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Abstract. Pseudorandom sequences have many applications in cryp-
tography and spread spectrum communications. In this dissertation, on
one hand we develop tools for assessing the randomness of a sequence,
and on the other hand we propose new constructions of pseudorandom
sequences. More precisely, we develop tools for computing the first order
approximation of a binary sequence with the minimum linear complexity,
we propose two efficient algorithms for computing the second order com-
plexity (quadratic span) of a binary sequence, and we consider and solve
the problem of computing the maximum nonlinear complexity (span) of
a sequence. Finally, we investigate the properties of a family of sequences
constructed as the direct sum of two sequences with ideal autocorrela-
tion, like the GMW sequences.

1 Introduction

Traditionally, pseudorandom sequences have been employed in numerous appli-
cations, for instance in spread spectrum, code division multiple access, optical
and ultrawideband communication systems, in ranging systems, global position-
ing systems, circuit testing and cryptography. In this dissertation we concentrate
on spread spectrum communications ([11]) and cryptography ([2], [4], [9]).

Depending on the context sequences are required to possess certain properties
such as long period, balance of symbols, good correlation properties and large
linear and nonlinear complexity. When families of pseudorandom sequences are
applied in a code division multiple access (CDMA) system, low crosscorrelation
combats interference from other users, whereas low out–of–phase autocorrela-
tion facilitates synchronization. Furthermore, large linear complexity protects
from jamming. On the other hand, sequences with low correlation values em-
ployed in cryptosystems, like stream ciphers, are resistant to correlation attacks,
while sequences with large linear span resist register synthesis attacks, like the
Berlekamp-Massey Algorithm (BMA) ([8]). An informed overview in designing
such sequences is given in [5].
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In this dissertation, on one hand we develop tools for assessing the random-
ness of a sequence, and on the other hand we propose new constructions of pseu-
dorandom sequences. More precisely, we develop tools for computing the first
order approximation of a binary sequence with the minimum linear complexity.
Moreover, we propose for the first time two efficient algorithms for computing
the second order complexity (quadratic span) of a binary sequence. In addition,
we consider and solve the problem of computing the maximum nonlinear com-
plexity (span) of a sequence (the proposed algorithm is linear with respect of
the length of the sequence). Finally, we investigate the properties of a family
constructed as the direct sum of two sequences with ideal autocorrelation, like
the GMW sequences.

The dissertation is organized as follows. Chapter 1 presents an introduction
on sequences and their applications. Chapter 2 establishes the necessary math-
ematical background needed in the sequential chapters. In Chapter 3, the linear
complexity stability of a binary sequence is investigated. In Chapter 4, we pro-
pose two efficient algorithms for computing the quadratic span of a sequence.
The first algorithm exploits the properties of the equivalent system of linear
equations, while the second is a modification of the well known fundamental it-
erative algorithm (FIA) ([3]). In Chapter 5, an algorithm for the calculation of
the span of a binary sequence is introduced, and closed form expressions con-
necting the cardinality of the set of binary finite sequences of the same length
with their span value are presented. In Chapter 6, a family is constructed as the
direct sum of two GMW sequences. This method is applicable to any pair of
sequences with ideal autocorrelation. We conclude by proposing some problems
that need further investigation.

2 Background

In this section we present the notation we are going to use in this abstract paper,
as well as some elementary mathematical background. For more details please
refer to the full version of the dissertation.

Let F2 be the prime field {0, 1}, and let F
m
2 be the mth dimensional vector

space over F2 ([7]). Consider the finite–length binary sequence sn = s1, . . . , sn.
An m–stage feedback shift register (FSR) (see Fig. 1) with feedback function
f : F

m
2 → F2 generates sN if and only if

si+m = f(si+m−1, si+m−2, . . . , si) (1)

for all 0 < i ≤ N − m. The boolean function f can be written in the so–called
algebraic normal form (ANF) as follows

f(x1, . . . , xm) = a0 + a1x1 + · · · + amxm + a1,2x1x2 + · · · + a1,... ,mx1 · · ·xm.

A product of k terms is said to be a kth order product. The first and the second
order products are also called linear terms and quadratic terms respectively. The
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Fig. 1. The block diagram of a feedback shift register.

order of f is defined to be the maximum of the orders of the product terms
appearing in the algebraic normal form with nonzero coefficients.

Definition 1. The length of the shortest FSR having a feedback function of
order k that generates sn defines the kth order complexity of sequence sn, and
is denoted by Ck(sn).

Definition 2. The length of the shortest FSR that generates sn is called mini-
mum nonlinear complexity or span of sequence sn, and is given by

SPAN(sn) � min
k

{Ck(sn)} .

