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Abs t rac t .  In this paper we discuss two data models for spatial database 
systems: the linear data model and the topological data model. Both can 
be used to model a wide range of applications. The linear data model is 
particularly suited to model spatial database applications in which exact 
geometrical information is required and in which this information can 
be approximated by linear geometrical spatial objects. The topological 
model on the other hand is suitable for applications in which rather than 
exact geometrical information the relative position of spatial objects is 
of importance. 
We will specify in each case which types of spatial data and spatial 
databases are under consideration. A semantics for both data models is 
formally defined in terms of finite representations of spatial databases in 
the data models. We also present languages to query spatial databases 
in both models and briefly investigate their expressiveness. 

1 Introduction 

The number of computer applications in which database systems are used to 
store and manage spatial or geometric information has grown rapidly during 
the last decades. CAD/CAM, VLSI-design, robotics, geographical information 
systems, and medical imaging are only a few examples of applications that  use 
(sometimes large amounts of) two-dimensional or three-dimensional spatial in- 
formation. 

Initially, spatial database management systems for such applications were 
build by extending traditional database management systems by introducing 
rather trivial spatial da ta  types and by extending SQL in an application-depen- 
dent way. Current efforts in spatial database systems, however, aim at developing 
systems that  are specifically suited to deal with spatial information, but which 
are nevertheless application-independent. This latter goal was set out in the 
following quote of [12]: 

"The challenge for the developers of DBMSs with spatial capabilities lies 
not so much in providing yet another special-purpose data structure that is 
marginally faster when used in a particular application, but in defining ab- 
stractions and architectures to implement systems that offer generic spatial 
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data management capabilities and that can be tailored to the requirements of 
a particular domain". 

Apart from the fact that  spatial database management systems are now de- 
signed as general as possible rather than for one particular application, a number 
of other and more theoretical concerns dominate the current research in spatial 
database systems: 

- theoretical models are needed which support an elegant combination of spa- 
tial (or geometrical) information and non-spatial (or classical) information; 

- a formally defined semantics is needed that  is closed under set-theoretic, 
geometric and topological operations and that  is defined in terms of a finite 
representation; 

- efficient implementations of operations on n-dimensional spatial objects are 
desired; 

- the connection with visual interfaces and multimedia must be investigated. 

In this paper we describe two data models both of which are suited to model 
a wide class of spatial database applications: the linear data model and the 
topological data model. The linear da ta  model is suited to model spatial database 
applications in which exact geometrical or geographical information on spatial 
objects is required and in which this information can be approximated by linear 
geometrical spatial objects. The topological model on the other hand is suitable 
for applications in which rather than exact geometrical information the relative 
position of spatial objects is of importance. 

The remainder of the paper is structured as follows. In Section 2, we describe 
the linear data  model. First, we look at a number of applications for which this 
data  model is suited: geographical information systems, CAD/CAM and linear 
decision problems. We analyze the spatial data  requirements of these different 
applications. Next, we formalize the types of da ta  that  occur in these applica- 
tions into the mathematical framework of semi-linear sets in an n-dimensional 
Euclidean space. We conclude this section by briefly illustrating how the rep- 
resentation scheme of the linear data  model can be extended to a language to 
query spatial databases in the linear data  model. 

In Section 3, we discuss the topological data  model. First, we look at a typical 
example application of spatial databases in the topological data  model and at 
the information that  is characteristically contained in such spatial databases. We 
formally define what we mean by spatial data  and spatial databases in this da ta  
model: conceptually, spatial databases consist here of points, curves between 
these points, and areas formed between these curves in the two-dimensional 
Euclidean plane. We describe a representation of spatial databases by means of 
a finite data  structure which contains exactly the topological information of the 
spatial database. We conclude by giving a language to query spatial databases 
in the topological data  model and illustrate the expressiveness of this language. 
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2 Linear D a t a  M o d e l  

In this section, we concentrate on spatial database models for applications that 
require the knowledge of the exact geometric position in space of the spatial data 
they manipulate. We focus on linear spatial data, although some applications 
typically handle more general kinds of spatial data. The representation of a coast 
line, for instance, requires fractal curves. The restriction to linear data is justified 
however, for the following reasons: 

1. at this moment there are few efficient algorithms known to implement the 
variety of spatial operations on curved data; 

2. linear figures are perfectly suitable to approximate more general data with; 
and 

3. the simplicity of linear data will offer us several desirable properties. 

As an introduction, we discuss three different kinds of spatial applications. 
We briefly analyze the kind of spatial data each application requires to detect 
all necessary and sufficient data requirements. All these requirements together 
will motivate the choice of our final spatial data type. 

