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Abstract. Supervised learning of feature vector transforms is a com-
mon practice in statistical pattern recognition applications. This study
considers optimality criteria for learning both dimensionality reduction
and invertible transforms. Starting from the Bayes loss and mutual in-
formation, we show the derivation of widely used methods such as linear
discriminant analysis and sensitivity analysis. The effective feature vec-
tor concept is introduced to extend the applicability of these criteria
to invertible transforms. Our approach allows us to derive two novel
algorithms for linear feature extraction and non-linear feature scaling
respectively.
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1 Introduction

A fundamental issue in machine learning is solving classification problems, in
which d-dimensional real-valued vectors x = [z1,...,74]" are mapped to one
among K classes {Ci}. Ideally, this mapping is summarized by the conditional
probability distribution of the class p (Cx|x), which is to be estimated from a
limited size sample set. In the context of pattern recognition, x is commonly
referred as feature vector since it is assembled from distinct features x; of the
observation to be classified. A common practice is to first preprocess the feature
vector by applying optimal transforms of the form

f:R? > RY, d,d eN* (1)

The rationale behind this preprocessing is typically (a) to improve problem in-
spection, by allowing visualization of samples in a space of lower dimension,
convenient axis and informative samples distances, (b) to facilitate any follow-
ing processing steps, by reducing their complexity and memory requirements and
(c) to alleviate the initial feature generation step (i.e. the construction of the
original feature vector), by indicating what would constitute useless to generate
features.

* Dissertation Advisors: Sergios Theodoridis, Professor - Dr. Stavros Perantonis



Although a plethora of algorithms exist to cope with particular computa-
tion constraints, finding optimal transforms seems to be driven by more or less
heuristic criteria. Here, we bring together results that have been independently
studied in the pattern recognition and machine learning literature, to provide
a unifying framework for transform learning. This framework allow us to define
additional criteria formulations resulting in novel algorithms. Namely, we first
introduce a framework for supervised learning criteria comparison for feature
extraction, defining an hierarchy of classification problem models where par-
ticular goals are feasible. We then study the mutual information maximization
criterion comparatively to the criteria of linear discriminant and heteroscedastic
discriminant analysis. We end up, on one hand, to the establishment of a criteria
hierarchy and, on the other, to compatible mathematical expressions, thus unify-
ing the originally different approaches and deriving linear discriminant analysis
based on information theory [7]. In the same framework, we define the Bayes loss
sensitivity maximization criterion and show its optimality for linear feature ex-
traction. The criterion leads to the derivation of the SPCA algorithm [5], which
comes down to extracting principal components of suitably preprocessed sam-
ples. Evaluating the algorithm with a wide range of real datasets demonstrates
its advantages against linear discriminant analysis.

The above framework is further extended to account for invertible transforms.
To that end, we model the partially known continuous density probability of the
feature vector by defining the corresponding effective one. By introducing further
assumptions regarding the desired homogeneity and isotropicity of the feature
space, we derive the isotropic loss minimization and isotropic information max-
imization criteria, as the generalization of the corresponding non-isotropic ones.
This offers a unified framework for the learning of both linear feature extraction
and invertible transforms. Finally, the criterion of isotropic information maxi-
mization is explored in view of its application to the learning of non-linear feature
scaling transforms. The criterion leads to the formulation of the isotropic non-
linear feature scaling algorithm which applies to the non-linear grid transforms
[6]. Evaluation of the algorithm to real data shows its utility to the increase of
classification generalization performance.

