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Abstract. This dissertation investigates the effectiveness of voting and stacking 
techniques in the context of information extraction (IE) from the Web. The mo-
tivation derives from the opportunity of obtaining higher performance at meta-
level, by exploiting the disagreement in the predictions of the IE systems that 
are employed at base-level. Existing combination techniques primarily focus on 
classification. However, IE is not naturally a classification problem. A new 
methodology is proposed for combining IE systems through voting and stack-
ing. The proposed methodology facilitates the combination of a wide range of 
systems, since only their output is combined, without taking into account how 
each system is implemented or models the extraction task. IE is transformed to 
a common classification problem at meta-level, allowing the applicability of 
voting and stacking. Voting proved to be effective in most domains in the ex-
periments. Stacking, proved to be consistently effective over all domains, doing 
comparably or better than voting and always better than the best base-level sys-
tems. Particular emphasis is also given to analyzing the results obtained by vot-
ing and stacking, aiming to investigate the sources of their success in IE tasks. 

1   Introduction 

One of the most interesting topics in supervised machine learning is learning how to 
combine the individual predictions of multiple classifiers. The motivation derives 
from the opportunity of obtaining higher prediction accuracy at meta-level, while 
treating classifiers as black boxes, i.e., using only their output, without considering 
the details of their implementation. Stacked generalization or stacking [1] is a com-
mon scheme that deals with the task of learning a meta-level classifier to combine the 
predictions of multiple base-level classifiers. The success of stacking arises from its 
ability to exploit the diversity in the predictions of base-level classifiers and thus 
predicting with higher accuracy at meta-level. In contrast, no learning takes place 
when voting on the predictions of multiple classifiers. Voting is typically used as a 
baseline against which the performance of stacking is compared.  

This dissertation investigates the effectiveness of voting and stacking on the task 
of Information Extraction (IE). IE is a form of shallow text processing that involves 
the population of a predefined template with relevant fragments extracted from a text 
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document. The proliferation of the Web and the other Internet services in the past few 
years intensified the need for developing systems that can effectively recognize rele-
vant information in the enormous amount of text that is available online. A variety of 
systems have been developed in the context of IE from online text [2, 3, 4, 5, 6]. The 
key idea behind combining a set of IE systems through stacking is to learn a common 
meta-level classifier, such as a decision tree classifier, based on the output of the IE 
systems, towards higher extraction performance. On the other hand, a simpler ap-
proach is to vote on the predictions of different IE systems. 

This dissertation initially introduces the idea of merging the templates filled by dif-
ferent IE systems into a single merged template, which facilitates the application of 
voting and stacking to IE. The merged template contains those text fragments that 
have been identified by at least one IE system, along with the individual predictions 
by the systems. Various voting schemes are then presented that rely either on the 
nominal or the probabilistic predictions of the base-level IE systems. 

A new stacking framework is then introduced that combines a wide range of IE 
systems with a common classifier at the meta-level. Only the output of the IE systems 
is combined, i.e., the filled templates, which are merged into a single template, inde-
pendently of how the instances that populate the templates were identified. In the new 
framework, only the meta-level data set consists of feature vectors that are con-
structed by the predictions of the IE systems, while the base-level data set consists of 
text documents, paired with filled templates. In contrast, both base-level and meta-
level data sets in stacking for classification consist of feature vectors. An extension of 
the stacking framework for IE is also proposed that is based on using probabilistic 
estimates of correctness in the predictions of the IE systems. 

Extensive experiments were conducted for comparing voting against stacking. Par-
ticular emphasis was given to analyzing the results obtained by voting and stacking 
with respect to how the base-level IE systems correlate in their output. The remaining 
of this article is structured as follows: Section 2 presents voting for information ex-
traction. Section 3 presents stacking for information extraction. Section 4 evaluates 
voting and stacking. Section 5 explains the results, based on the diversity of the base-
level systems. Finally, Section 6 presents the conclusions. 

2   Voting for Information Extraction 

Section 2.1 presents an example of combining IE systems. The concept of the merged 
template is introduced, which is important for combining different IE systems either 
through voting or stacking. Majority voting and voting with probabilities for IE are 
presented in Section 2.2 

2.1   Example of Combining Different Systems – The Merged Template 

Let  be a set of  learning algorithms, designed for IE, which are given a 
corpus 

NLL ...1 N
D  of training documents, annotated with relevant field instances. Define 

 the corresponding set of IE systems that exploit the acquired knowledge, to NEE ...1



identify relevant instances in new documents. Finally, define  a set of tem-
plates for a document  populated by  respectively with relevant field 
instances. We suggest in this article that a merged template can be constructed from 

, such as the one showed in Table 1. 

