several time scales [39], making the Pareto distribution a good
candidate for modeling these inter-arrival times.

The Pareto distribution has two parameters associated with it: the shape param-
eter > 0 and the scale parameter x > 0. The cumulative distribution function of
inter-arrival time durations is F'(z) = 1 — ((min))a. This distribution is heavy-tailed

with unbounded variance when o < 2. For o > 1, the average number of query ar-

rivals per time unit is equal to @ For @ <=1, the expectation of an inter-arrival

duration is unbounded and therefore the average number of query arrivals per time

unit is 0.
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Figure 4.16: Low-capacity Replica Utilization versus Time for Avail-Cap, Pareto arrivals.

Typically, Pareto request arrivals are characterized by frequent and intense bursts
of requests followed by idle periods of varying lengths. During the bursts, the average
request arrival rate can be many times the total maximum capacities of the replicas.
We present a representative experiment in which « and k are 1.1 and 0.000346 re-
spectively. These particular settings cause bursts of up to 230% the total maximum
capacities of the replicas. With such intense bursts, no load-balancing algorithm can
be expected to keep replicas underloaded. Instead the best an algorithm can do is to
have the oscillation observed by each replica’s utilization match the oscillation of the
ratio of overall request rate to total maximum capacities.

In Figures 4.16-4.21 we plot the same representative replica utilizations over a
one minute period in the experiment. We also plot the ratio of the overall request
rate to the total maximum capacities as well as the y = 100% utilization line. From
the figures we see that Avail-Cap suffers from much wilder oscillation than Max-
Cap, causing much higher peaks and lower valleys in replica utilization than Max-
Cap. Moreover, Max-Cap adjusts better to the fluctuations in the request rate; the
utilization curves for Max-Cap tend to follow the ratio curve more closely than those
for Avail-Cap.

(Note that idle periods contribute to the drops in utilization of replicas in this
experiment. For example, an idle period occurs between times 324 and 332 at which

point we see a decrease in both the ratio and the replica utilization.)
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Figure 4.17: Low-capacity Replica Utilization versus Time for Max-Cap, Pareto arrivals.
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Figure 4.18: Medium-capacity Replica Utilization versus Time for Avail-Cap, Pareto ar-
rivals.
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Figure 4.19: Medium-capacity Replica Utilization versus Time for Max-Cap, Pareto ar-

rivals.
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Figure 4.20: High-capacity Replica Utilization versus Time for Avail-Cap, Pareto arrivals.
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Figure 4.21: High-capacity Replica Utilization versus Time for Max-Cap, Pareto arrivals.

Why Avail-Cap Can Suffer

From the experiments above we see that Avail-Cap can suffer from severe oscillation
even when the overall request rate is well below (e.g., 80%) the total maximum
capacities of the replicas. The reason why Avail-Cap does not balance load well here
is that a vicious cycle is created where the available capacity update of one replica
affects a subsequent update of another replica. This in turn affects later allocation
decisions made by nodes which in turn affects later replica updates. This description
becomes more concrete if we consider what happens when a replica is overloaded.

In Avail-Cap, if a replica becomes overloaded, it reports an available capacity of
zero. This report eventually reaches all peer nodes, causing them to stop redirecting
requests to the replica. The exclusion of the overloaded replica from the allocation
decision shifts the entire burden of the workload to the other replicas. This can cause
other replicas to overload and report zero available capacity while the excluded replica
experiences a sharp decrease in its utilization. This sharp decrease causes the replica
to begin reporting positive available capacity which begins to attract requests again.
Since in the meantime other replicas have become overloaded and excluded from the
allocation decision, the replica receives a flock of requests which cause it to become
overloaded again. As we observed in previous sections, a replica can experience wild
and periodic oscillation where its utilization continuously rises above its maximum

capacity and falls sharply.
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In Max-Cap, if a replica becomes overloaded, the overload condition is confined
to that replica. The same is true in the case of underloaded replicas. Since the
overload /underload situations of the replicas are not reported, they do not influence
follow-up LBI updates of other replicas. It is this key property that allows Max-Cap
to avoid herd behavior.

There are situations however where Avail-Cap performs well without suffering
from oscillation (see Section 4.4.3). We next describe the factors that affect the
performance of Avail-Cap to get a clearer picture of when the reactive nature of

Avail-Cap is beneficial (or at least not harmful) and when it causes oscillation.