2 Optimal Dimensionality Reduction

A variety of feature transforms families exist, from which one may choose to con-
centrate optimality search, in accordance with ones specific motives and compu-
tational constraints. We may organize these families based on three properties:
linearity, where the transformed feature space is a linear map of the original one,
axis preservation, where each output feature is a function of only one input fea-
ture and invertibility, where recovering the input feature vector from the output
one is possible. A number of such families and their corresponding properties are
shown in Table 1. In this section, we discuss linear transforms resulting in feature
vectors of reduced dimension. Invertible transforms, both linear and non-linear,
are discussed in Section 3.



feature vector transforms

transform families transform properties

linearity axis—preservation invertibility

feature scaling v v v
feature selection v v
linear feature scaling v v
linear feature extraction v
non-linear feature scaling v v

non-linear feature extraction

Table 1. Feature vector transforms families and properties

2.1 Feature vector optimality

A basic issue when seeking for classification-optimal feature vector transforms, is
to specify measures against which feature vectors are compared. Decision theory
defines, as optimal such measure, the expected loss we risk when attributing a
class to a feature vector using the (optimal) Bayes classification rule, referred to
as the Bayes loss:

BLICIx] = Bx [mini(Cilx)| 2)

where [(Cg|x) is the expected loss of mapping point x to class Cy

K
1(Crlx) = Y Liwp (Cir[x) (3)

k'=1

and Ly is the (k, k') element of the loss matrix L, defining the loss when
misstaking class C}, for class Cy/. When L = 1 —I g, the Bayes loss is commonly
referred to as Bayes error. Roughly, if one could choose between two different
feature vectors to solve a classification problem, one should optimally prefer the
one that yields lower Bayes loss. We will refer to this as the Minimization of
Bayes Loss (MBL) criterion.

In a certain sense, Bayes loss measures our uncertainty about the unknown
class value even when the feature vector value is known. Information theory gives
an alternative definion of the uncertainty as the feature vector-conditional class
entropy:

H[C[x] = Ex [Ec [~ log p (Ck|x)]] - (4)

The above measure, when substracted by the entropy of the class, which is
constant for a given classification problem, gives rise to the mutual information
between the class and the feature vector:

1[¢; x] = H[C] - H[C|x]. (5)



So minimizing H[C|x] in respect to the feature vector is equivalent to maximize
I[C; x]. We will refer to this as the the Maximization of Mutual Information
(MMI) criterion.

Comparison of feature vectors using the MMI criterion is not optimal in the
sense of Bayes loss. However, a certain near-optimality is guaranteed since the
Bayes loss is bounded by mutual information. Namely, for the Bayes error, it
holds that:

H[C]-TI[C;x] -1
log(K — 1)

H[C] - I[C; x]
2

< Be[Clx] < (6)

2.2 Lossy vs Lossless transforms

Bayes loss and mutual information may assist us to clarify what one may expect
from dimensionality reduction, depending on ones priorities. Here, we focus on
linear transforms, expressed as ATx where Ay 49, d' < d, is a d x d’ matrix,
but this discussion also extends to the non-linear case. When visualization or
complexity handling issues are a priority, feature extraction may be constraint
by an upper limit d of the features to extract. In this case, ideally, one should
optimally extract those that yield the lower Bayes loss:

A= argmin  B[C|ATx] (7

Apaxard'€ll...d]

Notice that there is a set of matrices A satisfying eq. (7), rather than just one,
since optimality is related to the feature subspace engendered by the matrix
rather than to the matrix itself. It is also important to stress that, in contrast
to what one may suggest by considering common experimental resultsreducing
the dimension can’t lead to a decrease of the Bayes loss, i.e.:

VApaxa):  BL[C|ATx] > BL[C|x], (8)

In other words, dimensionality reduction is, in general, lossy. Hence, a more
precise interpretation of eq. (7) is to seek for optimal subspaces where the Bayes
loss is increased as less as possible, while satisfying the dimension upper limit
requirement.

On the other hand, when priority is given to the classification performance,
one should avoid putting an upper limit for dimension and require instead that
dimensionality reduction does not lead to increasing the Bayes loss at all, i.e.
BL[C|ATx] = BL[C|x]. To examine when and how a reduction in dimension is
still possible, let us introduce a generative view, according to which the feature
vector x € R? is the result of mixing up a “usefull” source vector s € R% with
a “useless” noise vector n € R(4~4) by means of an unknown invertible matrix
B, as follows:

B A
x=0B {n} . 9)
The feature extraction problem then formulates as recovering the d’ latent fea-
turesof the source vector, based on specific assumptions between s, n and C.