We propose a general and natural data type that, in our opinion, covers 
all possible data requirements for the intended applications. The representation 
scheme based on this data type is complete, in the sense that it can deal with 
every n-dimensional, mathematically definable linear geometric figure. Once the 
representation of the spatial data is known, we describe formally the linear data 
model and explain its syntax and semantics. We present possible linear database 
instances for the discussed applications to show the effectiveness of the linear 
model. Finally, we conclude with extending the representation tool of linear 
figures to a linear spatial query language. 

2.1 D a t a  R e q u i r e m e n t s  

In this section, we analyze the spatial data requirements of three totally differ- 
ent spatial applications. In the first example, we discuss the kind of spatial data 
required in geographical information systems. Next, we investigate the various 
spatial objects used in CAD/CAM. Finally, we show how linear (decision) prob- 
lems can be interpreted as intersections, unions, differences, and projections of 
n-dimensional linear figures. 

Geographical information systems [21] are one of the first applications that 
demanded a spatial database system. The task of the spatial database is to store 
a representation of some geographical area, e.g., a road map, together with text 
and number information as, for instance, speed limits and one way directions. 

Representations of geographical areas are typically two-dimensional maps 
graphically visualizing the relevant information. Figure 1 shows a simplified rep- 
resentation of Belgium. On this map, we have displayed the two most important 
rivers, some cities, and the three regions of Belgium. Unavoidably, we grap at the 
polygon data type (to represent two dimensional areas), the line-segment type 
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(to represent borders and rivers), and the point data type (to represent cities), for 
this purpose. Complex, not necessarily topologically connected, geographical ob- 
jects are provided as compositions of these basic data types. The literature men- 
tions various data models based on these primitive types [10, 13, 14, 15, 29, 31]. 
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Fig. 1. Spatial information map of Belgium. 

The same geographical area can be viewed from various perspectives. We 
can focus on the road infrastructure, the land use, and weather information, for 
instance. All these different thematic layers of the same area cannot be displayed 
on the same two-dimensional representation of the area. One particular way to 
solve this brings M1 these thematic layers together and considers them as one 
spatial data object in higher-dimensional space. 

In CAD/CAM, the data requirements are somewhat different. Typically, 
CAD/CAM applications store and manipulate a database containing the rep- 
resentation and features of three-dimensional scenes and solid objects. 

Up to now, constructed solid geometry (CSG), together with the boundary 
representation method, are the most widely propagated representation tools for 
CAD/CAM objects. In the CSG representation scheme, a geometric object is 
described as a composition of primitive objects as for instance pyramids and 
boxes. 
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Fig. 2. Composition of two boxes into a T-shape. 

The composition is achieved via motial and combinatorial operators. Un- 
der motial operators we understand affine transformations as for instance rota- 
tion and translation. Examples of combinatorial operators are the set operations 
union, intersection, and difference. Figure 2 shows an object with a T-shape, 
created via the CSG methodology. 

Although solid objects are always topologically closed, it can be very helpful 
to use open figures to define them as illustrated by Figure 3. Two boxes are 
connected using a lump in the one box that precisely fits a notch in the other 
box. The one box can be represented as the union of the box with a small cube 
and the other box as the difference of the box with the topologically open interior 
of the same small cube. 

Until now, we were only concerned about the representation of real-world 
objects. These could all be described using at most three free parameters. The 
result of linear spatial queries, however, can not always be described with three 
free variables. Consider, e.g., the query "Compute the position of a couple of 
shelves in a furnitured room such that desks can still be sit at, and doors and 
drawers can still be opened." The solution (the coordinates of the mass-centers 
of the shelves) will define an object in (at least) six-dimensional space. Moreover, 
that object will not be topologically closed, since open doors and drawers may 
not touch the shelves. In general, the solution to this kind of linear problems 
might be an n-dimensional, unbounded and topologically non-closed geometric 
figure [4]. 
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Fig.  3. A connection between two boxes. 

2 . 2  L i n e a r  R e p r e s e n t a t i o n  S c h e m e  

In this section, we try to formalize the various da ta  types proposed in the previ- 
ous section into a mathemat ica l  framework. This mathemat ica l  f ramework allows 
the representation of every semi-linear set definable in n-dimensional Euclidean 
space. Furthermore, the framework is safe in the sense tha t  only linear figures 
can be represented. 

As it is more natural  to represent a geometrical figure as an enumerat ion of 
all its points, the representation we use will be of type "point-set." However, we 
have to represent our "point-sets" in a finite way to allow physical storage. 