Factors Affecting Avail-Cap

There are four factors that affect the performance of Avail-Cap: the inter-update
period U, the inter-request period R, the amount of time 7T it takes for all nodes in
the network to receive the latest update from a replica, and the ratio of the overall
request rate to the total maximum capacities of the replicas. We examine these factors
by considering three cases:

Case 1: U is much smaller than R (U << R), and T is sufficiently small so that
when a replica pushes an update, all nodes in the CUP tree receive the update before
the next request arrival in the network. In this case, Avail-Cap performs well since
all nodes have the latest load-balancing information whenever they receive a request.

Case 2: U is long relative to R (U > R) and the overall request rate is less
than about 60% the total maximum capacities of the replicas. (This 60% threshold is
specific to the particular configuration of replicas we use: 10% low, 60% medium, 30%
high. Other configurations have different threshold percentages that are typically well
below the total maximum capacities of the replicas.) In this case, when a particular
replica overloads, the remaining replicas are able to cover the proportion of requests
intended for the overloaded replica because there is a lot of extra capacity in the
system. As a result, Avail-Cap avoids oscillations. We see experimental evidence for
this in Section 4.4.3. However, over-provisioning to have enough extra capacity in the
system so that Avail-Cap can avoid oscillation in this particular case seems a high

price to pay for load stability.
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Case 3: U is long relative to R (U > R) and the overall request rate is more than
about 60% the total maximum capacities of the replicas. In this case, as we observe
in the experiments above, Avail-Cap can suffer from oscillation. This is because every
request that arrives directly affects the available capacity of one of the replicas. Since
the request rate is greater than the update rate, an update becomes stale shortly
after a replica has pushed it out. However, the replica does not inform the nodes of
its changing available capacity until the end of its current update period. By that
point many requests have arrived and have been allocated using the previous, stale
available capacity information.

In Case 3, Avail-Cap can suffer even if T = 0 and updates were to arrive at all
nodes immediately after being issued. This is because all nodes would simultaneously
exclude an overloaded replica from the allocation decision until the next update is
issued. As T increases, the staleness of the report only exacerbates the performance
of Avail-Cap.

In a large peer-to-peer network (more than 1000 nodes) we expect that 7 will
be on the order of seconds since current peer-to-peer networks with more than 1000
nodes have diameters ranging from a handful to several hops [46]. We consider U = 1
second to be as small (and aggressive) an inter-update period as is practical in a peer-
to-peer network. In fact even one second may be too aggressive due to the overhead
it generates. This means that when particular content experiences high popularity,
we expect that typically U +T >> R. Under such circumstances Avail-Cap is not a
good load-balancing choice. For less popular content, where U + T < R, Avail-Cap
is a feasible choice, although it is unclear whether load-balancing across the replicas
is as urgent here, since the request rate is low.

The performance of Max-Cap is independent of the values of U, R, and T. More
importantly, Max-Cap does not require continuous updates; replicas issue updates
only if they choose to re-issue new contracts to report changes in their maximum
capacities. (See Section 4.4.4). Therefore, we believe that Max-Cap is a more

practical choice in a peer-to-peer context than Avail-Cap.
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4.4.3 Dynamic Replica Set

A key characteristic of peer-to-peer networks is that they are subject to constant
change; peer nodes continuously enter and leave the system. In this experiment we
compare Max-Cap with Avail-Cap when replicas enter and leave the system. We
present results here for a Poisson request arrival rate that is 80% the total maximum
capacities of the replicas.

We present two dynamic experiments. In both experiments, the network starts
with ten replicas and after a period of 600 seconds, movement into and out of the
network begins. In the first experiment, one replica leaves and one replica enters the
network every 60 seconds. In the second and much more dynamic experiment, five
replicas leave and five replicas enter the network every 60 time units. The replicas that
leave are randomly chosen. The replicas that enter the network enter with maximum
capacities of 1, 10, and 100 with probability of 0.10, 0.60, and 0.30 respectively as
in the initial allocation. This means that the total maximum capacities of the active
replicas in the network varies throughout the experiment, depending on the capacities
of the entering replicas.

Figures 4.22 and 4.23 show for the first dynamic experiment the utilization of
active replicas throughout time as observed for Avail-Cap and Max-Cap. Note that
points with zero utilization indicate newly entering replicas. The jagged line plots the
ratio of the current sum of maximum capacities in the network, S, to the original
sum of maximum capacities, Sorg. With each change in the replica set, the replica
utilizations for both Avail-Cap and Max-Cap change. Replica utilizations rise when
Seurr Talls and vice versa.