Two such possible assumptions are the following:



Zero Information Loss (ZIL) The noise vector is conditionally independent
to the class given the source vector:

n 1LC|s (10)

Zero Bayes-Loss Loss (ZBLL) At any point of the feature space, the ex-
pected Bayes loss for the optimally chosen class given both the source and
noise vectors equals the expected Bayes loss given only the source vector:

Vs e R, ne R4 . [(C|s,n)=1(C]s) (11)

Despite their dissimilar expression, the consequences of these two assumptions
differ only in whether one has knowledge of the loss matrix at the time the ex-
traction is done. In particular, it holds that (a) the ZIL assumption is the weakest
assumption for extracting d’ features without increasing the Bayes loss, with un-
known loss matrix and (b) the ZBLL assumption is an assumption, weaker than
the ZIL one, for extracting d’ features without increasing the Bayes loss, for a
known loss matrix. Importantly, the ZIL and ZBLL assumptions are equivalent
for two-class problems.

Let us point out that the MMI criterion is also optimal under the ZIL as-
sumption. In other words, in contrast with lossy dimensionality reduction (see
eq. 6), the MMI and MBL criteria are equivalent for lossless dimensionality
reduction with unknown loss matriz.

2.3 Parametric models

We will show now how the Linear Discriminant Analysis (LDA) and Heteroscedas-
tic Discriminant Analysis (HDA) [4] methods can be derived from the MMI
criterion for loseless dimensionality reduction, by making further assumptions
regarding the underlying parametric probability model. To begin with, following
a path common in Independent Component Analysis (ICA), we analyze feature
vector entropy as a difference between a gaussian entropy term, i.e. entropy due
to the second order moments of the probability distribution, and a negentropy
term, i.e. entropy due to all the other (higher) moments:

H[ATx] = H,[ATx] — J[ATx]
/ 12
H,[ATx] = %log (2me)? |cov[ATx]| 12)

Analyzing accordingly the class conditional feature-vector entropy, mutual in-
formation decomposes as:

I[C; ATx] = H[ATx] — H[ATx|C]
AT
= 1log = [covl ATx]] @y (J[ATx] — J[ATx|C))
20 Tl leov [ ATx[Ci "

(13)




Now, let assume that the feature space is such that (a) the ZIL assumption
holds and (b) the conditional probability distribution of the feature vector given
the class is gaussian, i.e. x|Cy ~ N (E[x|Cy], cov[x|C;]). It may then be shown
that the difference of negentropies term may be safely neglected while maxi-
mizing eq.(13). Moreover, it turns out that the covariance ratio left is the one
maximized by HDA, when the covariances are replaced by their samples esti-
mates. Going one step further and assuming that the class-conditional feature
vector probability distributions share the same covariance matrix (homoskedas-
ticity), HDA further simplifies to LDA:

|cov[ATx]|

LDA[C: ATx] =1log —— 1
(€5 Ax] = log g I Cal

(14)

Using this derivation, we may now comment on the optimality of both HDA
and LDA based on the optimality of MMI. In particular, for lossless dimension-
ality reduction with unknown loss matrix, HDA is optimal under the ZIL +
gaussianity assumption, whereas LDA is optimal under the ZIL + gaussianity
+ homoskedasticity assumption.

Last, let us point out that maximizing eq. (13) under the gaussianity assump-
tion is also equivalent to maximize the negentropy on the extracted subspace.
This creates a bridge between supervised and unsupervised learning, since, by
assuming that the noise vector is gaussian, we can simply perform multidimen-
sional ICA [1] to reject it.

