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Abstract. In this dissertation, the problem of the construction of Frac-
tal Interpolation Surfaces and their application in image compression
is studied. We give exact conditions, so that this construction is valid
and we introduce some free parameters that make our model as flexible
as possible. In addition, we compute the box-counting dimension of a
Fractal Interpolation Surface. Finally, we give a new image compression
algorithm, based on fractal interpolation that differs from other fractal
compression techniques.

1 Introduction

Fractal theory has been drawing considerable attention of researchers in various
scientific areas. The application of fractals created by iterated function systems
(TFSs) in the area of image compression is probably the most known one. Appli-
cations of fractal surfaces have been also found in computer graphics, metallurgy,
geology, chemistry, medical sciences and several other areas where there is great
need to construct extremely complicated objects; see for example [10], [14].

Mazel and Hayes (see [12]) use Fractal Interpolation Functions (FIFs) (in-
troduced by Barnsley in [1]) to approximate discrete sequences of data (like
one-dimensional signals). They demonstrated the effectiveness of their method
by modelling seismic and electrocardiogram data. Recently, Navascues and Se-
bastian (in [13]) gave a generalisation of Hermite functions using FIFs.

Fractal Interpolation Surfaces (FISs) were used to approximate surfaces of
rocks, metals, terrains, planets and to compress images. Self-affine FISs were
first introduced in [11] in the case where the domains are triangular and the
interpolation points on the boundary of the domain are coplanar. A few years
later Geronimo and Hardin [8] generalised the construction of Massopust to allow
for more general boundary data and domains.

Some problems in the construction by [11] remained unsolved, amongst which
was the lack of free contractivity factors, which are necessary in modelling com-
plicated surfaces. A general constructive method of generating affine FISs is
presented in [17]. Xie and Sun in [15] and Xie, Sun, Ju, Feng in [16] presented a
construction of a compact set that contains the interpolation points defined in
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a rectangular domain. A special construction of bivariate FIS (BFIS) is given in
[9]. Dalla [7] gives some conditions in such a way that the bivariate IFS gives a
FIS.

In this dissertation we introduce recurrent BFISs as a generalisation of the
aforementioned methods in order to gain more flexibility in natural-shape gen-
eration or in image compression. The main advantage of this new class of FIS is
that they are neither self-affine nor self-similar in contrast to all the previously
mentioned constructions. Our method is used for image reconstruction and offers
the advantage of a more flexible fractal modelling compared to previous fractal
techniques (based on affine transformations). Finally we introduce closed fractal
interpolation surfaces and vector valued fractal interpolation surfaces that offer
even more free modelling parameters.

2 Main Results

2.1 Fractal Interpolation Surfaces

We consider the metric space X = [0,1] x [0,p] x R. Let A = {(x;,y;,2; ) :
i=0,1,...,N;j=0,1,..., M} be an interpolating set with (N +1) - (M + 1)
interpolation points, such that 0 = 29 < 1 < - < zy =l and 0 = yy <
y1 < --» < yy = p. Furthermore let Q@ = {(Zk, 01, 211) : k = 0,1,...,K;l =
0,1,...,L} be aset with (K +1)-(L+1) points with @ C A (Q # A), such that
0=2p<z1<---<zZxg=1land 0 =79y < 91 < --- < yr, = p. The interpolation
points divide [0,1] x [0, p] into N - M rectangles I;; = [z;—1,2;] X [yj-1,Y;], i =
1,...,Nand j=1,..., M, which we call sections, while the points of Q) divide
[0,1] x [0,p] to K - L rectangles Jy = [Zx—1, %] X [Gi-1, %],k = 1,..., K and
l=1,...,L which we simply call intervals. It is evident that for every interval
Jii there are some sections lying inside.

Define a labelling map J: {1,2,...,N} x {1,2,..., M} — {1,2,..., K} x
{1,2,...,L} with J(i,5) = (k,1), such that & — &1 > x; — 2;-1 and g —
Yi—1>y; —yj—1 fori=1,2,...,N, j=1,2,..., M and contractive mappings
wi;: X — X satisfying

Tr_1 Ti—1 Ty i
W4 Yi—1 = Yj—1 , Wij Yi—1 =\ Yji-1 |,
Zh—1,1-1 Zi—1,j—-1 Zh1—1 Zij—1
(1)
Tk—1 Ti—1 g i
wig | o = v and wi; | o | = v
Zk-1, Zi—1,5 2kl Zi,j

fori=1,...,Nand j=1,..., M. The w;; map the vertices of the interval Jy; =
Ji(i,5) to the vertices of the section ;. Finally, let @: {1,..., N} x{1,..., M} —
{1,...,N - M} be a 1-1 function (i.e. an enumeration of the set {(i,j) : i =
L...,Njj=1,...,M}).