The second order complexity of a sequence sn is referred to as the quadratic
span of the sequence and it is denoted by QS(sn) � C2(sn). In case the feedback
function is linear and f(0, . . . , 0) = 0, we define the linear complexity Ls. It is
clear that

Ls ≥ QS(sn) ≥ · · · ≥ Sk(sn) ≥ · · · ≥ SPAN(sn).

Let x and y be two periodic binary sequences of period N . Their periodic
crosscorrelation function is defined as

Rx,y(τ) =
1
N

N−1∑
i=0

(−1)xi⊕yi+τ , 0 ≤ τ < N.

When, x = y the autocorrelation function is defined.

Definition 3. Two sequences of the same period are said to be cyclically equiv-
alent, if they are related by a left (or right) cyclic shift. Otherwise, they are
cyclically distinct.

3 First Order Approximation of Binary Sequences

Let s be a binary sequence of period N = 2n − 1 and Ls its linear span. The
Berlekamp–Massey algorithm needs 2Ls sequence digits in order to determine
Ls and the linear feedback shift register (LFSR) associated to the least order
homogeneous linear recursion ([8]). Therefore, the linear span is a critical index



for assessing the strength of a sequence against linear cryptanalytic attacks (such
as the Berlekamp–Massey algorithm). However, even a large linear span does
not ensure that a sequence is cryptographically secure. Consider the periodic
extension of the length N vector (0 . . . 01). This sequence has linear span N but
can be approximated by the all–zero sequence with linear span 0.

In many practical applications small deviations from a given sequence can
be tolerated if substantial gains in the linear span are achieved. In this context
the approximate realization problem becomes relevant. Let s = (s0, . . . , sN−1)
contain the first N elements of sequence s and em be a binary vector of weight
1, the single one being the mth digit, where m ∈ ZN and ZN = {0, . . . , N − 1}.
Define ym = s + em, where + denotes modulo 2 addition. The approximate
realization problem is equivalent to the following minimization problem

WC1(s) � min
m∈ZN

Lym . (2)

WC1(s) is known in the literature as the weight complexity of sequence s [2].
It is conceivable that the approximation problem is of interest when WC1(s) is
less than the linear span Ls of the original sequence. For this reason necessary
conditions are provided. The optimal position m = mopt is referred to as the
optimal shift.

The solution of the approximate realization problem is the main subject of
Chapter 3 ([12], [13]). Three methods are developed in order to determine the
optimal shift, namely the sequential divisions method, the congruential equa-
tions method and the phase synchronization method. The sequential divisions
method relies on the repetitive application of the Euclidean algorithm by factors
of the minimal polynomial of s. The congruential equations method works in
the frequency domain and determines the optimal lag through a set of linear
congruential equations. The solvability of these equations is analyzed and closed
form expressions are derived. The phase synchronization method is based on the
trace representation and builds upon cyclic equivalence in order to identify mopt.

The three issues of characterization, algorithm implementation and sequence
design are tightly related with the approximate realization problem. Charac-
terization is concerned with the description of sequences s whose first–order
approximations possess a given linear span. Of particular importance are those
sequences for which WC1(s) ≥ Ls. Such sequences are called robust because
their first–order approximations do not modify their complexity performance.
Directives for the design of robust sequences are proposed.

Algorithm implementation is primarily concerned with the design of efficient
algorithms in order to determine WC1(x), mopt, x(1) and f (1)(z). An algorithm
following a decoding approach is given in [2] for determining the optimal shift
but its complexity is high. Furthermore, it does not provide any insight to the
design of binary sequences which are robust to such approximation attacks. High
level algorithm organizations for the proposed schemes are presented.



4 On the Quadratic Span of Binary Sequences

In Chapter 4, we investigate the quadratic span of finite binary sequences ([14],
[15]). In [1], the quadratic span of the de Bruijn sequences was studied, and
a partial generalization of the Berlekamp–Massey algorithm, based on Gaus-
sian elimination, was proposed. Two more efficient algorithm for calculating the
quadratic span of a sequence are described in this chapter.

The first one takes advantage of the special structure of the corresponding
linear systems of equations. Let E(n, m) = (sm+1 · · · sn)T , and let q(n) be
the quadratic span of the sn. In connection with the algebraic normal form we
introduce the vector

F (m) =
(
a1 a2 a1a2 · · · am am−1,m · · · a1,m

)T (3)

which contains the coefficients of the unknown quadratic feedback function f .
From (1), the calculation of a quadratic feedback function that generates a given
sequence sn is equivalent to solving the system of linear equations

M(n, m) · F (m) = E(n, m) (4)

where M(n, m) is the (n − m) × m(m + 1)/2 matrix

M(n, m) =

⎛⎜⎜⎜⎝
s1 · · · sm · · · s1sm

s2 · · · sm+1 · · · s2sm+1

...
...

...
...

...
sn−m · · · sn−1 · · · sn−msn−1

⎞⎟⎟⎟⎠ .