From the figure we see that between times 1000 and 1820, S, is between 1.75
and 2 times Syi4, and is more than double the overall workload rate of 0.8 x S,,.
During this time period, Avail-Cap performs quite well because the workload rate
is not very demanding and there is plenty of extra capacity in the system (Case
2 above). However, when at time 1940 S, falls back to Syrg, Wwe see that both
algorithms exhibit the same behavior as they do at the start, between times 0 and
600. Max-Cap readjusts nicely and clusters replica utilization at around 80%, while

Avail-Cap starts to suffer again.
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Figure 4.22: Replica Utilization versus Time for Avail-Cap with a dynamic replica set.
One replica enters and leaves every 60 seconds.
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Figure 4.23: Replica Utilization versus Time for Max-Cap with a dynamic replica set. One
replica enters and leaves every 60 seconds.
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Figure 4.24: Percentage Overloaded Queries versus Replica ID for Avail-Cap with a dy-
namic replica set. One replica enters and leaves every 60 seconds.

Figures 4.24 and 4.25 show for the first dynamic experiment the percentage of
queries that were received by each replica while the replica was overloaded for Avail-
Cap and Max-Cap. Replicas that entered and departed the network throughout the
simulation were chosen from a pool of 50 replicas. Those replicas in the pool which
did not participate in this experiment do not have a bar associated with their ID in
the figure. From the figure, we see that Max-Cap achieves smaller overload query
percentages across all replica IDs.

Figures 4.26 and 4.27 show the utilization scatterplot and Figures 4.28 and 4.29
show the overloaded query percentage for the second dynamic experiment. We see
that changing half the replicas every 60 seconds can dramatically affect S.y... For
example, when Sg,, drops to 0.25,.;, at time 2161, we see the utilizations rise dra-
matically for both Avail-Cap and Max-Cap. This is because during this period the
workload rate is four times that of S.,... However by time 2401, S, has risen to
1.2S5,ri¢ which allows for both Avail-Cap and Max-Cap to adjust and decrease the
replica utilization. At the next replica set change at time 2461, S.., equals Sopig-
During the next minute we see that Max-Cap overloads very few replicas whereas
Avail-Cap does not recuperate as well. Similarly, when examining the overloaded
query percentage we see that Max-Cap achieves smaller percentages when compared
with Avail-Cap.
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Figure 4.25: Percentage Overloaded Queries versus Replica ID for Max-Cap with a dynamic
replica set. One replica enters and leaves every 60 seconds.

The two dynamic experiments we have described above show two things; first,
when the workload is not very demanding and there is unused capacity, the behaviors
of Avail-Cap and Max-Cap are similar However, Avail-Cap suffers more as overall
available capacity decreases. Second, Avail-Cap is affected more by short-lived fluc-
tuations (in particular, decreases) in total maximum capacity than Max-Cap. This
is because the reactive nature of Avail-Cap causes it to adapt abruptly to changes in

capacities, even when these changes are short-lived.

4.4.4 Extraneous Load

When replicas can honor their maximum capacities, Max-Cap avoids the oscillation
that Avail-Cap can suffer, and does so with no update overhead. Occasionally, some
replicas may not be able to honor their maximum capacities because of extraneous load
caused by other applications running on the replicas or network conditions unrelated
to the content request workload.

To deal with the possibility of extraneous load, we modify the Max-Cap algorithm
slightly to work with honored maximum capacities. A replica’s honored maximum
capacity is its maximum capacity minus the extraneous load it is experiencing. The
algorithm changes slightly; a peer node chooses a replica to which to forward a content

request with probability proportional to the honored maximum capacity advertised by
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Figure 4.26: Replica Utilization versus Time for Avail-Cap with a dynamic replica set.
Half the replicas enter and leave every 60 seconds.

the replica. This means that replicas may choose to send updates to indicate changes
in their honored maximum capacities. However, as we will show, the behavior of
Max-Cap is not tied to the timeliness of updates in the way Avail-Cap is.

We view the honored maximum capacity reported by a replica as a contract. If the
replica cannot adhere to the contract or has extra capacity to give, but does not report
the deficit or surplus, then that replica alone will be affected and may be overloaded
or underloaded since it will be receiving a request share that is proportional to its
previous advertised honored maximum capacity.

