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Abstract. We study the simplification of triangular and tetrahedral
meshes using techniques based on successive edge collapses, as well as
the exploitation of the generated multiple levels of detail for the effec-
tive processing of the models. Regarding triangular meshes, we present
a method for the construction of progressive hulls, by suitable edge col-
lapses; we use the generated hulls for the acceleration of intersection tests
between the initial mesh and a line. Regarding tetrahedral meshes, we
simplify meshes with associated vector fields; we construct progressive
tetrahedral meshes by taking into account, while collapsing edges, both
the geometry of the mesh and the associated field. Finally, we present
an efficient algorithm for computing ray-tetrahedron intersection, which
exploits Plücker coordinates to accelerate computations; this algorithm
may be used for the efficient processing of progressive tetrahedral meshes.

1 Introduction

Simplification methods are used extensively as a means to face the ever increasing
complexity of Computer Graphics scenes. They allow the efficient processing and
display of highly complex surface and volume models, by eliminating unnecessary
details given the viewing settings and other application requirements.

Prominent among simplification
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Fig. 1. Edge collapse / vertex split operations

methods are those based on iter-
ative edge collapses [1]. The edge
collapse operation contracts an edge
to a single vertex (Fig. 1). Given an
initial detailed mesh M̂ , successive
edge collapses produce a sequence
of meshes with decreasing numbers
of triangles, up to a coarse base
mesh M0. The inverse of the edge collapse operation is termed a vertex split ;
performing vertex splits on the base mesh, in reverse order to the correspond-
ing edge collapses, recovers the original mesh exactly. A progressive mesh is a
representation of M̂ consisting of the base mesh M0 and the sequence of vertex
splits that produce the original mesh. The progressive mesh construction can be
adapted for many purposes. The two issues that affect the resulting progressive
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mesh are the order in which the edges are collapsed and, for each collapse, the
position of the new vertex [1–6]. Progressive meshes can also be extended to
support selective refinement [7–9], so that detail can be added only on specific
parts of the mesh, as required by the application.

2 Progressive Hulls for Intersection Applications

In this section we focus on triangular meshes. We extend and refine an algorithm
for the construction of progressive hulls, which are hierarchical nested hulls of
triangle meshes, constructed by suitable adaptation of progressive meshes. We
use a new, efficient formula for assigning priorities to edge collapses, and we
propose several conditions in order to produce higher quality hulls that enclose
the original mesh tightly. Furthermore, we present an algorithm that exploits
progressive hulls and a selective refinement framework in order to considerably
accelerate intersection queries on a given mesh [10].

2.1 Background and Related Work

Hierarchical bounding volumes (or hulls) are essential tools for accelerating in-
tersection queries on 3D surface models, and are thus used in various applica-
tions such as ray tracing and collision detection. Hierarchical bounding volumes
enclose the original model in nested sets of “boxes” of various shapes, which
successively restrict the areas of potential intersections. The choice of shape is
a compromise between void space and simplicity of the bounding volume with
the aim of maximizing the speed of intersection tests [11, 12].

Progressive hulls [13] are an application of progressive meshes for the gen-
eration of hulls of closed manifold meshes. The reasoning for their construction
is straightforward: the edge collapse operation affects the mesh only locally, on
the triangles at the neighborhood of the collapsed edge; thus if, for each edge
collapse, the generated vertex is placed on the “outside” of all these triangles,
then the resulting mesh will completely enclose the original mesh, forming an
outer hull for it.

2.2 Progressive Hull Construction

The position of the vertex resulting from each edge collapse is computed by
solving a linear programming problem: the constraints ensure that the vertex
is on the outside of all the faces around the collapsed edge, and the objective
function minimizes the volume (void space) between the faces around the edge
and those around the new vertex (which is the only affected part of the model).

The original progressive hull construction algorithm assigns this volume as
the priority of each edge collapse. This 1st stategy for assigning priorities is
obviously rational, however it is not very efficient since only a small fraction of the
computed collapses are actually applied to the mesh while most are recomputed
in the course of the algorithm.