2.4 Sensitivity analysis

Looking back at eq. (2), we notice that a feature vector is meaningless to the
overall loss, if a change of its value does not result to a change of the loss function.
A measure of sensitivity of loss in respect to the feature subspace engendered by
matrix Agyq may be defined as:

94¢x)

BV [Clx] = Bx | 5

(15)

where C is the optimal class decision for x and we have assumed that the loss
function is differentiable. Therefore, instead of seeking feature vectors that mini-
mize Bayes loss, we may as well seek those against which the Bayes loss sensitiv-
ity is maximized. We define this as the Maximization of Bayes Loss Sensitivity
(MBLS) criterion. It turns out that, for performing lossless linear dimensional-
ity reduction with known loss matrix, the MBL and MBLS are equivalent. The
Bayes loss sensitivity in the source subspace will then equal to the overall Bayes
loss sensitivity, i.e. B£A)[C|x] = Bild)[C |x].
What’s more, by equivalently expressing Bayes loss sensitivity as

BM[C|x] = trace (ATcor[vz(é | x)}A) , (16)



problem features classific. accuracy difference

name K original optimal d=1 d =2 d=3
cancer 2 9 1 0.1 0.1 —0.3 —-0.7
card 2 51 2 0.1 -0.1 0.7 0.3
diabetes 2 8 2 -0.2 0.5 —0.8 0.1
glass 6 9 6 1.2 14 1.6 1.9
heart 2 35 3 1.7 8.6 2.4 2.3
horse 2 47 2 -0.1 2.2 —0.1 2.2
iris 3 4 1 0.1 0.1 1.6 1.1
sonar 2 60 14 2.6 0.6 1.3 1.6
soybean 19 82 20 6.8 2.0 —-13.8 -9.1
xorrot 2 8 2 14.0 20.3 33.4 28.1

Table 2. Difference of generalization performance (average of 30 tries of random 80%-
20% cross-validation test of K-NN) using linear feature extraction with the SPCA
vs LDA algorithm. The first two columns contain the name of the problem and the
number of classes. The following two columns, the original number of features and the
optimal ones, obtained as those that maximized the generalization performance with
either method. The last columns display the results for optimal and constrained (1, 2
and 3) features respectively. Statistically significant differences (t-test 0.90) are marked
in bold.

we observe that applying MBLS comes down to solving an eigenvector prob-
lem, or equivalently, to applying Principal Component Analysis (PCA) by first
replacing each original sample x with the corresponding samples sensitivities
x =1.., al(ai‘,x) ,--.]- A number of algorithms in the pattern recognition litera-
ture are essenéially using this method, while estimating the derivatives via local
parametric models, neural networks or SVMs [8]. We explore here the poten-
tial of the method based on estimation of sensitivities via the standard Parzen
method (the Parzen-SPCA algorithm ). Table 2 shows an increase in generaliza-
tion accuracy, as compared to the one obtained using the popular LDA method,
for both lossy and lossless dimensionality reduction.

3 Optimal invertible transforms

3.1 Invertible vs Non-invertible transforms

The study of optimal dimension reduction in Section 2 reveals two important
issues regarding the Bayes loss and mutual information measures. First, these
measures fail to explain why, often, dimensionality reduction increases general-
ization performance, as compared to just not worsen it (see eq. 8). The second
issue relates to invertible transforms, i.e. those for which we may revover the
original feature vector given the transformed one, such as scaling transforms [3].
Namely, both Bayes loss and the mutual information with the class variable stay
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Fig. 1. Scaling vs rejection. The continuous line corresponds to the generalization
performance of the K-NN algorithm using the LDA and SPCA optimal transforms.
The dashed-line corresponds to the performance of the same algorithm using the initial
feature space with the features suggested for reduction being scaled down. The scale-
down factors are represented in the x-axis.

unchanged after application of an invertible transformand hence seem useless for
optimal invertible transform search.

