
Fratal Interpolation Surfaes. Theory andAppliations in Image Compression.Pantelis Bouboulis⋆National and Kapodistrian University of AthensDepartment of Informatis and Teleommuniationsmaaddi�otenet.grAbstrat. In this dissertation, the problem of the onstrution of Fra-tal Interpolation Surfaes and their appliation in image ompressionis studied. We give exat onditions, so that this onstrution is validand we introdue some free parameters that make our model as �exibleas possible. In addition, we ompute the box-ounting dimension of aFratal Interpolation Surfae. Finally, we give a new image ompressionalgorithm, based on fratal interpolation that di�ers from other fratalompression tehniques.1 IntrodutionFratal theory has been drawing onsiderable attention of researhers in varioussienti� areas. The appliation of fratals reated by iterated funtion systems(IFSs) in the area of image ompression is probably the most known one. Appli-ations of fratal surfaes have been also found in omputer graphis, metallurgy,geology, hemistry, medial sienes and several other areas where there is greatneed to onstrut extremely ompliated objets; see for example [10℄, [14℄.Mazel and Hayes (see [12℄) use Fratal Interpolation Funtions (FIFs) (in-trodued by Barnsley in [1℄) to approximate disrete sequenes of data (likeone-dimensional signals). They demonstrated the e�etiveness of their methodby modelling seismi and eletroardiogram data. Reently, Navasues and Se-bastian (in [13℄) gave a generalisation of Hermite funtions using FIFs.Fratal Interpolation Surfaes (FISs) were used to approximate surfaes ofroks, metals, terrains, planets and to ompress images. Self-a�ne FISs were�rst introdued in [11℄ in the ase where the domains are triangular and theinterpolation points on the boundary of the domain are oplanar. A few yearslater Geronimo and Hardin [8℄ generalised the onstrution of Massopust to allowfor more general boundary data and domains.Some problems in the onstrution by [11℄ remained unsolved, amongst whihwas the lak of free ontrativity fators, whih are neessary in modelling om-pliated surfaes. A general onstrutive method of generating a�ne FISs ispresented in [17℄. Xie and Sun in [15℄ and Xie, Sun, Ju, Feng in [16℄ presented aonstrution of a ompat set that ontains the interpolation points de�ned in
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a retangular domain. A speial onstrution of bivariate FIS (BFIS) is given in[9℄. Dalla [7℄ gives some onditions in suh a way that the bivariate IFS gives aFIS.In this dissertation we introdue reurrent BFISs as a generalisation of theaforementioned methods in order to gain more �exibility in natural-shape gen-eration or in image ompression. The main advantage of this new lass of FIS isthat they are neither self-a�ne nor self-similar in ontrast to all the previouslymentioned onstrutions. Our method is used for image reonstrution and o�ersthe advantage of a more �exible fratal modelling ompared to previous frataltehniques (based on a�ne transformations). Finally we introdue losed fratalinterpolation surfaes and vetor valued fratal interpolation surfaes that o�ereven more free modelling parameters.2 Main Results2.1 Fratal Interpolation SurfaesWe onsider the metri spae X = [0, 1] × [0, p] × R. Let ∆ = {(xi, yj , zij) :
i = 0, 1, . . . , N ; j = 0, 1, . . . ,M} be an interpolating set with (N + 1) · (M + 1)interpolation points, suh that 0 = x0 < x1 < · · · < xN = 1 and 0 = y0 <
y1 < · · · < yM = p. Furthermore let Q = {(x̂k, ŷl, ẑkl) : k = 0, 1, . . . ,K; l =
0, 1, . . . , L} be a set with (K+1) · (L+1) points with Q ⊂ ∆ (Q 6= ∆), suh that
0 = x̂0 < x̂1 < · · · < x̂K = 1 and 0 = ŷ0 < ŷ1 < · · · < ŷL = p. The interpolationpoints divide [0, 1] × [0, p] into N ·M retangles Iij = [xi−1, xi] × [yj−1, yj ], i =
1, . . . , N and j = 1, . . . ,M , whih we all setions, while the points of Q divide
[0, 1] × [0, p] to K · L retangles Jkl = [x̂k−1, x̂k] × [ŷl−1, ŷl], k = 1, . . . ,K and
l = 1, . . . , L whih we simply all intervals. It is evident that for every interval
Jkl there are some setions lying inside.De�ne a labelling map J : {1, 2, . . . , N} × {1, 2, . . . ,M} → {1, 2, . . . ,K} ×
{1, 2, . . . , L} with J(i, j) = (k, l), suh that x̂k − x̂k−1 > xi − xi−1 and ŷl −
ŷl−1 > yj − yj−1 for i = 1, 2, . . . , N , j = 1, 2, . . . ,M and ontrative mappings
wij : X → X satisfying
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for i = 1, . . . , N and j = 1, . . . ,M . The wij map the verties of the interval Jkl =
JJ(i,j) to the verties of the setion Iij . Finally, let Φ : {1, . . . , N}×{1, . . . ,M} →
{1, . . . , N · M} be a 1-1 funtion (i.e. an enumeration of the set {(i, j) : i =
1, . . . , N ; j = 1, . . . ,M}).A reurrent iterated funtion system (RIFS) assoiated with the set of data
∆ onsists of the IFS {X;wi,j , i = 1, 2, . . . , N ; j = 1, 2, . . . ,M} (or, somewhat