For this reason, we propose a 2nd stategy for assigning edge collapse priori-
ties. Specifically, we compute the “center” of the vertices around the collapsed
edge and assign as collapse priority the volume between this center and the
faces around the collapsed edge; this heuristic is based on the assumption that
collapsing edges on areas where the faces of the mesh are small or relatively pla-
nar entails little simplification error. Using this strategy, the costly optimization
problem is solved only when each collapse is applied to the mesh.

In order to produce higher quality hulls, we propose several enhancements to
the original algorithm. We ensure that candidate edge collapses do not modify
the topology of the mesh [14]; we restrict the valence of each vertex up to a
maximum number of faces; we ensure that the compactness of the faces of the
mesh does not degrade significantly; and we reject collapses that change the
orientation of the faces abruptly.

Results We generated progressive hulls for various models using the two strate-
gies described above for assigning edge collapse priorities. In terms of quality,
the 1st strategy produced better results, but the 2nd strategy was always close
(Fig. 2). In terms of speed, however, the 2nd strategy outperformed the 1st one
almost six times for all models tested.

Fig. 2. Horse: Initial model (96,966 faces), hulls of 2,000 and 200 faces generated with
the 2nd strategy.

2.3 Testing for Intersections Using Progressive Hulls

The progressive hulls constructed are used for the efficient testing of inter-
sections between a triangle mesh and a ray.

Our algorithm starts by checking for an intersection between the base hull,
which has the least number of faces, and the ray. If an intersection exists, the
algorithm selectively refines the progressive hull in the vicinity of the inter-
section(s) detected, via suitable vertex splits, and checks further the triangles
affected by the refinement. Owing to the localized effect of vertex splits, the
algorithm continuously restricts the areas of the mesh where intersections may



occur, up to individual faces on the original mesh (Fig. 3). This iteration is
repeated until the original mesh is reached or no more intersections are found.

We note that several schemes

Fig. 3. A progressive hull of the balljoint
model intersected by a line segment. The 2,000
face base hull has been locally refined around
the intersection point.

exist for the selective refinement of
progressive meshes [7, 8]. The one
that we use has the property to re-
store the intermediate levels of the
progressive hull exactly; selective
refinement schemes that do not pos-
sess this property are not suitable
for our algorithm, since the inter-
mediate levels that they produce
may not retain the enclosing prop-
erty of the progressive hull hierar-
chy.

Results The efficiency of our algorithm using progressive hulls for accelerating
the intersection test between a ray and a triangle mesh, depends on three factors:
how well the hull encloses the original model, the total number of ray-triangle
intersection tests performed, and the number of vertex splits required. All three
factors are a function of the base hull utilized: a base hull with few triangles
leads to few ray-triangle tests but requires many vertex splits and encloses the
mesh loosely, and vice versa. In our implementation, moderately sized base hulls
(500–3000 faces) were proven the most efficient for all the models tested (Fig. 4).

In any case, our algorithm of-
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Fig. 4. Times for intersection tests with pro-
gressive hulls of various numbers of faces.

fers significant performance gains
for ray-triangle mesh intersection
tests. Progressive hulls generated
with the two strategies described
in the previous section demonstrated
comparable performance, only a lit-
tle worse for the 2nd strategy, but
given the significantly less time re-
quired for their generation, they ap-
pear to be well suited for this task.

Compared to k-DOPs, one of
the most efficient bounding volume
hierarchies, our ray-triangle inter-
section test using progressive hulls
proved faster for all test models used; it should be noted, though, that k-DOPs
are optimized for intersection tests between triangle meshes.



3 Simplification of Vector Fields over
Tetrahedral Meshes

In this section we shift our focus to the simplification of tetrahedral meshes. Such
meshes are used for the representation of volume models, usually with scalar or
vector fields associated with their vertices.

We present a simplification method based on iterative edge collapses for
tetrahedral meshes with associated vector fields, and provide several variations
of the algorithm. We develop a general method that adapts edge collapse based
surface simplification methods to vector fields over tetrahedral meshes, and use
it to optimize the position and field value of the vertex resulting from an edge
collapse. We enforce several conditions in order to maintain the mesh and field
topology, as well as the mesh boundary [15, 16].

