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Abstract. Pervasive Computing systems have to deal with the con-
textual information (context), which characterizes the current situation
of the involved entities (e.g., users, mobile devices, environment, etc.).
This dissertation studies context management issues related to the ca-
pability of a pervasive system on adapting its behavior to the involved
entities context. Specifically, the interaction between the user and such
system has to be less intruding as long as the latter recognizes the current
user situation and adapts its functions accordingly. Such issues comprise
the concept of Context Awareness. The dissertation focuses on context
knowledge representation and reasoning as well as on approximate rea-
soning (Fuzzy Sets Theory). The management of lower level environmen-
tal information that emanates from sensors is also of great importance
and is achieved with novel data fusion and decision fusion techniques
that are proposed. Moreover, have been studied issues regarding collab-
orative context awareness and reasoning as well as bio-mimetic contex-
tual dissemination. Adaptive algorithms are proposed so that is rendered
possible the efficient dissemination of information in distributed environ-
ments. The objective is the minimization of communicating costs and
the enhancement of context quality. Consequently, have been designated
issues such as context discovery, context representation and inference,
context fusion and collaborative context awareness

Keywords: pervasive computing, context management, context-awareness,
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1 Introduction

In recent years we have witnessed a rapid progress in the pervasive (ubiquitous)
computing paradigm. Specifically, pervasive computing is emerging as the future
computing paradigm in which infrastructure and services are seamlessly avail-
able anywhere and anytime, improving human quality of life transparently to
the underlying technologies. A system that is unobtrusively embedded in the
environment, intuitive, constantly available and realizes the so-called ambient
intelligence is defined as a pervasive system. The most profound technologies

? Dissertation Advisor: Stathes Hadjiefthymiades, Assistant Professor



are those that disappear [1].This exciting paradigm steps from an amalgamation
of information and communication technology. It is not only the consequence
of convergence of advanced electronics but is also the result of contemporary
research and technological advances in wireless and sensor networks, distributed
systems, mobile and agent computing, autonomic and context-aware computing.

Context-awareness is one of the basic factors of the pervasive computing. It
is defined as the ability of a system to use any piece of information (context) by
sensing the physical environment and adapt accordingly its behavior. In order
to engineer context-aware systems, it is highly important to understand and de-
fine the ingredients of context from an engineering perspective. Context defines
ambient conditions and describes the situation of an entity [2]. Contextual in-
formation might change over time, describing human behaviors, application and
environmental states. Context fusion is the method of deducing new and relevant
information from a variety of sources in order to be used by applications and
users.

In this dissertation we studied context-related issues regarding the current
situation of a user (e.g. location, actions). In such case is proposed a system
which exploits data streams derived from sensors, in order to accurately estimate
the location of a user. The term sensors includes Wi-Fi adapters, IR receivers,
RFID tag readers, etc. The core of the system is the fusion engine which is
based on Dynamic Bayesian Networks (DBNs), a powerful mathematical tool for
integrating heterogeneous sensor observations [3]. An extension to this system is
novel context fusion engine that models, determines and reasons about the user
situation. This engine which is based on Dynamic Bayesian Networks and Fuzzy
Logic, deals with the reliability of sources and approximate contextual reasoning
[4],[5].

For the ambient context awareness is proposed a two-level fusion scheme.
To cope with heterogeneous sensors (e.g. temperature, humidity) and deliver
alarms with increased accuracy and confidence, a layered fusion scheme has been
adopted [6]. Different sensor feeds are processed in the two layers of the fusion
scheme thus improving the reliability of the system in detecting various events.
On the lower layer, the statistical behavior of sensor data is constantly assessed.
On the higher layer, Dempster-Shafer (DS) theory of evidence is adopted in order
to mix the indications coming from the lower layer. The proposed system has
been tested for fire detection [7],[8].

Moreover, have been studied issues regarding collaborative context aware-
ness and reasoning as well as bio-mimetic contextual dissemination. Adaptive
algorithms are proposed so that is rendered possible the efficient dissemination
of information in distributed environments. The objective is the minimization
of communicating costs and the enhancement of context quality. Consequently,
have been designated issues such as collaborative context awareness [9],[10].