more brie�y, as {X;w1−N,1−M}) together with a row-stohasti matrix (pnm ∈
[0, 1] : n,m ∈ {Φ(i, j), i = 1, . . . , N ; j = 1, . . . ,M}), suh that

N ·M
∑

m=1

pnm = 1, n = 1, . . . , N ·M. (2)The reurrent struture is given by the onnetion matrix C = (Cnm), de�nedby
Cnm =

{

1, if pmn > 0
0, if pmn = 0,for n,m = 1, 2, . . . , N ·M . The transition probability for a ertain disrete timeMarkov proess is pnm, whih gives the probability of transfer into state m giventhat the proess is in state n. Equation (2) says that whihever state the systemis in (say n), a set of probabilities is available that sum to 1, and they desribethe possible states to whih the system transits at the next step.We study the speial ase where wij are transformations of the form
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 . (3)From Eq. (3) eight linear equations arise whih an always be solved for aij , bij ,
cij , dij , gij , eij , fij , kij in terms of the oordinates of the interpolation pointsand the vertial saling (or ontrativity) fator sij (see [7℄, [15℄).If the vertial saling fators obey |sij | < 1, then there is a metri d on Xequivalent to the Eulidean metri, suh that wij is a ontration with respetto d (i.e. ∃ŝij : 0 ≤ ŝij < 1 : d(wij(x̄), wij(ȳ)) ≤ ŝijd(x̄, ȳ), ∀x̄, ȳ ∈ X). Theorresponding RIFS is alled reurrent bivariate IFS (RBIFS).It has been proved in [2℄ that there is a �xed point (attrator) A of thisRBIFS. We also assume that pN, pK ∈ N, the setions (de�ned by the interpo-lation points) are squares of side δ = 1/N , while the intervals are squares of side
ψ = 1/K (thus M = pN , L = pK) and the number

a =
ψ

δ
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N

Kis an integer greater than one. The number a2 expresses how many setions lieinside any interval.If we de�ne the enumeration Φ(i, j) = (i − 1)M + j, i = 1, . . . , N and j =
1, . . . ,M , then Φ−1(n) = ((n−1) divM+1, (n−1) mod M+1), n = 1, . . . , N ·Mand the NM ×NM stohasti matrix (pnm) is de�ned by

pnm =

{ 1
qn

, if IΦ−1(n) ⊆ JJ(Φ−1(m))

0, otherwise,where qn is the number of non zero elements of the n-th row of the stohastimatrix (pnm). This means that pnm is positive i� there is a transformation, whih



maps an interval ontaining the nth setion (i.e. IΦ−1(n) = I(n−1) div M+1,(n−1) mod M+1)to the mth setion (i.e. I(m−1) div M+1,(m−1) mod M+1)). Let us take a point in
Iij ×R, i = 1, . . . N, j = 1, . . . ,M . We say that we are in state n, if n = Φ(i, j).The matrix (pnm) shows the probability of applying the map wΦ−1(m) to thatpoint, so that the system transits to state m. Finally, we de�ne the enumeration
Φ̂(k, l) = (k − 1)K + l, k = 1, . . . ,K, l = 1, . . . , L and the onnetion vetor
Cv = {cv1, c

v
2, . . . , c

v
NM} as follows:
cvn = Φ̂(J(Φ−1(n))), n = 1, 2, . . . , NM.If the attrator A of the above RBIFS is the graph of a ontinuous funtion,then it is alled a reurrent bivariate fratal interpolation surfae (RBFIS). Somesu�ient assumptions will be given so that the above an be ful�lled.Proposition 1. Assume that for every interval Jkl, k = 1, 2, . . . ,K, l = 1, 2, . . . , L,the points of eah of the sets