More formally, assume a totally ordered infinite set of variables over R called 
real variables. Define a linear term as a linear polynomial  with rat ional  co- 

k 
efficients, i.e., of the form ~i=1 aixi, where x l , . . . , x k  are real variables and 
a l , . . .  ,ak are rational constants. An atomic linear formula is a condition of the 
form T 0 a where T is a linear term; 0 one of the following binary comparison 
operators =,  <,  >,  <, _>, and ~£ ; and a a real constant.  A linear formula is an 
arbi trary well-formed formula in first-order logic with addition, i.e., 

- atomic linear formulae are linear formulae; 
- i f ~  and ¢ are linear formulae, then ~ A ¢ ;  ~ V ¢ ;  and - ~  are linear formulae; 

and 
- if z is a real variable and ~ is a linear formula in which z is free, then (3x)~  

is a linear formula. 
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Every linear formula ~ with n free variables, x l , . . . ,  zn, defines a point-set 

{ ( x l , . . . , = , )  t v ( x l , . . . , = , ) }  

in n-dimensional Euclidean space R n. A geometrical figure in R n will be called a 
semi-linear set if there exists a linear formula ~ with n free variables such that the 
point-set defined by ~ coincides with the geometrical figure. The representation 
of a semi-linear set is any linear formula, ~o, that defines a point-set equal to the 
semi-linear set. 

It is obvious that this representation scheme is not unique. In fact, any semi- 
linear set can be represented by an infinite number of linear formulae. On the 
contrary, the representation scheme is unambiguous. Every linear formula 
defines exactly one semi-linear set. 

Assume in the followingexample that we are working in the three-dimensional 
Euclidean space R 3. 

Example 1. Assume we want to create a prism with height a in the z-direction. 
The representation of this prism is given by the linear formula 

v(x, y) ^ (0 < z < a), 

where ~ defines the base of the prism in the zy-plane. Any prism with the same 
shape can now be defined in p3 as a composition of a translation and a rotation 
of this prism primitive. In general, any affine transformation can be applied to 
the prism primitive since affine transformations can be very simply expressed as 
linear formulae. If we consider, for instance, an affine transformation that does 
not affect the z-coordinate, the resulting prism may be described in terms of 
x~ew, Y,,ew, and Znew by the linear formula 

(3x)(3y)(~(x, y)A(xnew --- a x + b y + t x ) A  (Yneto = cx + d y + t y ) ) A ( O  <_ znew < a) 

with a, b, c, d, e, t , ,  ty constants defining the affine transformation. 

We have explored in this example a very powerful property of the linear 
representation scheme: the expressibility of affine transformations with linear 
formulae. This, together with the basic set operations union, intersection, and 
difference, of which semi-linear sets are closed under [33], allows the definition 
of linear figures using the "constructed solid geometry" method. 

A practical tool to deal with semi-linear sets are polytopes. A polytope in 
the Euclidean space (of arbitrary dimension) is defined as the convex hull of 
a non-empty finite set of points in that space [5, 23, 17]. An open polytope is 
the topological interior of a polytope with respect to the smallest sub-space 
containing the polytope. It can be proved that bounded semi-linear sets and 
finite unions of open polytopes are equivalent. [33] 

However, since polytopes are necessarily bounded, finite unions of polytopes 
can only represent bounded linear figures. Therefore, we present another tool 
characterizing semi-linear point-sets in all their appearances. 
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Giinther [11] defines polyhedral chains as a representation scheme for geomet- 
ric data. A polyhedral chain in the Euclidean space (of arbitrary dimension) is 
defined as a finite sum of cells each of which is a finite intersection of half-spaces. 
It can be shown that  semi-linear sets and polyhedral chains are equivalent. [33] 
This property proves effectively the equivalence of semi-linear sets with mathe- 
matically definable linear figures. 

The above characterizations allow us to conclude that  most spatial da ta  
types found in the literature are sub-types of the semi-linear set da ta  type. 
Giiting [13, 14] proposes in his geo-relational algebra the spatial da ta  types 
point, line, and polygon, which can be seen respectively as zero-, one-, and two- 
dimensional polytopes. 3 In his spatial da ta  representation model Egenhofer [9] 
proposes simplices as basic objects , which are special kinds of polytopes. 