The following sections describe analytically an event detection schema for
context awareness. Specifically, we adopt the CUSUM test for change detection
in sensor data. An improvement of this technique is also proposed. Fusing the
retrieved data data from neighboring sensors we are able to mitigate problems



that lead to missed events and false alarms. Simulation results reveal the ap-
propriateness of the mechanism in order to detect an event (particularly fire) as
soon as possible and with low false alarm rate.

2 Data Fusion for Context Awareness

2.1 Event Detection

Let {Xi} denote a sequence of random variables, i.e., a sequence of independent
measurements of a sensor. We assume that Xi have density f(xi;µ0, σ) for i =
1, . . . , τ −1 and density f(xi;µF , σ) for i ≥ τ , where parameter µ0 is known and
µF and σ are generally unknown. The time index τ signals the event(e.g. fire)
in which a change in the distribution of the measurements occurs.

The parameter, µ0 may denote the mean data value which is estimated every
T0 sec (i.e., T0 = 30 min) based on sensor measurements. This time window
length is in general variable and it is advisable to decrease it during daily pe-
riods that are characterized by large variations ( i.e. temperature from 5:00am
to 12:00am). The parameter µF denotes the mean value in case of event and
it is considered unknown. Similarly, σ2 denotes the unknown variance of the
measurements. For example, the Sensirion SHT11 temperature sensor has an
accuracy of ±2.5oC in the range from −40oto− 120oC. Adding a margin of 3oC
to accommodate variations due to clouds etc., we may assume that σ = 5.5o.
Nevertheless, σ is a nuisance parameter and it is generally unknown. If an event
occurs then the parameter τ is the time index indicating a change of densities.
Sequential tests can deal with this detection of change as discussed below.

One of the most promising algorithms to sequentially detect the change is the
CUSUM test [11]. For instance, if the parameter of interest is the mean value,
we can monitor the partial sums

Sn − min
1≤k≤n

Sk, n = 1, 2, . . .

where Sn =
∑n
i=1Xi and conclude that a change from the initial µ0 mean value

to µF occurs at time n (as long as the previous statistic is large enough).
Gombay [12] adapted Page’s CUSUM test ([11]) for change detection in the

presence of nuisance parameters. Gombay proposed statistics based on the ef-
ficient score (Rao’s statistics), on the maximum likelihood estimator (Wald’s
statistics), or on the log likelihood ratio. The efficient score vector is defined as

Vk(µ, σ) =

k∑
i=1

∇ν log f(Xi;µ, σ), ν = (µ, σ) (1)

As it can be proved, if the density f(·) belongs to the exponential family, i.e.,
Gaussian, then once some regularity conditions hold under the null hypothesis,
there exists a Wiener process W (t) that approximates

Wk = Γ−1/2(µ0, σ)Vk(µ0, σ̂k) (2)



where σ̂k is the maximum likelihood estimation of σ and Γ (µ0, σ) is the Fisher
information matrix. The test statistic Wk in (2) can be used to check if a change
in densities has occurred at some time instant τ ≤ k. Under the alternative
hypothesis, i.e., event at time τ , this statistic drifts for k ≥ τ with the size of the
drift proportional to the rate at which the test statistic moves in the direction of
the alternative density. Moreover, in order to make decisions after n observations
have been obtained, we use the following result (Darling, Erdos [13])

lim
n→∞

P{a(log(n)) max
1<k≤n

k−1/2Wk ≤ t+ b(log(n))} = exp(−e−t) (3)

where a(x) = (2 log(x))1/2 and b(x) = 2 log(x) + 0.5 log(log(x)) − 0.5 log(π).
To make use of this result we set a false alarm rate f , i.e. f = 0.001, where
1− f = exp(−e−t) and we compute the threshold

T (f) = (2 log(log(n)))−1/2 [− log(− log(1− f)) + 2 log(log(n))