{(x(k−1)a = x̂k−1, y(l−1)a+ν , z(k−1)a,(l−1)a+ν); ν = 0, 1, 2, . . . , a},
{(xka = x̂k, y(l−1)a+ν , zka,(l−1)a+ν); ν = 0, 1, 2, . . . , a},
{(x(k−1)a+ν , y(l−1)a = yl−1, z(k−1)a+ν,(l−1)a); ν = 0, 1, 2, . . . , a},
{(x(k−1)a+ν , yla = yl, z(k−1)a+ν,la); ν = 0, 1, 2, . . . , a}are ollinear. Then there exists a ontinuous funtion f : [0, 1] × [0, p] → R thatinterpolates the given data P = {(xi, yj , zij) : i = 1, 2, . . . , N, j = 1, 2, . . . ,M}and its graph {(x, y, f(x, y)) : (x, y) ∈ [0, 1] × [0, p]} is the attrator A of theRBIFS.More generally we have the following.Proposition 2. Let the RBIFS be as de�ned above. Consider the interval Jkl, k =

1, . . . ,K, l = 1, . . . , L, and let, for κ ∈ N,
Lκ

kl[ν], ν = 1, . . . , aκ+1 − 1,denote the vertial distane of eah one of the points omputedin the step κ of the onstrution, with x = x̂k−1 and y ∈ [ŷl−1, ŷl],from the line de�ned by the points
(x(k−1)a, y(l−1)a, z(k−1)a, (l−1)a) and (x(k−1)a, yla, z(k−1)a, la),

Rκ
kl[ν], ν = 1, . . . , aκ+1 − 1,denote the vertial distane of eah one of the points omputedin the step κ of the onstrution, with x = x̂k and y ∈ [ŷl−1, ŷl],from the line de�ned by the points

(xka, y(l−1)a, zka, (l−1)a) and (xka, yla, zka, la),
Dκ

kl[ν], ν = 1, . . . , aκ+1 − 1,denote the vertial distane of eah one of the points omputedin the step κ of the onstrution with y = ŷl−1 and x ∈ [x̂k−1, x̂k],from the line de�ned by the points
(x(k−1)a, y(l−1)a, z(k−1)a, (l−1)a) and (xka, y(l−1)a, zka, (l−1)a),



Uκ
kl[ν], ν = 1, . . . , aκ+1 − 1,denote the vertial distane of eah one of the points omputedin the step κ of the onstrution with y = ŷl and x ∈ [x̂k−1, x̂k],from the line de�ned by the points

(x(k−1)a, yla, z(k−1)a, la) and (xka, yla, zka, la).Eah one of these vertial distanes is taken positive if the orresponding inter-polation point is above the orresponding line; otherwise it is taken negative. If
κ = 0, then L0

kl[ν] denotes the vertial distane of the interpolation points fromthe straight line de�ned above et. If we an selet the vertial saling fators sothat
si,j · R

κ
J(i,j)[ν] = si+1,j · L

κ
J(i+1,j)[ν]

si,j · U
κ
J(i,j)[ν] = si,j+1 · D

κ
J(i,j+1)[ν]for i, j, ν ∈ N : i = 1, . . . , N−1, j = 1, . . . ,M−1, ν = 1, . . . , aκ+1−1, κ ∈ N,then there exists a ontinuous funtion f : [0, 1] × [0, p] → R that interpolatesthe given data ∆ = {(xi, yj , zij) : i = 1, 2, . . . , N ; j = 1, 2, . . . ,M} and its graph

{(x, y, f(x, y)) : (x, y) ∈ [0, 1] × [0, p]} = A.Theorem 1. Let the above RBIFS be de�ned by an irreduible onnetion ma-trix C. Let S be the N ·M ×N ·M diagonal matrix
S = diag(|sΦ−1(1)|, |sΦ−1(2)|, . . . , |sΦ−1(NM)|)with 0 < |sij | < 1, i = 1, . . . , N and j = 1, . . . ,M. Suppose that the attrator Aof the RBIFS is the graph of a ontinuous funtion f that interpolates ∆ and thatthe interpolation points of every interval are not x-ollinear or not y-ollinear.Then, the box-ounting dimension of A is given by