A recurrent iterated function system (RIFS) associated with the set of data
A consists of the IFS {X;w; ;,i = 1,2,...,N;j =1,2,...,M} (or, somewhat



more briefly, as {X;wi_n1-am}) together with a row-stochastic matrix (pp, €
0,1 : n,m € {P(i,5),i=1,...,N;j=1,...,M}), such that

S pm=1, n=1.. N M (2)

m=1

The recurrent structure is given by the connection matrizx C = (Cyy,), defined

by
oo 1, if pyun >0
e 0, if Pmn = 0,
forn,m=1,2,..., N - M. The transition probability for a certain discrete time

Markov process iS pnm, which gives the probability of transfer into state m given
that the process is in state n. Equation (2) says that whichever state the system
is in (say m), a set of probabilities is available that sum to 1, and they describe
the possible states to which the system transits at the next step.

We study the special case where w;; are transformations of the form

x ;5T + bij ¢ij (J?)
wi |v) = cigy + di [ ww | ®
z €T + fijy + iy + sijz + kij Fij(x,y,z)

From Eq. (3) eight linear equations arise which can always be solved for a;;, b;;,
¢ij, dij, Gij, €ij, fij, kij in terms of the coordinates of the interpolation points
and the vertical scaling (or contractivity) factor s;; (see [7], [15]).

If the vertical scaling factors obey |s;;| < 1, then there is a metric d on X
equivalent to the Euclidean metric, such that w;; is a contraction with respect
to d (1e Hgl] 10 < §ij < 1: d(ww(i‘),w”(g)) < §ijd(i‘,y), VI,y € X) The
corresponding RIFS is called recurrent bivariate IFS (RBIFS).

It has been proved in [2] that there is a fixed point (attractor) A of this
RBIFS. We also assume that pN, pK € N, the sections (defined by the interpo-
lation points) are squares of side § = 1/N, while the intervals are squares of side
¥ =1/K (thus M = pN, L = pK) and the number

_¢_N
5K

is an integer greater than one. The number a? expresses how many sections lie
inside any interval.

If we define the enumeration #(i,j) = (i —1)M +j, i =1,...,N and j =
1,...,M,then = (n) = ((n—1)div M+1, (n—1) mod M+1), n=1,...,N-M
and the NM x NM stochastic matrix (pn.,) is defined by

1 -
Drm = o if IQS—l(.n) - JJ(@—l(m))
0, otherwise,

where ¢, is the number of non zero elements of the n-th row of the stochastic
matrix (ppm ). This means that p,,, is positive iff there is a transformation, which



maps an interval containing the nth section (i.e. Ig-1(n) = I(n—1)div M+1,(n—1) mod M+1)
to the mth section (i.e. I(m_1)div M+1,(m—1) mod M+1)). Let us take a point in
Ii;xR,i=1,...N, j=1,..., M. We say that we are in state n, if n = &(i, j).

The matrix (ppm,) shows the probability of applying the map wg-1(;,) to that
point, so that the system transits to state m. Finally, we define the enumeration
d(k,0) = (k—1)K +1, k=1,...,K,1 =1,...,L and the connection vector

CV ={cy,ch,...,c%pt as follows:

=& J(P (n)), n=1,2,...,NM.

If the attractor A of the above RBIFS is the graph of a continuous function,
then it is called a recurrent bivariate fractal interpolation surface (RBFIS). Some
sufficient assumptions will be given so that the above can be fulfilled.

Proposition 1. Assume that for every interval i, k=1,2,.... K, 1 =1,2,...,L,
the points of each of the sets

{(x(k—l)a = Tk-1, Yi-1ya+vs Z(k—l)a,(l—l)a+u); v=0,12,... 7a};
{(mka = Ty, Yi-1)atvs Zka,(l—l)a+u); v=0,1,2,..., a};
{(x(k—l)a+w Y(i-1)a = Y1-1, Z(k—l)a+u,(l—1)a); v=0,1,2,... 7a}7
{(x(kfl)aJruv Yla = Y, Z(kfl)a+u,la); V= Oa 17 2; ceey CL}

are collinear. Then there exists a continuous function f: [0,1] x [0,p] — R that
interpolates the given data P = {(x;,vy;,2;) i =1,2,...,N,j =1,2,..., M}
and its graph {(x,y, f(z,y)) : (z,y) € [0,1] x [0,p]} is the attractor A of the
RBIFS.