If, on the other hand, a replica chooses to issue a new contract with the new hon-
ored maximum capacity, then this new update can affect the load balancing decisions
of the nodes in the peer network and the workload could shift to the other replicas.
This shift in workload is quite different from that experienced by Avail-Cap when a
replica reports overload and is excluded. The contracts of any other replica will not
be affected by this workload shift. Instead, the contract is are solely affected by the
extraneous load that replica experiences which is independent of the extraneous load
experienced by the replica issuing the new contract. This is unlike Avail-Cap where
the available capacity reported by one replica directly affects the available capacities
of the others.

In this section we study the performance of Max-Cap in an experiment where
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Figure 4.27: Replica Utilization versus Time for Max-Cap with a dynamic replica set. Half
the replicas enter and leave every 60 seconds.
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Figure 4.28: Percentage Overloaded Queries versus Replica ID for Avail-Cap with a dy-
namic replica set. Half the replicas enter and leave every 60 seconds.
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Figure 4.29: Percentage Overloaded Queries versus Replica ID for Max-Cap with a dynamic
replica set. Half the replicas enter and leave every 60 seconds.

all replica nodes are continuously issuing new contracts. Specifically, for each of ten
replicas, we inject extraneous load into the replica once a second. The extraneous
load injected is randomly chosen to be anywhere between 0% and 50% of the replica’s
original maximum capacity. Figures 4.30 and 4.31 show the replica utilization versus
time and the overloaded query percentages for Max-Cap with an inter-update pe-
riod of 1 second. The jagged line in Figure 4.30 shows the total honored maximum
capacities over time. Since throughout the experiment each replica’s honored maxi-
mum capacity varies between 50% and 100% its original maximum capacity, the total
maximum capacity is expected to hover at around 75% the original total maximum
capacity and we see that the jagged line hovers around this value. We therefore gen-
erate Poisson request arrivals with an average rate that is 80% of this value to keep
consistent with our running example of 80% workload rates.

From the figures, we see that Max-Cap continues to cluster replica utilization
at around 80%, but there are more overloaded replicas throughout time than when
compared with the experiment in which all replicas adhere to their contracts all the
time (Figure 4.4). We also see that the overloaded percentages are higher than before
(Figure 4.12). The reason for this performance degradation is that the randomly
injected load (of 0% to 50%) can cause sharp rises and falls in the reported contract

of each replica from one second to the next. Since the change is so rapid, and updates
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Figure 4.30: Replication Utilization versus Time for Max-Cap with extraneous load and
an inter-update period of one second.
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Figure 4.31: Percentage Overloaded Queries versus Replica ID, Max-Cap with extraneous
load and an inter-update period of one second.
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Figure 4.32: Replication Utilization versus Time for Max-Cap with extraneous load and
an inter-update period of ten seconds.

take on the order of seconds to reach all allocating nodes, allocation decisions are
continuously being made using stale information.

In the next experiment we use the same parameters as above but we change
the update period to 10 seconds. Figures 4.32 and 4.33 show the utilization and
overloaded percentages for this experiment. We see that the overloaded percentages
increase only slightly while the overhead of pushing the updates decreases by a factor
of ten. In contrast, when we perform the same experiment for Avail-Cap, we find that
the overloaded query percentages for Avail-Cap increase from about 55 to more than
80% across all the replicas when the inter-update period changes from 1 to 10 seconds.
However, this performance degradation is not so much due to the fluctuation of the
extraneous load as it is due to Avail-Cap’s tendency to oscillate when the request
rate is greater than the update rate.

We purposely choose this scenario to test how Max-Cap performs under widely
fluctuating extraneous load on every replica. We generally expect that extraneous
load will not fluctuate so wildly, nor will all replicas issue new contracts every second.
Moreover, we expect the inter-update period to be on the order of several seconds or
even minutes, which further reduces overhead.

We can view the effect of extraneous load on the performance of Max-Cap as

similar to that seen in the dynamic replica experiments. When a replica advertises
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Figure 4.33: Percentage Overloaded Queries versus Replica ID for Max-Cap with extrane-
ous load and an inter-update period of ten seconds.

a new honored maximum capacity, it is as if that replica were leaving and being

replaced by a new replica with a different maximum capacity.

4.5 Summary

In this chapter we examine the problem of load-balancing in a peer-to-peer network
where the goal is to distribute the demand for a particular content fairly across the set
of replica nodes that serve that content. Existing load-balancing algorithms proposed
in the distributed systems literature are not appropriate for a peer-to-peer network.
We find that load-based algorithms do not handle the heterogeneity that is typical
in a peer-to-peer network. We also find that algorithms based on available capacity
reports can suffer from load oscillations even when the workload rate is as low as 60%
of the total maximum capacities of replicas.