It can be shown, however, that invertible transforms do influence the gener-
alization accuracy. To illustrate this fact, we present a test-case involving linear
invertible transforms , compactly expressed as a product of a full rank diagonal
matrix and a full rank rotation matrix, as A = D'Q. Notice that, by letting a
subset L = {d;} of the diagonal elements of D being scaled down to zero,

/ : T

A 7\1d,,eer:%l—>0D Q. (17)
the resulting matrix will have reduced rank and will map the original feature
space to a subspace. Thus, linear dimensionality reduction may actually be con-
sidered as a limit of these transforms. We can then verify that this convergence
also applies to the corresponding generalization accuracy in respect to a given
classification problem. Namely, by applying the LDA and SPCA algorithms to
our set of benchmark tests and, instead of rejecting the dimensions with low
suitability, scaling them down, we obtain the curves in Figure 1. One may see
that the generalization does depend on feature scaling and converges, at the
limit of very small scaling factors, to the one obtained by feature extraction.

A further finding from this experiment is that generalization performance
may actually be superior when scaling down the features with an appropriate
factor rather than rejecting them. This indicates that LDA and SPCA are some-
how pertinent for invertible transforms, although they fail to determine the op-
timal scaling factors. In the following sections, we study extended forms of the
Bayes and MMI criteria, converging to the plain ones at the non-invertibility
limit and propose a new algorithm for learning invertible transforms.



3.2 Effective feature vector optimality

Exact knowledge of the feature vector probability distribution, as assumed by
the Bayes loss and the mutual information criteria, does not hold in practice,
and this is the only reason they may have for failing to explain the increase in
generalization accuracy after a dimensionality reduction or invertible transform.
Here, to formally account for limited sample size, we use a metaphor and postu-
late that any classification algorithm is “looking” at the feature space through
a “blurring” gaussian focus:

g(s|r, Q) & e lQsI? (18)

where r € IN* is the focus magnitude and @, |Q| = 1, is the focus angle matrix.
Roughly, focus magnitude is related to samples density, whereas, importantly,
focus angle describes a specific view of the feature space (at the limit, a projec-
tion) the classification algorithm concentrates on. The limited focus “blurs” the
probability at x, allowing only to see the probability of a region around x:

Plx=xrQ) = [ alslr(x. Q) -plx = x-+3) - ds

Conveniently, we may define the effective feature vector %X, ¢ as a feature vector
with probability distribution function the normalized probability of a region

é P(X = X|7n7 Q)

Jra P(x =x|r,Q) - dx’ (19)

p(%.,q =x)

and then define functionals of the effective feature vector, such as the Bayes loss
BL[C|%,q] and the mutual information I[%, ¢; C]. Notice that, as opposed to
the original measures, by keeping the focus constant, any invertible transform
of the feature space will also have an impact on these “effective” measures.
What’s more, as focus magnitude goes to infinity (i.e. at the limit of an infinitely
dense sampled feature space) and for any focus angle, the effective feature vector
converges to the original one:

li %0 = X, 20
Vx:rgcr)l:oo xr.Q x ( )

thus allowing us to represent in a uniform way both “myopic” and complete
knowledge of the probability distribution function and of its functionals.

We may say that non-parametric classification algorithms, such as the K-NN
or RBF-Support Vector Machine (SVM) [2], when locally evaluating classifica-
tion decisions, they have constraints regarding the focus angle. First, they don’t
adapt the angle locally, i.e. Q(x) = @ and, second, they equally weight all fea-
tures, which translates as Q = I;. We may jointly call these properties isotrop-
icity. It is thus to be expected that these algorithms will work better on feature
space in which these two assumptions hold. It makes sense, therefore, to seek for
transforms which tend to maximize the Bayes loss and mutual information in
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respect to isotropic focus angle. We will refer to those criteria as Minimization
of Isotropic Loss (MIL)
f £ argminBg (C|f(x))
{feF}

and Maximization of Isotropic Information (MII)

f £ argmaxZ(f(x); C).
{feF}

which take, respectively do not take, into account a specific loss matrix. Figure
2 shows how a suitable invertible transform f may locally adapt the feature
space so that subsequent classification with isotropically-constraint classifiers has
more chances to be correct. Typically, since optimal f is hard to find, a general
approach we suggest here, is to first locally estimate f on available samples, and
then aggregate the local estimations to approximate a global overall transform,
taking into account the constraints of the transform family (see Section 3.3).
However, instead of finding an optimal f, one may also optimally adapt kernels
locally to improve classification performance.