3.1 Background and Related Work

Other authors have treated, thus far, either tetrahedral meshes with associated
scalar fields or scattered data vector fields – isolated points with associated vec-
tor values but without connectivity information. Concerning scalar fields over
tetrahedral meshes, most methods use simplification techniques based on iter-
ative edge collapses [17–21]; the edge collapse operation may be extended in a
natural way so that it can be applied to tetrahedral meshes, thus producing pro-
gressive tetrahedral meshes, which retain all the desirable properties of (surface)
progressive meshes. Simplification of scattered data vector fields has mostly used
vertex clustering techniques [22–25], aiming to preserve the topology of the field.

3.2 Vertex Placement Strategies

The first important element of a simplification method that uses edge collapses
is the strategy by which the resulting vertex is defined.

Half-Edge Collapses The first vertex placement strategy that we applied
allows edges to contract only to either of their endpoints and retains the original
field value at the target point. This simplification scheme is highly efficient,
since no computations are made in order to determine the new vertex. Moreover,
since the original vertices and field values are used throughout, the possibility
to distort the field topology is reduced.

Optimal Placement In spite of the advantages mentioned above, half-edge
collapses are restricted and may not offer the optimal simplification result. For
this, an optimization method is required in order to compute the position of the
vertex resulting from an edge collapse and the corresponding field value.

We propose a general technique that extends surface simplification methods
that optimize the resulting vertex, to vector fields over tetrahedral meshes. In
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Fig. 5. A vector field defined on a 2D mesh is embedded in 3D. The two generated
surfaces are simplified concurrently in order to define the resulting vertex position and
field value.

order to apply such methods to tetrahedral meshes, we must work in 4D space;
thus we map the mesh and associated field to 4D, by constructing two 4D hy-
persurfaces using the relations:

p = (px, py, pz, pw) = (vx, vy, vz, 0) + (0, fx, fy, fz)
m = (mx,my,mz,mw) = (vx, vy, vz, 0) + u0(0, fx, fy, fz)

(1)

(where (vx, vy, vz) is the position and (fx, fy, fz) the field value at a vertex,
and for convenience we use u0 = 1

2 ). We note that only one hypersurface is not
sufficient to capture the directionality of the field.

The two 4D hypersurfaces are simplified concurrently using any (3D) surface
simplification algorithm that uses the equations of the planes around the col-
lapsed edge, extended to 4D by the simple addition of one dimension (we have
applied the Quadric Error Metric algorithm [2]). The two resulting points on
the hypersurfaces can provide, by inverse mapping to 3D, the required vertex
position and field value (Fig. 5).

3.3 Error Estimation

The second element of the simplification algorithm is the formula by which the
error induced to the field by each edge collapse is approximated.

Compound Error As a general metric of the simplification error, we propose
a compound error metric as a weighted sum of several components:

E = wFA
EFA

+ wFL
EFL

+ wDED + wCEC + wV EV

In brief, the first two components are estimates of the error induced on the vector
field, measuring respectively the deviation angle (EFA) and the vector difference
(EFL

) of the field before and after the collapse; the third (ED) is an estimate
of the error on the mesh itself (only applicable when collapsing edges near the
boundary), measuring the maximum dihedral angle of corresponding boundary
faces; the last two components control the quality of the generated mesh in terms
of tetrahedra compactness (EC) and vertex valence (EV ).



Fig. 6. The pipe model, original and simplified at 50%, 25% and 10% using SC1
(half-edge collapses).

Quadric Error When applying our algorithm for optimal placement, it is possi-
ble to use a more direct approach for error estimation. The surface simplification
algorithm employed optimizes the vertex resulting from an edge collapse with
respect to some estimation of the simplification error. Given our mapping of the
field to 4D, this estimation provides a measure of the impact of the collapse to
the original field.

In the case of the quadric error metric that we employ, the error estimation is
the sum of squared distances of the resulting vertex to the set of faces around the
collapsed edge. Our simplification algorithm computes two such distances, one for
each of the surfaces constructed out of the p and m points. We arbitrarily choose
to use the distance on the outer (p) surface for error estimation; alternatively,
one could take the distance on the inner (m) surface or a combination of the
two.

3.4 Results

We simplified several datasets (Fig. 6) using three simplification configurations:

SC1 Half-edge collapses with the compound error metric.
SC2 Optimal placement with the compound error metric.
SC3 Optimal placement with the quadric error metric.