We propose and evaluate Max-Cap, a practical algorithm for load-balancing. Max-
Cap handles heterogeneity, yet does not suffer from oscillations when the workload
rate is within 100% of the total maximum capacities of the replicas, adjusts better
to very large fluctuations in the workload and constantly changing replica sets, and
incurs less overhead than algorithms based on available capacity since its reports are

affected only by extraneous load on the replicas. We believe this makes Max-Cap a
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practical and elegant algorithm to apply in peer-to-peer networks.



Chapter 5
Conclusions

With the ever-increasing proliferation of Internet-connected hosts, the concept of
peer-to-peer networks has emerged as a popular technology paradigm. Peer-to-peer
networks allow users to perform useful computation or share content by exploiting
the aggregate processing power and storage capabilities of widely-distributed hosts
that live at the edge of the network. In particular, content distribution is a dominant
application taking advantage of such networks.

A fundamental problem in supporting content distribution over a peer-to-peer
network is that of locating content. Most peer-to-peer networks push index entries in
response to a content search query. These index entries point to replica nodes in the
network that serve the content of interest.

This thesis tackles two basic problems that arise from the content location prob-
lem. First, how can we improve upon the time it takes to resolve a search query
once the location algorithm has been set? Second, how do we choose from amongst
the index entries returned by a search query such that the demand for content is
distributed fairly across the set of replica nodes serving the content?

To address the first problem, we develop CUP, a protocol for Controlled Update
Propagation that maintains caches of index entries in peer-to-peer networks. CUP
query channels coalesce bursts of queries for the same item, resulting in significant
network traffic savings. CUP update channels asynchronously transport query re-

sponses and refresh intermediate caches. A key advantage of CUP is that it allows
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nodes to decide individually when to receive and when to propagate updates. To this
end, we present a cost model based on the notion that a node has economic incen-
tive to receive an update that is “justified”. Using this cost model, we develop and
compare two kinds of propagation cut-off policies used by nodes to determine when
to stop receiving updates.

Through extensive experiments, we compare CUP against path caching with expi-
ration using typical workloads that have been observed in measurements of real peer-
to-peer networks. We demonstrate that through light book-keeping and incentive-
based propagation cut-off policies, CUP controls and confines propagation to up-
dates that are likely to be justified. We show that CUP greatly reduces average
search query latency over path caching with expiration by as much as an order of
magnitude. Moreover, we show that CUP overhead is typically many times compen-
sated for by its savings in cache misses. The cost of saved misses can be two to 200
times the cost of updates pushed.

To address the second problem, we leverage CUP to study the problem of fairly
balancing the demand for content across the replica nodes serving the content. Load-
balancing is a problem that has been widely studied in the distributed systems lit-
erature. We argue that in the peer-to-peer context, this problem is unique for three
reasons: 1) the allocation decision is completely decentralized with each peer node
in the network making its own individual decisions, 2) peer-to-peer networks scale to
very large sizes with thousands of nodes, precluding global coordination amongst the
nodes as they make their allocation decisions, and 3) content replica nodes tend to
be heterogeneous.

We show that previous load-balancing algorithms proposed in the distributed sys-
tems literature do not work well in the peer-to-peer network. In particular, we show
that algorithms where the allocation decision is based on load do not handle the het-
erogeneity of content replica nodes. We also show that algorithms based on available
capacity do handle heterogeneity, but can suffer from load oscillations as the workload
rate approaches the total maximum capacities of replicas.

To overcome these problems, we propose and evaluate Max-Cap, an algorithm

based on maximum capacities. We argue that Max-Cap is a practical load-balancing
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algorithm for a peer-to-peer network because it does not require frequent and timely
updates carrying load-balancing information as previous algorithms do. We demon-
strate the benefits of Max-Cap by comparing it against algorithms based on load and
available capacity. We show that Max-Cap handles heterogeneity, yet does not suffer
from oscillations when the workload rate is within 100 percent the total maximum
capacities of the replicas. Finally we show that Max-Cap adjusts better to constantly

changing replica sets and incurs less overhead than previous algorithms.