NTT ...1

,d NEE ...1

NTT ...1

Table 1. Merged template, based on the output of two IE systems. Each entry corresponds to a 
text fragment that has been identified by at least one system. 

es,  ),( est  
Output  by  

1E Output  by  2E
Correct 
field 

47, 49 TransPort ZX model manuf model 
56, 58 15'' screenSize - screenSize 
59, 60 TFT screenType screenType screenType 
63, 66 Intel<b>Pentium - procName - 
63, 67 Intel<b>Pentium III procName - procName 
67, 69 600 MHz procSpeed procSpeed procSpeed 
76, 78 256 MB ram ram ram 
81, 83 1 GB ram HDcapacity - 
86, 88 40 GB - HDcapacity HDcapacity 
 
Examining Table 1, we wonder whether we can exploit, at some higher level, the 
disagreement in the predictions of the different IE systems, aiming to achieve supe-
rior extraction performance. The desirable result is to automatically fill the last col-
umn in the merged template of Table 4 with the correct fields. In other words, we 
would like to assign the correct field to each text fragment that has been identified by 
at least one base-level system. 

2.2   Majority Voting and Voting Using Probabilities 

A simple idea for combining the predictions of different IE systems is to use majority 
voting: for each entry in the merged template, we count the predicted fields by the 
available systems and select the field with the highest count or the highest probability. 
In the case of a tie, a random selection is typically performed among even fields. 
Table 2 summarizes all voting settings for information extraction that are defined in 
this thesis, along with a short description for each setting. 

Table 2. Summary of all voting settings, along with a short description. 

Combination method Short description 
MVotM Majority voting. Missing values are ignored 

MVotF Majority voting. Missing values are encoded as special “false” 
values, indicating rejection of prediction 

PVotM Voting with probabilities. Missing values are ignored 

PVotF Voting with probabilities. A threshold is set (typically 0.5), for 
accepting/rejecting predictions 



3 Stacking for Information Extraction 

Section 3.1 presents simple stacking with nominal values, while Section 3.2 presents 
stacking with probabilities. 

3.1   Stacking Using Nominal Values 

The key idea behind stacking for IE, is to learn a meta-level classifier based on the 
output of base-level systems via cross-validation as follows: 

At the jth fold, , of cross-validation, the  learning algorithms 
 are trained on the document set  and the induced IE systems 

 are applied to the test set 

Jj ..1= N
NLL ...1 jDD \

)()...(1 jEjE N jD . For each document d  in jD , let 
 be the populated templates by  respectively. A merged 

template 

NTT ...1 )()...(1 jEjE N

MT  is assembled from , as shown in Section 3.1. A new feature 
vector is produced for each entry in the merged template, which is added to the meta-
level data set 

NTT ...1

jMD . At the end of the cross-validation process, the union 
=MD ∪ jMD  constitutes the full meta-level data set, which is used by a learning 

algorithm  to train the meta-level classifier . Finally, the  learning algo-
rithms are applied to the entire data set  inducing the base-level systems 

 to be used at runtime. Figure 1 shows the new methodology at runtime. 
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Fig. 1. The stacking framework at runtime 

3.1 Stacking Using Probabilities  

A straightforward extension of stacking with nominal values is to rely on the confi-
dence scores by the base-level systems that have been converted into probabilistic 
estimates of correctness. The new framework is described as follows: 
• Instead of predicting one of the Q  relevant fields for each fragment , 

each system generates a confidence score  for the predicted field k . This is 
modelled by a Q -element vector that contains zero values, except for the kth po-
sition where  appears, i.e., . If a system does not predict a 
field, all elements are zero. 

),( est
kc f

kc >< 0,...,...,0 kc



• Each vector is converted to a new one , where  is a prob-
abilistic estimate that corresponds to  and reflects the probability of correct-
ness of the prediction. The conversion process is described in more detail in 
(Freitag, 2000).  

>< 0,...,...0 kp kp
kc

• Finally, the output vectors by  for  form a single vector of 
 elements, appended by the correct field. 

NEE ...1 ),( est
QN *

Table 3 shows an illustrative example of the new feature vectors at the meta-level, 
using probabilistic estimates of correctness. 
 