D(A) =

{

1 + loga λ, if λ > a
2, if λ ≤ awhere λ = ρ(SC) > 0, the spetral radius of the irreduible matrix S · C.More details (and also the proofs of the theorems) may be found in [4℄.2.2 Closed Fratal Interpolation SurfaesA well known (and in many areas useful) system of oordinates are the spherialoordinates. This system is ideal for desribing positions on a sphere or spheroid.We let
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(a) (b)Fig. 1. Two fratal interpolation surfaes onstruted aording to onditions desribedin proposition 1. The �rst (a) (where N = M = 8, K = L = 4) has box ountingdimension 2.2769 and the seond (b) (where N = M = 4, K = L = 2) 2.3325.and de�ne g = (g1, g2, g3) to be the transformation from spherial oordinatesto artesian oordinates, where
x = g1(θ, φ, r) = r cosφ cos θ

y = g2(θ, φ, r) = r cosφ sin θ

z = g3(θ, φ, r) = r sinφ.We an onstrut a losed fratal surfae using the next theorem.Theorem 2. Consider a set of equidistant interpolation points
∆S = {(θi, φj , rij) : i = 0, 1, . . . , N ; j = 0, 1, . . . ,M}given in spherial oordinates, suh that θ0 = 0, θN = 2π, θi − θi−1 = δ, φ0 =

−π
2 , φM = π

2 , φj − φj−1 = δ. Consider, also, QS ⊂ ∆S = {(θ̂k, φ̂l, r̂kl) : k =

0, 1, . . . ,K; l = 0, 1, . . . , L} suh that θ̂0 = 0, θ̂N = 2π, θ̂i − θ̂i−1 = ψ, φ̂0 = −π
2 ,

φ̂M = π
2 , φ̂j − φ̂j−1 = ψ and a labelling map J as de�ned above. the points aretaken suh that they obey the onditions of proposition 1. Let G be the graphof the funtion r(θ, φ) whih arises as the attrator of this RIFS. Then g(G)is a ontinuous losed fratal interpolation surfae if and only if the followingonditions apply.1. ri,0 = ri,M = R, i = 0, 1, . . . , N .2. r0,j = rN,j , j = 0, 1, . . . ,M .3. The ontration fators are hosen suh that G ⊂ [0, 2π]× [−π

2 ,
π
2 ]× [ǫ,+∞),for given ǫ > 0.The details of this onstrution along with some results on the Hausdor� dimen-sion of the losed surfaes are given in [3℄.



(a) (b)Fig. 2. The fratal surfae (a) (spherial oordinates) interpolates 9 × 9 points andit is transformed through g into a losed fratal interpolation surfae (b) (artesianoordinates).2.3 Vetor Valued Fratal Interpolation FuntionsConsider the set {(xn, ym) = xn,m : n = 0, . . . , N,m = 0, . . . ,M} ⊆ [a, b] ×
[c, d] = B, where a = x0 < x1 < · · · < xN = b, c = y0 < y1 < · · · < yM = d andthe data ∆ = {(xn, ym, zn,m, tn,m) = (xn,m,zn,m)} ⊆ B × R2 ⊆ R4. The aim isto onstrut a ontinuous vetor valued funtion f = (f1, f2) : B → R2 suh that
f(xn,m) = zn,m, n = 0, . . . , N ,m = 0, . . . ,M (i.e. f be an interpolation funtionfor the data ∆) and suh that its graph be the attrator of an interpolationfuntion system. We de�ne wn,m : [a, b] × [c, d] × R × R → R4 :
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for n = 1, . . . , N , m = 1, . . . ,M and they depend on the data ∆ and the ontra-tion fators sn,m, s
′

n,m, s̃n,m, s̃
′

n,m (where x =
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)). The onditionsfor this onstrution to be valid are given in [6℄.2.4 Image CompressionOne may use RBIFSs to approximate any disrete natural surfae, as ompliatedas may be, using the methodology desribed below. This methodology is basedon ideas similar to the ones presented by Mazel and Hayes in [12℄, where a�neFIFs where used to model single-valued disrete sequenes.Proposition 2 gives the general onditions that the interpolation points andthe ontration fators must satisfy so that the attrator of the orrespondingRIFS be a ontinuous funtion. If the interpolation points are ollinear on theboundary of eah interval Jkl, then any seletion of the ontrativity fators sijwill be su�ient (Proposition 1). On the other hand, if the interpolation pointsare not ollinear on the boundary of eah interval Jkl, then it is almost impossibleto �nd ontrativity fators that satisfy the onditions of Proposition 2 for anarbitrary seletion of interpolation points. However, for κ = 0 it is relativelyeasy to �nd ontrativity fators suh that
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J(i,j+1)[ν]| < ε (6)for ε > 0 (relatively small). In this ase the attrator of the orresponding RIFSis not graph of a ontinuous surfae. Instead, the attrator is a ompat subsetof [0, 1] × [0, p] × R that approximates a ontinuous surfae.Now, onsider the data set D = {(n,m, f(n,m)) : n = 0, 1, . . . , N∗;m =