+0.5 log(log(log(n)))− 0.5 log(π)] (4)

Then, we conclude that the alternative hypothesis is supported by the data at
the first k, if

k−1/2Wk ≥ T (f) (5)

If no such k exists for k ≤ n we do not reject the null hypothesis. For n = 900
and the two indicative values of f = 0.01 and f = 0.001 we obtain T (f) = 4.1
and T (f) = 5.3 respectively. In what follows we assume that all measurements
Xi, i ≥ 1 are independent normal random variables. In this case the test statistic
in (2) is considerably simplified. Let

f(xi;µ0, σ) =
1√
2πσ

e−(xi−µ0)2/2σ2

and under the alternative hypothesis (event occurence)

f(xi;µF , σ) =
1√
2πσ

e−(xi−µF )2/2σ2

where µF > µ0. The only known parameter is µ0 that is the average value in
the absence of the event.

Let Yi = Xi − µ0 and µd = µF − µ0. It is clear that in the absence of event
Yi ∼ N(0, σ2), whereas under the alternative hypothesis Yi ∼ N(µd, σ

2). In this
case the test statistic is

k−1/2Wk = k−1/2

∑k
i=1 Yi(∑k

i=1 Y
2
i /k

)1/2
(6)

Under the alternative, the drift of k−1/2Wk after a change at time τ is

Drift of Statistic = k−1/2 (k − (τ − 1))µd

(σ2 + k−(τ−1)
k µ2

d)
1/2

(7)



Fig. 1. Drift of statistic for various values of µd

Figure 1 shows the drift for τ = 1, n = 900, σ = 5, µd = 1 (blue-cross), µd = 2
(green-square), and µd = 3 (red-circle). As it is observed the greater the excess
value (µd = µF − µ0) the largest the slope of the drift.

Table 1 shows the time instants that the test statistic crosses the thresholds
of T (f) = 4.1 and T (f) = 5.3 provided that the change occurred at τ = 1. As it

Table 1. Threshold cross time instants

T (f) µd = 1 µd = 2 µd = 3

4.1 435 120 65
5.3 740 205 100

is observed from Table 1, if the mean value excess of the alternative density is
µd = 3, it will be detected after 100 samples with a false alarm rate of 0.001.

The parameter µ0 is estimated every T0 based on all sensors in certain area.
The period T0 should be large enough to apply the sequential detection with
as many samples as possible but small enough in order to capture the frequent
changes of data.



2.2 Enhancement of the Detection Mechanism

Several issues arise when the previously described detection process is adopted.
First of all, the method assumes that all sensors are calibrated. It will be a prob-
lem if one of the sensors (Si) presents a relatively large positive offset compared
to the rest of the sensors. What happens in this case is that µ0 measured at the
start of the time window T0 is constantly smaller than the measurements of sen-
sor Si and, therefore, this sensor will falsely indicate an event after some time,
depending on the size of the offset. A remedy to this problem is the periodic
calibration of the sensors. During certain periods when exogenous parameters
have no effect in the sensor measurements, offsets may be calculated and taken
into account in the detection process. Thus, if a sensor presents an offset of µoff

compared to the average value, then the detection process of this sensor will use
the value µ0 + µoff instead of µ0.

A second issue is the correlation of the measurements. Criterion (6) was
developed under the assumption that measurements are independent Gaussian
distributed random variables. However, in real life measurements are correlated
and this may cause a problem as shown in the following scenario. At the start
of the interval T0, when the average value µ0 is calculated various exogenous
parameters may result in an underestimation of µ0. When such parameters do
not exist anymore the average value of data will naturally increase and it will
remain higher than its initial value for several samples. Depending on the rela-
tive increase and the correlation window the detection thresholds may be falsely
crossed. In order to quantify and simulate the aforementioned situation we con-
sider the following model:

We assume that sensor measurements Xi, are written as

Xi = µ0 + zi + ri (8)

where zi represents the noise due to the sensor’s electronics and can be modeled
as a Gaussian process of zero mean and variance σ2

z . The random variable ri is
the sample at time i of a process r(t) which models the data readings variations
due to exogenous parameters. We assume that this process is Gaussian having
an autocorrelation function of the form