5.1 Future Work

There are several directions in which to expand this work. First, since CUP is not
tied to any particular search algorithm and can be applied in both structured and
unstructured networks, the most obvious direction would be to perform an extensive
study of CUP over unstructured networks such as Gnutella [3]. The difference is
that in an unstructured network, there is no single authority node per content item
that holds the set of index entries pointing to the replica nodes that serve that item.
Queries typically travel haphazardly or via random walks until they reach a replica
node that serves the content of interest. The replica node responds with an index
entry pointing to itself. This index entry travels along the reverse query path to
the querying node. This means that a node issuing a search query may receive a
set of index entries from more than one neighbor, each index entry having traversed
the reverse query path from a content replica node to the issuing node. A node can
therefore partake in several CUP trees per content item, each rooted at a replica node
serving the content item.

Applying CUP in an unstructured network requires some additional bookkeeping.
The issuing node needs to detect when it receives duplicate updates for the same index
entry from two different neighbors so it can choose to cut-off its intake of updates
from one of them. In essence, this is an extension to the detection mechanism already
built into unstructured search protocols to detect duplicate query responses. Rather
than dropping responses (as currently done), a node would push a clear-bit message

to one of its neighbors (parents) to prevent wasting future bandwidth with redundant
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updates. Also, different incentive-based propagation cut-off policies would need to be
explored since a node might be participating in multiple trees per content item.

Second, a natural extension to our load-balancing work would be to use CUP to
support techniques for dynamic content replication and removal. This is particularly
useful when the demand for a content item exceeds the total maximum capacities of
the current set of replicas that serve that item. This would happen in the case of a
flash crowd. In such a scenario, we can compare different techniques for creating new
content replicas (e.g., as in [56]), and leverage CUP to propagate updates carrying
index entries for new content replicas in the network quickly. Similarly, when the
demand for a particular content item dies down and content replicas are removed,
CUP can notify interested nodes as well.

Finally, we believe that CUP provides a general purpose framework for maintain-
ing metadata (besides index entries) in peer-to-peer networks. We demonstrate an
application of this in Chapter 4 where we leverage CUP to deliver metadata required
for load-balancing of content demand across the replica nodes. We could leverage
CUP to transport other kinds of metadata such as price information to enhance ser-

vice negotiation between peer nodes.



Appendix A

Inv-Load and Max-Cap in a

Homogenous Context

It should not surprise the reader that Inv-Load does not handle heterogeneity since
the same load at one replica may have a different effect on another with a differ-
ent maximum capacity. However, surprisingly it turns out that when replicas are
homogenous, the performance of Inv-Load and Max-Cap are comparable.

In this set of experiments, there are ten replicas, each of whose maximum capacity
we set at 10 requests per second for a total maximum capacity of 100 requests per
second. Queries are generated according to a Poisson process with a lambda rate that
is 80 percent the total maximum capacities of the replicas.

Figures A.1 and A.2 show a scatterplot of how the utilization of each replica
proceeds with time when using Inv-Load with a refresh period of one time unit and
Max-Cap respectively. Inv-Load and Max-Cap have similar scatterplots.

Figures A.3 and A.4 show for each replica, the percentage of queries that arrived
at the replica while the replica was overloaded. Again, we see that Inv-Load and
Max-Cap have comparable performance.

The difference is that Inv-Load incurs the extra overhead of 1 load report per
replica per second. In a CUP tree of 100 nodes this translates to 1000 updates per
second being pushed down the CUP tree. In a tree of 1000 nodes this translates to
10000 update per second being pushed. Thus, the larger the CUP tree, the larger the
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Figure A.1: Replica Utilization versus Time for Inv-Load with an inter-update period of
one second and homogenous replicas.

overall network overhead. The overhead incurred by Inv-Load could be reduced by
increasing the period between two consecutive reports at each replica. Increasing the
period results in staler load reports. We find that when experimenting with a range
of periods (one to sixty seconds), we confirm earlier studies [43] that have found that
as load information becomes more stale with increasing periods, the performance of
load-based balancing algorithms decreases.

We ran experiments with Pareto(a, ) query interarrivals with a wide range of
a and k values (the Pareto distribution shape and scale parameters) and found that
with homogeneous replicas, Inv-Load with a period of one and Max-Cap continue to
be comparable. However, Max-Cap is preferable in these cases because it incurs no

overhead.
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Figure A.2: Replica Utilization versus Time for Max-Cap with homogenous replicas.
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Figure A.3: Percentage Overload Queries versus Replica ID for Inv-Load with an inter-
update period of one second and homogenous replicas.
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Figure A.4: Percentage Overload Queries versus Replica ID for Max-Cap with homogenous
replicas.
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