Based on the following Theorems, we developed an iterative algorithm that
computes the quadratic span of a finite binary sequence.

Theorem 1. Let d ≥ q(n) be the greatest integer such that

rank (M(n + 1, d)) = rank (M(n, d)).

Then

q(n + 1) =

⎧⎪⎨⎪⎩
q(n) if rank (M(n + 1, d)) =

rank (M(n + 1, d) E(n + 1, d)),
d + 1 otherwise.

Theorem 2. Let q(n +1) = q(n)+ δ, where δ > 0. Then it holds q(n +2 + i) =
q(n + 1), for all i ∈ [0, δ − 1].

After the computation of the quadratic span, we solve the system of linear equa-
tions (4), in order to find the feedback function of the corresponding FSR.

The second algorithm is a modified version of the fundamental iterative al-
gorithm (FIA). FIA was introduced in [3] for solving the multi-sequence shift–
register synthesis problem. The goal of the algorithm is to find the smallest initial
set of columns, in a given matrix, which are linearly independent.



5 Results on the Nonlinear Span of Binary Sequences

The span was studied by Jansen and Boekee ([6]). We proved similar results using
a different viewpoint, based on the special properties of the corresponding system
of linear equations. An efficient algorithm was also introduced for computing the
span and a feedback function that generates the given finite binary sequence.
Finally, the properties of the cardinality of the set of finite sequences with the
same span were studied. The results of Chapter 5 appear in [14], and [15].

Let sp(n) denote the span of sn and E(n, m) =
(
sm+1 · · · sn

)T . From (1),
the calculation of a feedback function that generates a given sequence sn is
equivalent to solving the system of linear equations

M(n, m) · F (m) = E(n, m) (5)

where M(n, m) is the (n − m) × 2m matrix

M(N, m) =
(
1T

n−m | LP (n, m) | NLP (n, m)
)
.

1n−m denotes the all-one vector of length n−m and the matrix LP (n, m) consists
of subsequences of sn

LP (n, m) =

⎛⎜⎜⎜⎝
s1 s2 · · · sm

s2 s3 · · · sm+1

...
...

sn−m sn−m+1 · · · sn−1

⎞⎟⎟⎟⎠
while NLP (n, m) consists of all termwise product combinations of the columns
of LP (n, m). F (m) contains the coefficients of the unknown feedback function
f written in the ANF.

Our analysis is based on the block structure of M(n, m). The algorithm is
divided in two steps. First we compute the span sp(n) of the sequence, and
then a feedback function of sp(n) variables that produces the given finite binary
sequence.

The computation of the span is performed by processing the sequence element
by element. The following two Theorems describe the way the value of the span
changes.

Theorem 3. sp(n) > sp(n − 1) if and only if there is an integer 1 ≤ j ≤
n − 1 − sp(n − 1), such that

Rn−sp(n−1)(n, sp(n − 1)) = Rj(n, sp(n − 1)) and
sn �= sj+sp(n−1).

where Rj(n, m) denotes the jth row of M(n, m).

Theorem 4. If sp(n) > sp(n − 1), then sp(n) = sp(n − 1) + δ, where δ =
n + 1 − sp(n − 1) − r and r + 1 is the index of the first linear dependent row of
M(n, sp(n − 1)).



In order to compute a boolean feedback function of sp(n) variables that
generates the sequence, we have to solve the system (1). Due to the special
structure of M(n, m), the 2m possible different rows of the matrix form a base
B(m) of GF (2)2

m

over GF (2), which can always be written as a lower tri-
angular matrix. Thus, using appropriate outputs of the span algorithm, we
show that the system (5) can be easily reduced to a low triangular system of
r = rank(M(n, sp(n))) equations and variables that can be easily solved by back
substitution. The other 2sp(n) − r variables of F (sp(n)) that do not appear in
the reduced system are set equal to zero.

The system of linear equations (5) has 2sp(n) − r degrees of freedom. Thus,
there are 22sp(n)−r functions with sp(n) variables that can produce the same
sequence sn. In the case of periodic sequences of period L, it holds r = L.

Finally, we study the cardinality of Z(n, SP ), the set of binary sequences of
length n with span SP , as n varies. The main results on the span distribution
follow. Let δ > 0.

1. |Z(2SP + SP + δ, SP )| = |Z(2SP + SP, SP )|.
2. |Z(n + δ, n

2 + δ)| = |Z(n, n
2 )|, for n even.

6 Construction of Sequences with four-valued
Autocorrelation from GMW Sequences

One of the most important families of pseudorandom sequences are Gordon,
Mills, Welch (GMW) sequences ([10]). The GMW sequences and their gener-
alization called cascaded GMW sequences have been extensively studied in the
literature.