Rr(τ) = E[r(t)r(t+ τ)] = σ2
me
−α|τ | (9)

The smaller the constant α, the greater the correlation between successive sam-
ples. The process r(t) can be generated by passing white Gaussian noise w(t)
through a system with one pole at α, that is

dr(t)

dt
= −αr(t) + w(t) (10)

where the autocorrelation function of w(t) is Rw(τ) = 2ασ2
mδ(τ). From equation

(10) we have

d

dt

(
eαtr(t)

)
= eαtw(t) =⇒

∫ t+Ts

t

d

dt

(
eαtr(t)

)
=

∫ t+Ts

t

eατw(τ)dτ



or else

eα(t+Ts)r(t+ Ts)− eαtr(t) =

∫ t+Ts

t

eατw(τ)dτ

Evaluating the previous at t = iTs we obtain

ri+1 = e−αTsri + wi (11)

where

wi =

∫ (i+1)Ts

iTs

e−α((i+1)Ts−τw(τ)dτ

The random variable wi is Gaussian with zero mean and variance

σ2
wi

= E[w2
i ] = σ2

m(1− e−2αTs)

Figure 2 shows a sample function of ri which was obtained for α = 1/120sec,
Ts = 2sec and σm = 1. As can be seen from Figure 2, even small values of σ2

m

Fig. 2. Sample function of the variation random variable ri modeling the temperature
variations due to clouds, etc.

can cause large deviations from the zero mean value. The choice of the constant
α indicates an average correlation window of 120 sec, that is deviations are
persistent for 60 and more samples.

The problem introduced by the correlated measurements may be circum-
vented in one of the following ways:



1. One method is to increase the thresholds so that temporal crosses due to
correlation will be avoided. A good practice is to rely on real data to set up
the thresholds. However, this increase of thresholds may postpone the event
detection or even cause a miss once the cross is outside the time window
T0. Increasing the thresholds will work properly only if the assumed excess
mean value µd is quite large.

2. A more promising solution is to rely on the cooperation of neighboring sen-
sors to minimize correlation. As the measurements of nearby sensors undergo
the same variations the term ri can be estimated from neighboring nodes
and subtracted from Xi.

Based on the second approach in order to deal with the correlated measure-
ments, consider a sensor Si and its neighbors Sj , j = 1, . . . , |Si|, where |Si|
denotes the cardinality of the neighbor set of sensor Si. We also assume that
sensor Si senses an increase in the average value of data that is

Xi = µ0 + µd + zi + ri (12)

For the neighboring sensors we assume that their measurements are of the form

Xj = µ0 + zj + ri−Dj
(13)

where the noise term zj is independent of zi, and the term ri−Dj expresses
the same variation ri that the measurements of sensor Si undergo, delayed or
advanced by Dj . Then, for sensor Si we apply the proposed test statistic on the
data.

Yi = Xi −
1

|Si|

|Si|∑
j=1

Xj = µd + zi + ri −
1

|Si|

|Si|∑
j=1

zj −
1

|Si|

|Si|∑
j=1

ri−Dj
(14)

The term 1
|Si|
∑|Si|
j=1 zj will be close to zero whereas the term 1

|Si|
∑|Si|
j=1 ri−Dj

acts as a predictor to ri and, therefore, it almost cancels this term. Note that in
applying the test statistic on data Yi we do not have to subtract µ0 since this
term has already been cancelled.

3 Simulation results

In what follows, we will present some simulation results based on hypothetical
scenarios, which emphasize the potential of the CUSUM test for the early de-
tection of hazardous phenomena and particular fire detection. We assume two
states: NOTIFY and ALERT. In the NOTIFY state the system is notifying
about a possible change in the temperature mean value signaling a probable
threat of a fire event. In the ALERT state, the system has to be notified on a
sufficient belief for a fire event. Hence, we may use the results of Table 1 and
select a false alarm rate of f = 0.01 to enter the NOTIFY state (T (f) = 4.1)
and f = 0.001 to enter the ALERT state (T (f) = 5.3). When different types



of sensors (e.g. temperature and humidity) exist, we can aggregate the decisions
on a fire event made from the sensed contextual data (derived from temperature
and humidity sensors) in order to conclude the occurence of a fire event.