More generally we have the following.

Proposition 2. Let the RBIF'S be as defined above. Consider the interval Jy;, k =
1,....,K,l=1,...,L, and let, for k € N,

w v, v=1,...,a"tt -1,
denote the vertical distance of each one of the points computed
in the step k of the construction, with x = Z_1 and y € [§1—1, i),
from the line defined by the points
(T(h=1)a> Y(1=1)as Z(k=1)a, (I=1)a) @A (T(k—1)as Yias Z(k—1)a, la)>

~ v, v=1,...,a"tt -1,
denote the vertical distance of each one of the points computed
in the step k of the construction, with x = &y, and y € [§i—1, U],
from the line defined by the points
(Tkas Y(1=1)as Zka, (1=1)a) 0 (Tkas Yia) Zka, 1a),

Dy v, v=1,...,a"tt -1,

denote the vertical distance of each one of the points computed
in the step k of the construction with y = ¢§;—1 and x € [Tx_1, Tk,
from the line defined by the points
(T(k=1)a> Y(i-1)as Z(k=1)a, (1-=1)a) 1A (Tka, Y(1—1)as Zka, (I-1)a )



usvl, v=1,...,a"" -1
denote the vertical distance of each one of the points computed
in the step k of the construction with y = §; and x € [Tp_1, Tk,
from the line defined by the points
(x(kfl)av Yiar Z(k—1)a, la) and (mkaa Yia) Zka, la)-

J

Each one of these vertical distances is taken positive if the corresponding inter-
polation point is above the corresponding line; otherwise it is taken negative. If
k=0, then LY,[v] denotes the vertical distance of the interpolation points from
the straight line defined above etc. If we can select the vertical scaling factors so
that

Si,j 'Rf(i,j)[’/] = Si+1,j 'ﬁf(iﬂ,j)[”]
Si,j 'Uf(i,j)[l/] = Si,j+1 'Df(i,jﬂ)[l/]

fori, j veN:i=1,....N—=1, j=1,...,M—1, v=1,...,a"' =1,k €N,
then there exists a continuous function f:[0,1] x [0,p] — R that interpolates
the given data A = {(z;,y;,2i5) :i=1,2,...,N;j=1,2,..., M} and its graph
{(z,y, f(z,y)) : (x,y) €[0,1] x [0,p]} = A.

Theorem 1. Let the above RBIFS be defined by an irreducible connection ma-
trizx C. Let S be the N- M x N - M diagonal matriz

S = diag(|5¢71(1)|7 ‘845—1(2)|, ey |3<25*1(NM)|)

with 0 < |s;;| <1,i=1,...,N and j =1,..., M. Suppose that the attractor A
of the RBIF'S is the graph of a continuous function f that interpolates A and that
the interpolation points of every interval are not x-collinear or not y-collinear.
Then, the box-counting dimension of A is given by

_J141log, A if A>a
D(A)—{ 2, ifA<a

where A = p(SC) > 0, the spectral radius of the irreducible matriz S - C.

More details (and also the proofs of the theorems) may be found in [4].

2.2 Closed Fractal Interpolation Surfaces

A well known (and in many areas useful) system of coordinates are the spherical
coordinates. This system is ideal for describing positions on a sphere or spheroid.
We let

0<6<2m - §¢gg, r>0
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Fig. 1. Two fractal interpolation surfaces constructed according to conditions described
in proposition 1. The first (a) (where N = M = 8, K = L = 4) has box counting
dimension 2.2769 and the second (b) (where N = M =4, K = L = 2) 2.3325.

and define g = (g1, g2,93) to be the transformation from spherical coordinates
to cartesian coordinates, where

x=g1(0,6,r) =rcospcosb
= g2(0,¢,r) = rcos sinf
z = g3(0,¢,r) = rsin ¢.

We can construct a closed fractal surface using the next theorem.

Theorem 2. Consider a set of equidistant interpolation points
AS = {(Gi,cbj,n-j) : Z:O,l,,N, j:(),l,,M}

given in spherical coordinates, such that 69 = 0, Oy = 27, 0; - 91‘;1 =4, ¢ =
=%, om =5, ¢j — ¢j—1 = 0. Consider, also, Qs C As = {(O, d1,71) = k =
071,...7K; l:0,17...7L} such thatéo :0, éN 2271', éz‘—éi,1 :w, d30 = —%,
gZ;M =7, qASj — éj_l = and a labelling map J as defined above. the points are
taken such that they obey the conditions of proposition 1. Let G be the graph
of the function r(0,$) which arises as the attractor of this RIFS. Then g(G)
is a continuous closed fractal interpolation surface if and only if the following
conditions apply.