3.3 Non-Linear Feature Scaling

A review of the benefits of feature vector transforms reveals that transforms
other than ones that end up in reduced dimension may be actually worthy to
consider. A first argument comes from questioning a popular claim regarding
dimensionality reduction, namely that it reduces the complexity of further pro-
cessing steps, since these will be performed on a smaller feature space. Even this
sounds as an important reason, one should notice that the complexity needed



to reduce the feature space in an optimal way should be added to the complex-
ity of the steps to follow and, hence, it is not straightforward how the overall
complexity gets reduced. A second argument, related to visualization of data, is
that reducing the number of dimensions is not the only way to improve problem
inspection. Other possibilities exist, as long as theses involve putting in evidence
the distances of samples important to distinguish the classes. Last, let us point
out that the commonly desired intepretability of a transform comes with the cost
of low transform capacity. Here, we suggest that interpretability of the trans-
form is linked to the easiness we have to associate each and every one of the final
features with the the original ones: if a simple association of one original feature
with the final is possible, then the transform may indeed be called interpretable.

A family of transforms effectively dealing with the above issues is Non-Linear
Feature Scaling (NLFS),

f:RY— R £(x) = [f1(21), fola2), . .., fa(za)]T,

where the original features are one-to-one mapped to the final features. In addi-
tion, the derivative of the transform in respect to any of the features is imposed
to be strictly positive, which implies that f is invertible and thus no information
is lost. The transform locally shrinks or expands each feature, depending on the
value of the derivative (stressing function):

0
((’).%'7;

Interpretability of the transform is supported by noticing that, while the dis-
tance between samples changes, their order along each feature stays unchanged.
Transform complexity is controlled by forcing the stressing function to remain
constant within a given interval of the feature values: constant stressing for the
whole feature values range is equivalent to plain (linear) feature scaling, whereas,
by repeatedly dividing the feature into small bins, we obtain a finer “grid” form
of the transform. The goal of learning, then, is to find an optimal set of stressing
factors for each one of the features.

To this end, we applied the MII criterion, under the condition that locally
optimal matrices are diagonal. An analytical description of the resulting algo-
rithm (Isotropic Non-Linear Feature Scaling (ISONLFS)) can be found in the
author’s thesis (see also . The algorithm has been evaluated on the set of our
benchmark tests against the SPCA method (see Section 2.4). The generalization
performance obtained (see Table 3), justify both the use of invertible transforms
for improving performance as well as the application of the proposed method to
find optimal non-linear feature transforms.

4 Conclusions

We studied optimal feature transforms in a common framework though general
optimality criteria (minimization of Bayes loss, maximization of mutual infor-
mation, maximization of Bayes loss sensitivity). By introducing the concept of



problem methods comp.

SPCA ISONLFS diff. t-test

cancer 96.7 96.8 +0.1
card 85.7 86.1 +0.1
diabetes 74.9 76.7 +1.8 +
glass 66.5 76.4 +9.9 +
heart 79.5 79.7 +0.2
horse 65.6 65.1 -0.5
iris 97.8 96.8 -1.0 -
sonar 80.9 89.5 +8.6 +
soybean 93.4 92.3 -1.1 -

Table 3. ISONLFS: Generalization performance comparison with SPCA.

effective feature vector, we extended the application of this criteria to both di-
mensionality reduction transforms and invertible transforms. Exporing the rela-
tion between these criteria under specific assumptions reveals the connection of
a variety of methods (MMI, LDA, HDA). Our framework allowed the derivation
of new algorithms (SPCA, ISONLFS) with improved performance in respect to
traditional feature extraction methods.
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