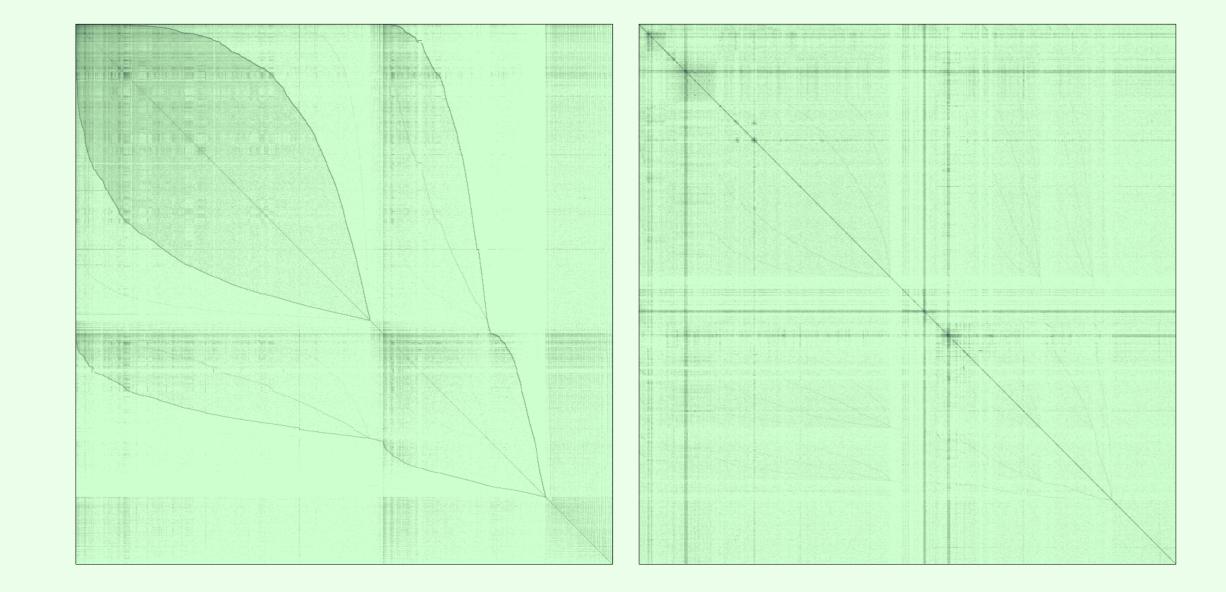


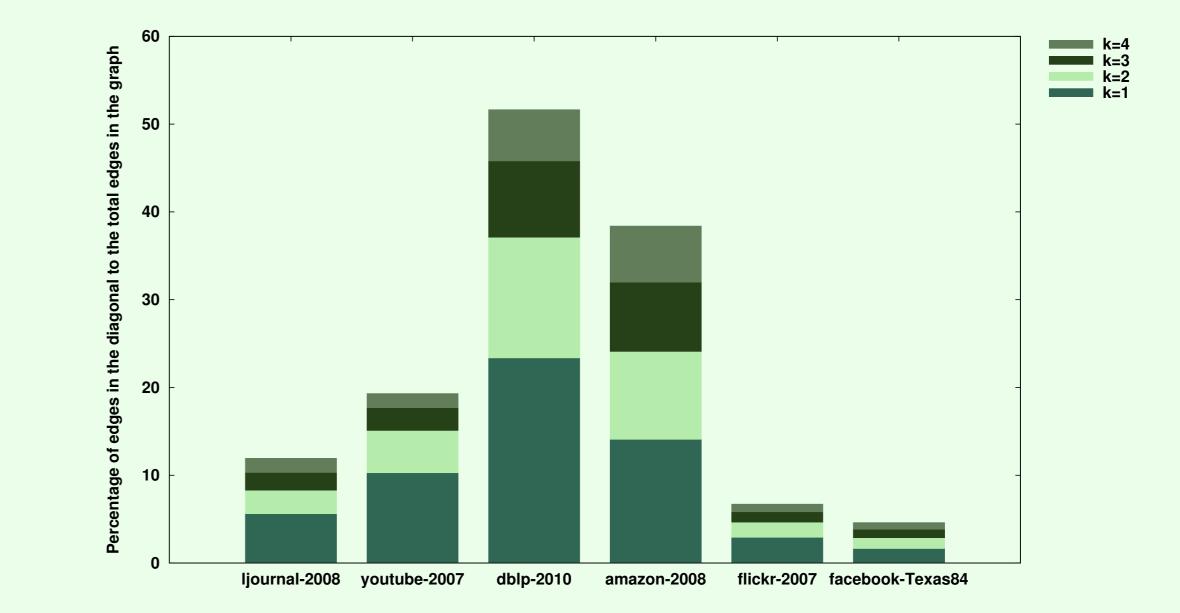
On the Effect of Locality in Compressing Social Networks Panagiotis Liakos¹ - Katia Papakonstantinopoulou¹ - Michael Sioutis²

¹ University of Athens, Greece Université Lille-Nord de France, Lens, CRIL

OVERVIEW

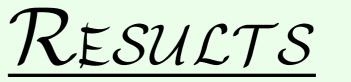

We *compress social network graphs* by exploiting the *locality* property, according to which adjacent nodes have labels that are close to each other, and build upon the state-of-the-art implementation of Boldi et al.

We achieve a *greater compression rate* and show that there is still room for future exploitation. Our approach also *improves overall speed* since it allows accessing a significant amount of edges in constant time.