Table 3. Summary of all voting settings, along with a short description. 

es,  ),( est  Feature vectors using probabilistic estimates 
  Output by 1E  Output by 2E  Class  

47, 49 TransPort ZX 0, 0, 0.92, 0, 0, 0, 0, 0, 0, 0.34, 0, 0, 0, 0, 0, 0, model 
56, 58 15'' 0, 0, 0, 0, 0, 0, 0.83, 0, 0, 0, 0, 0, 0, 0, 0, 0, screenSize 
59, 60 TFT 0, 0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.91, screenType 
63, 66 Intel<b>Pentium 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61, 0, 0, 0, 0, false 
63, 67 Intel<b>Pentium III 0, 0, 0, 0.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, procName 
67, 69 600 MHz 0, 0, 0, 0, 0.82, 0, 0, 0, 0, 0, 0, 0, 0.79, 0, 0, 0, procSpeed 
76, 78 256 MB 0, 0, 0, 0, 0, 0.91, 0, 0, 0, 0, 0, 0, 0, 0.77, 0, 0, ram 
81, 83 1 GB 0, 0, 0, 0, 0, 0.55, 0, 0, 0.89, 0, 0, 0, 0, 0, 0, 0, false 
86, 88 40 GB 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0, 0, 0, HDcapacity 

4   Evaluation 

Extensive experiments were performed in five real-world domains, using well-known 
algorithms at both base-level and meta-level and using five collections of text docu-
ments from five different domains. At the base-level we employed three systems that 
are well known in the literature for information extraction: the (LP)2 system, the BWI 
system and a HMM-based IE system. At meta-level, we used six classifiers from the 
well-known WEKA platform [7]. Recall, precision and  (particularly), were used 
as evaluation metrics. Section 4.1 presents the experimental results by all combination 
methods (voting and stacking), while Section 4.2 discusses the obtained results. 

1F

4.1   Experimental Results 

Table 4 shows the best  scores obtained by all voting settings, stacking with 
nominal values, stacking with probabilities, and by the best base-level systems. Table 
5 compares all combination methods and the best base-level system, based on statisti-
cally significant wins against losses, using , in the five examined domains. Sec-
tion 4.2 discusses the experimental results. 

1F

1F

 
 



Table 4. Comparing all combination methods using F1. 

. Base MVotM MVotF PVotM PVotF Stacking  
Nominal 

Stacking 
Probs 

Courses 65.73 65.59 60.29 65.65 70.64 63.92 71.93 
Projects 61.64 60.71 67.39 60.75 65.75 66.05 70.66 
Laptops 63.81 62.37 67.60 62.76 71.03 68.46 71.55 
Jobs 83.22 79.90 83.85 79.99 83.15 85.67 85.94 
Seminars 86.23 86.87 87.13 86.90 88.02 88.48 90.03 
 

Table 5. Comparing all combination methods using statistically significant wins against 
losses, based on F1. 

 Best Base MVotM MVotF PVotM PVotF Stacking 
Nominal 

Stacking 
Probs 

Best Base  2\0 1\2 1\0 0\4 0\2 0\5 
MVotM 0\2  1\3 0\1 0\5 0\3 0\5 
MVotF 2\1 3\1  3\1 1\3 0\3 0\5 
PVotM 0\1 1\0 1\3  0\5 0\3 0\5 
PVotF 4\0 5\0 3\1 5\0  2\2 0\3 
Stacking  2\0 3\0 3\0 3\0 2\2  0\4 
Stacking Probs 5\0 5\0 5\0 5\0 3\0 4\0  

4.2   Discussion 

We observe that stacking with probabilities obtains a higher  score than the best 
base-level system for each domain. Precision is also improved (substantially for the 
domains of research projects and laptop products) in all five domains. Recall is im-
proved in three domains but harmed in the remaining two. Stacking with simple 
nominal values, on the other hand, outperforms the best base-level  score in only 
two of the five domains. Note that the large improvement obtained by stacking with 
nominal values in projects and laptops is not consistent across all folds during evalua-
tion, and thus measured as statistically insignificant. Overall, stacking with probabili-
ties outperforms simple stacking with nominal values. Only for job offers, the ob-
tained improvement in  against simple stacking was measured as statistically 
insignificant. Handling missing values in stacking did not significantly influence the 
results. 

1F

1F

1F

Regarding voting, PVotF performs comparably or better than the best base-level 
system for each domain. Recall is improved by PVotF at meta-level in most domains. 
Precision is however improved only in two domains (projects and laptops). Among 
all voting settings, PVotF is best for courses, laptops and seminars, while MVotF is 
slightly better only for jobs. For projects, the improvement obtained by MVotF 
against PVotF was measured as statistically insignificant. Overall, PVotF is the best 
among all voting settings. 