1. Ti,0 = Ti,M ZR, i:0,17...,N.

2. T0o,5 = TN,j, jZO,l,...,M.

8. The contraction factors are chosen such that G C [0,27] x [, 5] x [¢, +-00),
for given € > 0.

The details of this construction along with some results on the Hausdorff dimen-
sion of the closed surfaces are given in [3].
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Fig. 2. The fractal surface (a) (spherical coordinates) interpolates 9 x 9 points and
it is transformed through g into a closed fractal interpolation surface (b) (cartesian
coordinates).

2.3 Vector Valued Fractal Interpolation Functions

Consider the set {(zn,ym) = Tpm :n =0,...,Nym =0,...,M} C [a,b] x
[c,d] = B,wherea=x2g <1 < ---<ay=bc=y <y <--<yy =dand
the data A = {(zn, Ym, Znms tnm) = (Toms Znm)} € B x R? C RY. The aim is
to construct a continuous vector valued function f = (f1, f2) : B — R? such that
f(@nm) =2nm,n=0,...,N,m=0,...,M (ie. f be an interpolation function
for the data A) and such that its graph be the attractor of an interpolation
function system. We define w,, ., : [a,b] X [c,d] x R x R — R*:

ant + by,

cmly + d,
€n,m® + Jin’my + Gnm®Y + Spmz + s;L’mt + ]fn.m
€n,mT + fnm¥ + GnmTY + nmz + 5, put + knm

- Ym (y)
T P (T, y) + Sumz + s’n)mt T Cnm:
D,

m b
(T, Y) + Snmz + 8, ot

Wr,m

S N ey

)

)

/ z U s
The constants of s, 1, S}, s Snyms S are fixed. The remaining constants

n,m
are defined by the equations
T Tp—1.m— T fo
Wom 0,0 — n—1,m—1 Wam N,0 _ n,m—1 (4)
20,0 Zpn—1,m—1 ZN,0 Zn,m—1
T Ty T T
Whom 0,M _ n—1m Whom N,M _ n,m
Z0,M Zpn—1,m ZN,M Zn,m



forn=1,...,N,m=1,..., M and they depend on the data A and the contrac-
tion factors s m, 87, s Sn,ms 8, (Where & = (;) ,Z = (i)) The conditions

for this construction to be valid are given in [6].

2.4 Image Compression

One may use RBIFSs to approximate any discrete natural surface, as complicated
as may be, using the methodology described below. This methodology is based
on ideas similar to the ones presented by Mazel and Hayes in [12], where affine
FIFs where used to model single-valued discrete sequences.

Proposition 2 gives the general conditions that the interpolation points and
the contraction factors must satisfy so that the attractor of the corresponding
RIFS be a continuous function. If the interpolation points are collinear on the
boundary of each interval Jy;, then any selection of the contractivity factors s;;
will be sufficient (Proposition 1). On the other hand, if the interpolation points
are not collinear on the boundary of each interval J;, then it is almost impossible
to find contractivity factors that satisfy the conditions of Proposition 2 for an
arbitrary selection of interpolation points. However, for k = 0 it is relatively
easy to find contractivity factors such that

Si,j 'R,,(]?(i,j)[V] = Si+1,j '£§(i+1,j)[V]

Si,j 'Uf(i,j)[l/] = Sij+1 'Dg(i,j+1)[y]

fori=1,.... N-1,5=1,.... M -1, v=1,...,a—1,0r

|sij - R W) = siv1s - Lo plll <e (5)
|5i,j . uu]?(%j) [l/] — Sij+1 " ,DJ(])(i,j-&-l)[V” <e (6)

for € > 0 (relatively small). In this case the attractor of the corresponding RIFS
is not graph of a continuous surface. Instead, the attractor is a compact subset
of [0,1] x [0,p] x R that approximates a continuous surface.

Now, consider the data set D = {(n,m, f(n,m)) : n = 0,1,...,N*;m =
0,1,..., M*} representing points of an arbitrary surface. Our goal is to choose
interpolation points and contractivity factors such that the attractor of the cor-
responding RIFS approximates the surface. We choose 6,19 € N a priori and form
the sections I;; and the intervals Jy;, so that each section contains (§+1) x (6+1)
points of D and each interval (¢» + 1) x (¢ + 1) points of D. For each sec-
tion I;; we seek the best-mapped interval Jy; with respect to a metric h, us-
ing bivariate mappings. We compute the contractivity factor of that mapping
with a methodology that takes into account that bivariate mappings have the
property to map vertical lines (parallel to zz) to vertical lines scaled by the
vertical scaling factor s. Since the contractivity factor has been chosen, the re-
maining parameters of the bivariate map w are computed easily and the set