In Chapter 6, we describe the construction of a large class of balanced bi-
nary sequences with four–valued autocorrelation function. Binary sequences with
good autocorrelation properties play an important role in communication sys-
tems employing phase–reversal modulation techniques. The construction is based
on the modulo 2 addition of two GMW sequences with relatively prime periods.
The resulting sequences have period equal to the product of the periods. Addi-
tionally, other characteristics of the class members, such as the linear span and
the periodic crosscorrelation, are investigated ([18]).

Definition 4 ([10]). Let n, k be two integers such that n = lk, and r be an
integer in the range 0 < r < 2k − 1 relatively prime to 2k − 1. Consider the
binary sequence x = {xi}i≥0 given by

xi = trk
1

([
trn

k (αti)
]r

)
(6)

where α is a primitive element of F2n , and t is an integer in the range 0 < t <
2n − 1 relatively prime to 2n − 1. Then, x is a GMW sequence.

The above definition implies that GMW sequences are periodic with least
period N = 2n − 1. Some of the properties of a GMW sequence x are the
following [10]:



i. The sequence x has the ideal autocorrelation property

Rx(τ) =

{
1 if τ ≡ 0 (mod N),

−1/N otherwise.
(7)

ii. Sequence x is balanced.
iii. The total number of cyclically distinct GMW sequences of period N = 2n−1

is

Nn
GMW =

ϕ(2n − 1)
n

∑
k|n

ϕ(2k − 1)
k

(8)

where the summation is over all divisors k of n and ϕ(·) denotes the Euler’s
totient function.

We present a new approach for the calculation of the periodic crosscorrelation
function of two GMW sequences whose least periods are different. In accordance
with the above analysis we assume that these sequences, say x = {xi}i≥0 and
y = {yi}i≥0, are given by

xi = trk1
1

([
trn1

k1
(αm1αt1i)

]r1
)

(9)

and

yi = trk2
1

([
trn2

k2
(βm2βt2i)

]r2
)

(10)

where the field elements α and β are primitive elements of F2n1 and F2n2 re-
spectively. Let us assume that the integer t1 (resp. t2) is relatively prime to
N1 = 2n1 − 1 (resp. N2 = 2n2 − 1). Then, sequence x (resp. y) has least period
N1 (resp. N2). Let us denote by d the greatest common divisor of N1 and N2,
and let N = lcm(N1, N2) = N1N2/d.

We prove that their crosscorrelation function becomes

Rx,y(τ) =
1
d

d−1∑
c3=0

X̂c3 Ŷc3+τ = RX̂,Ŷ(τ mod d) (11)

where the sequence X̂ and Ŷ correspond to the autocorrelation of a special dec-
imation of x and y respectively. Of special interest is the case d = 1, where we
get Rx,y(τ) = 1/N for all integers τ ∈ ZN .

Next, we examine the properties of binary sequences constructed by the mod-
ulo 2 addition of two GMW sequences whose least periods are different.

Define the sequence w = {wi}i≥0 which is given by wi = xi ⊕ yi, where the
sequences x = {xi}i≥0 and y = {yi}i≥0 are defined in (9) and (10) respectively.
We proved the following theorem



Theorem 5. The spectrum of the autocorrelation function Rw of sequence w,
defined as described above, is given by

Rw(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if τ ≡ 0 (mod N),

−1/N1 if τ ≡ 0 (mod N2),
−1/N2 if τ ≡ 0 (mod N1),

RX̂(τ),Ŷ(τ)(0) otherwise.

Of special interest is the case where the component GMW sequences have
relative prime periods, i.e. d = 1. We introduce the sets G1 and G2 which contain
all cyclically distinct GMW sequences with periods N1 = 2n1−1 and N2 = 2n2−1
respectively, and the set

G = {x ⊕ T iy| x ∈ G1 and y ∈ G2, for all i with 0 ≤ i < min{N1, N2}}
where gcd(N1, N2) = 1. Recall that |Gi| = Nni

GMW for i = 1, 2. Clearly,

|G| = |G1| · |G2| · min{N1, N2}.
Corollary 1. The spectrum of the autocorrelation function Rw of sequence w ∈
G is four–valued and is given by

Rw(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if τ ≡ 0 (mod N),

−1/N1 if τ ≡ 0 (mod N2),
−1/N2 if τ ≡ 0 (mod N1),

1/N otherwise,

where N = N1N2. Moreover, the value 1 occurs one time, −1/N1 occurs N1 − 1
times, −1/N2 occurs N2 − 1 times and 1/N occurs N − N1 − N2 + 1 times.

The linear span of a sequence w ∈ G depends on its component sequences x ∈ G1

and y ∈ G2 as the following Lemma indicates.

Lemma 1. Let w = x ∈ G. Then,

Lw = Lx + Ly. (12)

Finally we compute the crosscorrelation function of two members of the family
G. The above results can be easily extended in the case of any family of sequences
with ideal autocorrelation.
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