By comparing voting against stacking, we observe that stacking with probabilities 
outperforms PVotF in all five domains, although the difference is statistically signifi-
cant only in three domains. Unlike PVotF, stacking with probabilities is also consis-



tently effective across all five domains, always outperforming the best base-level 
system for each domain. Moreover, stacking with probabilities always obtains more 
precise results than PVotF, at the cost of somewhat lower recall. Overall, stacking 
with probabilities achieves the best results among all combination methods. 

An interesting result in the stacking with probabilities setting is that the highest 
 scores in all domains were obtained by the same classifier: LogitBoost. Only for 

projects, the classifier j48 obtained a higher, but statistically insignificant, . On 
the other hand, LogitBoost using nominal values has not been consistently effective 
over all five domains.  

1F
1F

5   Explaining the Results 

Figures 2 to 4 compare all combination methods, based on the number of correctly 
classified instances, when all three base-level IE systems, agree, partially agree or 
disagree on their output, respectively. 
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Fig. 2. Comparing all combination methods, when all three base-level systems agree on the 
same field. Sum of correctly classified meta-level instances over all five domains. 
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Fig. 3. Comparing all combination methods, when either a single or exactly two base-level 
systems agree on the same field (set of columns on the left and right respectively). Sum of 
correctly classified meta-level instances over all five domains. 
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Fig. 4. Comparing all combination methods when the base-level systems disagree. Sum of 
correctly classified meta-level instances over all five domains. 
 
Figures 2 to 4 demonstrate the superiority of stacking with probabilities in each case, 
even when all base-level IE systems agree in their output. 

6   Conclusions 

Though effective in improving the performance of multiple learning algorithms, typi-
cally voting and stacking restrict their applicability to common classification. This 
article extended the applicability of voting and stacking to information extraction 
(IE), and demonstrated their effectiveness using a variety of different algorithms and 
domains. The disagreement in the output of the IE systems that were employed at 
base-level has been successfully exploited by voting and stacking, leading to higher 
extraction performance at meta-level. 

Experimental results have also shown that voting and stacking work best when 
using the confidence scores by the individual base-level systems that have been con-
verted into probabilistic estimates of correctness. Voting using probabilities and set-
ting a threshold, below which meta-level instances are rejected, proved particularly 
effective in most domains by outperforming the best base-level systems. Stacking 
using probabilities, on the other hand, proved consistently effective over all domains 
of interest, doing comparably or significantly better than voting. Precision was always 
improved by stacking at meta-level, as compared to the best base-level systems, while 
recall was improved in most domains. Whenever voting and stacking were doing 
comparably, stacking still obtained more precise results. 

Since IE has been transformed into a common classification task at the meta-
level, there are many opportunities for further improving the extraction performance. 
The experimental results that were presented for stacking in this article are encourag-
ing, considering also the simplicity of the features in the meta-level vectors that rep-
resent only the output of the base-level systems. Additional information could be 
exploited by stacking towards better results that further justify the additional compu-
tational cost over voting. In the domain of laptop products, for example, instances of 



“processor speed” appear typically after “processor name” instances, while instances 
of “ram” usually follow. Exploring such dependencies among extraction fields, or 
possibly other sources of information, could lead to useful extra features within the 
meta-level vectors to be exploited by the classifiers. The combination of different 
classifiers at a higher meta-level could also be examined. 

A different stacking strategy could be applied by considering each field in isola-
tion during combination, as proposed in [4]. In that case, a separate cross-validation 
process would take place in the base-level data set for each relevant field, and the 
problem would be transformed into a binary-learning task at the meta-level. Such a 
strategy would also deal with a limitation of cross-validation procedures over text 
documents that concerns stratification. In common classification over feature vectors, 
a similar distribution of classes is maintained in each fold. In IE, however, typically 
there is a different distribution of fields in each document and thus it is hard to ap-
proximate the same distribution of the fields in each fold. The penalty of stacking 
separately each field is that we cannot take advantage of the cases of contradictory 
field predictions in the output of the base-level systems. 

Creating feature vectors is just one method of handling the meta-level data. Al-
ternative methods can be investigated. An interesting extension is to appropriately 
encode the information available at the meta-level as special tags, which can be either 
embedded within the text or used as additional token features. This would allow the 
training of common IE systems also at the meta-level, since the meta-level data set 
would again consist of the same set of annotated text documents, including the addi-
tional meta-level information embodied within the text. This would also be aligned 
with Wolpert’s two major features of stacking: that data sets at both base-level and 
meta-level are of equal size, while a learning algorithm which is applied at the base-
level can also be applied at the meta-level. 

This dissertation contributes to the direction of realizing the high potential of com-
bination methods in the context of accurately identifying relevant information within 
the abundant of online text, aiming at a framework that can be easily adapted to new 
domains. 
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