w({(z,y, f(z,y)) : (z,y) € Jr} is formed. Then we compute the distance be-
tween the sets {(z,y, f(z,y)) : (z,y) € I, ;} and w({(z,y, f(z,vy)) : (z,y) € Ju}
and repeat the procedure for every interval. If the contractivity factor that has
been computed does not satisfy conditions (5-6) or is greater than 1, we remove
the corresponding interval from the search pool. Finally, we choose the interval
that minimizes the previously mentioned distance. If this distance, however, is
greater than an error tolerance value (chosen a priori) we split the section to
four subsections (adding new interpolation points) and repeat the procedure for
each new subsection.

The collage theorem for RIFSs (see [2]) ensures that the attractor of the
emerging RIFS will approximate the original surface f. The methodology is
described in detail in [5], where it is successfully used to model and compress
grey-scale images (see Figure 3). The compression is achieved by storing only
the map parameters of the RIFS (interpolation points, contractivity factors and
connection vector) instead of all the pixel values (i.e. the set D) of the image.
The examination of the conditions (5-6) for each selected interval Jy; and corre-
sponding contractivity factor significantly improves the speed of the procedure,
as a lot of the intervals are removed from the search pool. In addition, the use
of bivariate mappings instead of affine ones improves the quality of the recon-
structed surface. In [5] the proposed fractal interpolation approach is compared
to the previously presented fractal methods and found to give more satisfactory
results.

References

1. M. F. Barnsley. Fractal functions and interpolation. Constr. Approz., 2:303 329,
1986.

2. M. F. Barnsley, J. H. Elton, and D. P. Hardin. Recurrent iterated function systems.
Constr. Approz., 5:3-31, 1989.

3. P. Bouboulis and L. Dalla. Closed fractal interpolation surfaces. J. Math. Anal.
Appl., 327(1):116-126, 2007.

4. P. Bouboulis, L. Dalla, and V. Drakopoulos. Construction of recurrent bivariate
fractal interpolation surfaces and computation of their box-counting dimension. J.
Approz. Theory, 141:99 117, 2006.

5. P. Bouboulis, L. Dalla, and V. Drakopoulos. Image compression using recurrent
bivariate fractal interpolation surfaces. Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
141(7):99-117, 2006.

6. P. Bouboulis and Leoni Dalla. Hidden variable vector valued fractal interpolation
functions. Fractals, 13:227-232, 2005.

7. Leoni Dalla. Bivariate fractal interpolation functions on grids. Fractals, 10(1):53—
58, 2002.

8. J.S. Geronimo and D. Hardin. Fractal interpolation surfaces and a related 2d
multiresolutional analysis. J. Math. Anal. Appl., 176:561 586, 1993.

9. R. Malysz. The Minkowski dimension of the bivariate fractal interpolation surfaces.
Chaos Solitons Fractals, 27(5):1147-1156, 2006.

10. B. B. Mandelbrot, D. E. Passoja, and A.J. Paullay. Fractal character of fracture
surfaces of metals. Nature, 308:721 722, 1984.



Fig. 3. Any grey-scale image can be viewed as a (discrete) surface. In (a) the reference
image “Lena” is shown. The attractors of RIFSs that approximate the “Lena” surface
(for different values of d,v and error tolerance) are shown in (b),(c),(d).

11.
12.

13.

14.

15.

16.

17.

P. R. Massopust. Fractal surfaces. J. Math. Anal and Appl., 151(1):275-290, 1990.
D. S. Mazel and M. H. Hayes. Using iterated function systems to model discrete
sequences. IEEE Trans. Signal Process., 40:1724-1734, 1992.

M. A. Navascues and M. V. Sebastian. Generalization of hermite functions by
fractal interpolation. J. Approz. Theory, 131:19-29, 2004.

P. Wong, J. Howard, and J. Li. Surfaces roughening and the fractal nature of
rocks. Phys. Rev. Lett., 57(637-640), 1986.

H. Xie and H. Sun. The study of bivariate fractal interpolation functions and
creation of fractal interpolation surfaces. Fractals, 5(4):625 634, 1997.

Heping Xie, Hongquan Sun, Yang Zu, and Zhigang Feng. Study on generation of
rock fracture surfaces by using fractal interpolation. Internat. J. Solids Structures,
38:5765 5787, 2001.

Nailiang Zhao. Construction and application of fractal interpolation surfaces. The
Visual Computer, 12:132-146, 1996.