0, 1, . . . ,M∗} representing points of an arbitrary surfae. Our goal is to hooseinterpolation points and ontrativity fators suh that the attrator of the or-responding RIFS approximates the surfae. We hoose δ, ψ ∈ N a priori and formthe setions Iij and the intervals Jkl, so that eah setion ontains (δ+1)×(δ+1)points of D and eah interval (ψ + 1) × (ψ + 1) points of D. For eah se-tion Iij we seek the best-mapped interval Jkl with respet to a metri h, us-ing bivariate mappings. We ompute the ontrativity fator of that mappingwith a methodology that takes into aount that bivariate mappings have theproperty to map vertial lines (parallel to zź) to vertial lines saled by thevertial saling fator s. Sine the ontrativity fator has been hosen, the re-maining parameters of the bivariate map w are omputed easily and the set



w({(x, y, f(x, y)) : (x, y) ∈ Jkl} is formed. Then we ompute the distane be-tween the sets {(x, y, f(x, y)) : (x, y) ∈ Ii,j} and w({(x, y, f(x, y)) : (x, y) ∈ Jkl}and repeat the proedure for every interval. If the ontrativity fator that hasbeen omputed does not satisfy onditions (5-6) or is greater than 1, we removethe orresponding interval from the searh pool. Finally, we hoose the intervalthat minimizes the previously mentioned distane. If this distane, however, isgreater than an error tolerane value (hosen a priori) we split the setion tofour subsetions (adding new interpolation points) and repeat the proedure foreah new subsetion.The ollage theorem for RIFSs (see [2℄) ensures that the attrator of theemerging RIFS will approximate the original surfae f . The methodology isdesribed in detail in [5℄, where it is suessfully used to model and ompressgrey-sale images (see Figure 3). The ompression is ahieved by storing onlythe map parameters of the RIFS (interpolation points, ontrativity fators andonnetion vetor) instead of all the pixel values (i.e. the set D) of the image.The examination of the onditions (5-6) for eah seleted interval Jkl and orre-sponding ontrativity fator signi�antly improves the speed of the proedure,as a lot of the intervals are removed from the searh pool. In addition, the useof bivariate mappings instead of a�ne ones improves the quality of the reon-struted surfae. In [5℄ the proposed fratal interpolation approah is omparedto the previously presented fratal methods and found to give more satisfatoryresults.Referenes1. M. F. Barnsley. Fratal funtions and interpolation. Constr. Approx., 2:303�329,1986.2. M. F. Barnsley, J. H. Elton, and D. P. Hardin. Reurrent iterated funtion systems.Constr. Approx., 5:3�31, 1989.3. P. Bouboulis and L. Dalla. Closed fratal interpolation surfaes. J. Math. Anal.Appl., 327(1):116�126, 2007.4. P. Bouboulis, L. Dalla, and V. Drakopoulos. Constrution of reurrent bivariatefratal interpolation surfaes and omputation of their box-ounting dimension. J.Approx. Theory, 141:99�117, 2006.5. P. Bouboulis, L. Dalla, and V. Drakopoulos. Image ompression using reurrentbivariate fratal interpolation surfaes. Internat. J. Bifur. Chaos Appl. Si. Engrg.,141(7):99�117, 2006.6. P. Bouboulis and Leoni Dalla. Hidden variable vetor valued fratal interpolationfuntions. Fratals, 13:227�232, 2005.7. Leoni Dalla. Bivariate fratal interpolation funtions on grids. Fratals, 10(1):53�58, 2002.8. J.S. Geronimo and D. Hardin. Fratal interpolation surfaes and a related 2dmultiresolutional analysis. J. Math. Anal. Appl., 176:561�586, 1993.9. R. Malysz. The Minkowski dimension of the bivariate fratal interpolation surfaes.Chaos Solitons Fratals, 27(5):1147�1156, 2006.10. B. B. Mandelbrot, D. E. Passoja, and A.J. Paullay. Fratal harater of fraturesurfaes of metals. Nature, 308:721�722, 1984.



(a) (b)
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