We assume that the sampling rate is Fs = 0.5 Hz, that is one sample every
2 sec. We renew the estimation of the average temperature every 30 min (T0)
and therefore the time window to make a decision is n = 30 × 60 × 0.5 = 900
samples.
Scenario 1. In this scenario, a fire takes place 10 min (τ = 300) after the esti-
mation of the ambient temperature µ0. This fire causes an average temperature
increase from µ0 = 30 to µF = 32 Celsius degrees (µd = 2) at the measurements
of one sensor and the standard deviation is taken σ = 5. Note that µF is an
unknown parameter that affects the slope of the drift statistic change. Figure 3a
shows a sample function of the measurements, whereas Figure 3b shows the
evolution of the test statistic.

Fig. 3. (a) Sensed temperature in Celsius degree, (b) the evolution of the proposed test
statistic 10 minutes after the occurence of a fire (i.e., τ = 300) with an excess value
µd = 2.

Note that by using the aforementioned false alarm rates of f = 0.01 (thresh-
old T (f) = 4.1) and f = 0.001 (threshold T (f) = 5.3), the system will enter the
NOTIFY state after approximately 300 samples (10 min) and in the emergency
state after approximately 400 samples (13.5 min). Note, also, that although tem-
perature varies greatly (20o− 40o), due to the large standard deviation, the test
statistic used is insensitive to instantaneous changes.



Scenario 2. This scenario simulates the case of correlated measurements. Figure
4a shows a sample function of the process Xi in Equation (12). The mean value
µ0 was set to 30o C, σz = 2, σm = 1 and α = (120sec)−1. A change of densities
occurs at τ = 300 with the excess mean value being µd = 2oC. This value is used
only indicatively for simulation purposes. Higher values, make the test statistic,
to drift faster and cross preset thresholds using fewer samples. Figure 4b shows
the evolution of the test statistic. As it is observed from the figure the test
statistic starts to drift after τ = 300 but it might be that the thresholds T (f)
are crossed earlier, thus producing false alarms.

Fig. 4. (a) Sample function of the measurement process Xi, (b) the evolution of the
proposed test statistic.

Figure 5 shows the simulation results for the technique proposed to mitigate
correlated measurements. We assume that sensor Si has three neighbors with
corresponding delays, measured in samples, D1 = −3 (time advance), D2 = 2,
and D3 = 5. The noise zj for each sensor is independent Gaussian with zero mean
and standard deviation σz = 2 and µd = 2o C. A change of densities occurs at
τ = 300 and as illustrated in Figure 5, no false crossings of the thresholds occur
prior to τ .



Fig. 5. (a) Sample function of the measurement process Yi, (b) the evolution of the
proposed test statistic processing the sensed contextual data from neighboring nodes.

4 Conclusions

In this dissertation we studied context management related issues for pervasive
computing. A part of the dissertation deals with an event detection mechanism
which is based on sensor data fusion. A cumulative sum sequential test is adopted
that combines data of neighboring sensor nodes and detects changes of the un-
derlying data distribution. The detected changes are then, compared against
suitably chosen thresholds, according to a desired false alarm rate, which when
crossed, the system sets it’s internal notification state machine in an ALERT
or a NOTIFY state. Simulation results for fire detection are also presented that
verify the analysis of the proposed techniques. The synthetic trace used in our
simulations contained Gaussian distributed data. CUSUM criterion is stimulated
by an appropriate change of mean value of the Gaussian distribution. As a future
work, we propose the enhancement of the implemented algorithms with alter-
native combination rules, e.g., [14],and the adoption of the Fuzzy Set theory to
deal with uncertainty, imprecision and incompleteness of the underlying data.
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