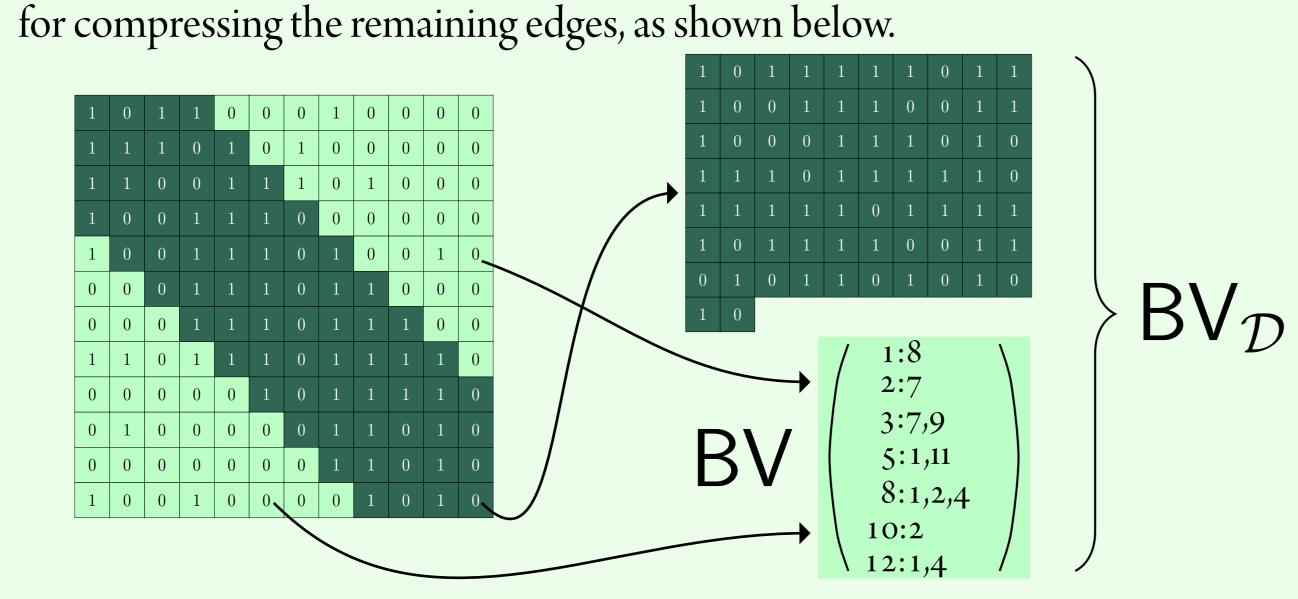

Université Lille-Nord

de France

OUR OBSERVATIONS



In a social network graph, the *concentration* of edges around the main diagonal of its adjacency matrix can *increase* after applying on it a *reordering algorithm*, e.g., the LLP algorithm of Boldi et al. The adjacency matrix of a graph from the youtube social network is illustrated above, before and after reordering its nodes.



In the graphs we examined experimentally, a large number of edges tends to be in the diagonal stripe, meeting our expectations regarding the locality property. This trend for $k \in \{1, 2, 3, 4\}$ is illustrated here for a number of well-studied social network graphs.

OUR APPROACH

We call the dense area around the main diagonal of the adjacency matrix of a graph the *diagonal stripe*: Let $k \in \mathbb{Z}_+$; an edge (i, j) is in the *k*-diagonal stripe, iff $i - k \le j \le i + k$. An example of a 3-diagonal stripe is illustrated below on the left. **Our contribution**: We propose a hybrid method, BV_D , which uses a bit vector to represent the diagonal stripe and resorts to the method of Boldi et al. (BV)

- Advantages of our approach:
- It results into a more compact representation.
- Our mapping allows the retrieval of the edges of the diagonal stripe in constant

We used a dataset of six social network graphs to test our approach. A comparison of our proposed method $\mathsf{BV}_{\mathcal{D}}$ for the optimum k with the BV method is outlined in the table below. Comments:

• Largest improvement (10%) was achieved for dblp-2010, which has the densest diagonal stripe in our dataset.

For the rest of the graphs, BV_D managed to surpass BV, even in cases where the percentage of edges in their diagonal stripes is relatively small!
Achieving a good compression ratio with BV_D depends heavily on choosing an appropriate k. The most appropriate value can only be known a posteriori.

10% improvement over dblp-2010!

	graph	# nodes	# edges	k	% of edges	com	npression	
A. A.					in diagonal	ratio	(bits/edge)	
						BV	$BV_{\mathcal{D}}$	
No.	ljournal-2008	5, 363, 260	79, 023, 142	1	5.62%	11.84	11.80	
	youtube-2007	1, 138, 499	5, 980, 886	2	15.10%	14.18	13.79	
	dblp-2010	326, 186	1, 615, 400	2	37.12%	8.63	7.76	
14 A	amazon-2008	735, 323	5, 158, 388	5	43.56%	10.77	10.56	
AL ON A	flickr-2007	1, 715, 255	31, 110, 082	2	4.66%	9.81	9.76	
ALC: NO	facebook-Texas84	36, 371	3, 181, 310	3	3.84%	8.82	8.80	

time and thus can only decrease the overall query time on the compressed graph's elements, compared with the query time of BV alone.

• The computational complexity is the same as in BV.

FUTURE DIRECTIONS - CONTACT

We continue with *optimizing the representation* of the diagonal stripe in order to further *decrease the total compression ratio* by using an entropy encoding algorithm, without introducing a significant access time overhead [LPS14, submitted], thus remaining faster than the state-of-the-art method.

Moreover, our intuition suggests that a rigorous study of graph reordering methods will lead to the identification of even *more attractive labellings* for our proposal. **Contact info:** http://hive.di.uoa.gr/network-analysis