SC1 was the fastest configuration, as expected, but in terms of quality its re-
sults varied considerably depending on the error weights chosen; in any case, the
field error components proved most important. SC2 performed unsatisfactorily,
both in terms of speed (it was by far the slowest configuration), which was ex-
pected since it computes both the quadric and the compound error, and in terms
of quality, which may be due to the error weights tested. Finally, SC3 that uses
our quadric error metric for optimized edge collapses, was always slower than
SC1 but produced at least as good results as the best error weight combinations
for SC1 without requiring any user intervention.

4 Fast Ray-Tetrahedron Intersection

Ray-tetrahedron intersection tests are at the heart of many algorithms for the
processing and rendering of tetrahedral meshes. However, this problem is not
treated directly in the current litterature. Motivated by our work with tetrahe-
dral meshes in the previous section, in the current section we present a specialized
algorithm for this test [26].



4.1 Background and Related Work

Ray-tetrahedron intersection tests can be perfomed either using a generic ray-
convex polyhedron intersection test [27], or by combining the results of ray-
triangle intersection tests [28] for the four faces of the tetrahedron; our algorithm
follows the second approach.

4.2 Ray-Tetrahedron Intersection Algorithm

Ray-Triangle Intersection using Plücker Coordinates Plücker coordi-
nates [29, 30] are a way of specifying directed lines in three-dimensional space
using six-dimensional vectors. Given a ray r determined by point p and direction
`, its Plücker coordinates are given by the six-vector

πr = {` : `× p} = {ur : wr} (2)

Given two directed lines r and s, the permuted inner product

πr ¯ πs = ur ·ws + us ·wr (3)

indicates their relative orientation:

πr ¯ πs > 0 ⇔ s goes counterclockwise around r
πr ¯ πs < 0 ⇔ s goes clockwise around r
πr ¯ πs = 0 ⇔ s intersects or is parallel to r

This property is the basis of a

(a) (b) (c)

Fig. 7. (a) The ray enters the triangle; (b) The
ray leaves the triangle; (c) The ray and the
triangle do not intersect.

ray-triangle intersection test. Sup-
pose we are given a ray r and a
triangle ∆ with edges e0, e1, e2.
Then r intersects ∆ iff it has the
same orientation (cw or ccw) rela-
tive to all its edges or it intersects
at most two of its edges (Fig. 7).
This test is robust and efficient since it requires few floating point operations,
no division, and relies only on sign comparisons; moreover, calculations for an
edge can be shared among neighboring triangles.

Ray-Tetrahedron Intersection Algorithm and Optimizations Our ray-
tetrahedron intersection algorithm tests each face of the tetrahedron in turn and
determines if the ray intersects and enters or leaves the tetrahedron through it,
according to the above test; if either of the entering or leaving face has been
found, the relevant sign tests need not be performed for the remaining faces.

This basic algorithm can be optimized in several ways. On a first level, as
already mentioned, calculations for each edge can be shared among the two
neighboring faces. Moreover, computations pertaining to some of the faces of the
tetrahedron may be omitted once the first of the intersected faces is determined.



On a second level, in several cases it is sufficient to compute and examine, for
each face considered, only some of the permuted inner products of the ray and the
face edges; this optimization level increases the code complexity of the algorithm
considerably, but leads to significant performance gains.

4.3 Results

Test results for our algorithm
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Fig. 8. Results for ray-tetrahedron intersec-
tion tests.

are summarized in Fig. 8. Plücker1
and Plücker2 correspond to the two
optimization levels of our basic al-
gorithm, as described briefly above;
Plücker3 corresponds to another form
of optimization that we considered,
but which did not offer any further
improvements; Haines corresponds
to the ray-convex polyhedron algo-
rithm of [27]; and Möller-Trumbore
corresponds to our optimized algo-
rithm but with the ray-triangle in-
tersection tests substituted by the
test of [28] which is considered one of the most efficient general-purpose ray-
triangle intersection tests.

It is obvious that our fully optimized ray-tetrahedron intersection algorithm
is the fastest in all cases. The gains relative to a generic ray-convex polyhedron
intersection algorithm are obvious, as is the suitability of our ray-triangle inter-
section test based on Plücker coordinates for this specific problem.
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