In summary, semi-linear sets constitute a very general and elegant paradigm 
to represent linear spatial data, which are the kind of spatial data  that  are 
most often considered. We believe semi-linear sets have the potential for effi- 
cient implementation. Brodsky et al. [4, 3] introduced canonical forms for linear 
formulae to make efficient implementation of operations on semi-linear sets pos- 
sible. Lassez et al. [20, 16] have proposed variable elimination algorithms for 
sets of linear constraints. The alternative characterizations we presented offer 
the opportunity to use polyhedral chains or polytopes as internal representa- 
tion for semi-linear sets. Giinther [11] has described efficient algorithms to per- 
form set-operations on polyhedral chains. Algorithms to compute efficiently the 
union or intersection of n-dimensional polytopes are provided by Putnam et 
al. [28]. Several operations and techniques described in computational geome- 
try, such as plane sweep and divide-and-conquer, can also be used for this pur- 
pose [22, 32, 6, 27]. Finally, the notion of semi-linear set is not bounded to any 
particular dimension. 

2.3 T h e  L i n e a r  D a t a  M o d e l  

The linear spatial database model is based on the relational model, because 
linear spatial databases require a lot of traditional database capabilities. In par- 
ticular, if the linear spatial database consists purely of non-spatial flat relations, 
it degenerates into a traditional database for which the relational model offers 
a well-accepted representation. Moreover, the relational model, and the rela- 
tional calculus and algebra as well, have the interesting property of being easily 
extendible with new data types and operators. 

More formally, a linear spatial database scheme consists of a finite set of 
relation names. Each relation name /~ is of some type [n, m], with n and m 
integers. A linear spatial database instance is a mapping that  assigns a linear 
relation instance to each relation name appearing in the database scheme. A 
linear instance of R, also called a linear relation, is a finite set of linear tuples of 
type [n, m]. A linear tuple of type [n, m] is straightforwardly defined as a tuple 

The polygons considered by Giiting are not necessary convex, but can always be 
decomposed into convex polygons. 
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of the form 

(c l , . . . ,  e,, 

where c l , . . . ,  en are non-spatial values from some domain U and ~ ( z l , . . . ,  z ,  0 
is a linear formula with m free real variables. 

The semantics of a linear tuple t = ( c l , . . . ,  c,, ~ ( x l , . . . ,  xm)) of type [n, m] 
is the possibly infinite subset of U'* × R m defined as the Cartesian product 
{(Cl , . . . ,cn)}  × S, in which S C_C_ R "  is the semi-linear set { ( z l , . . . , z m )  ] 
~(z l , . . . , z , ,~)} .  This subset of U n × R "~ can be interpreted as a possibly in- 
finite (n + m)-ary relation, denoted I(t) .  The semantics of a linear relation, r, 
denoted I(r) ,  is defined as I(r)  = Ute~ I(t) .  Finally, the semantics of a linear 
spatial database, DB,  is the set of relations I(r)  with r a linear relation of DB.  

In the remainder of this section, we give an example spatial database for the 
map of Belgium depicted in Section 2.1. 

2.4 T h e  L i n e a r  Spa t i a l  Ca lcu lus  

In this section, we present a calculus-like query language, called FO + linear. 
The linear calculus, FO + linear, is obtained by adding to the language of linear 
formulae of Section 2.2 the following: 

- a totally ordered infinite set of variables called non-spatial variables, disjoint 
from the set of real variables; 

- atomic formulae of the form vl = v2, with vl and v2 non-spatial variables; 
- atomic formulae of the form R ( v l , . . . ,  v,; P l , . . . ,  pro), with R a relation name 

of type [n, m], v l , . . . ,  v~ non-spatial variables, and P l , . . . ,  p,~ linear terms; 
and 

- universal and existential quantification of non-spatial variables. 

A query expressed in FO + linear has the form: 

{ ( x l , . . . , x , )  

where ~(x 1 , . . . ,  xn) is an expression of FO + linear with x 1 , . . . ,  xn free variables. 
Finally, we shall give some typical example queries, illustrating the expressive 

power of FO + linear. A precise characterization of the expressive power of FO + 
linear is still wide open. For a deeper investigation concerning the expressiveness 
and limitations of FO + linear, we refer to [33]. 

Example 2. An example of a (very simple) linear spatial query on the database 
in Example 1 is "Find all cities that lie on a river and give their names and the 
names of the rivers they lie on." This query can be expressed by the following 
linear calculus expression: 

{(c, r) I (3x)(3y)(Cities(c, z, y) A Rivers(r, z, y))}. 
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Cities 

Name Geometry 
Antwerp (x = 10) A (y = 16) 
Bast, ogne (x = 19) A (y = 6) 
Bruges (x ---- 5) A (y = 16) 
Brussels (x = 10.5) A (y ---- 12.5) 
Charleroi (x = 10) h (y = 8) 
Hasselt ( x=16)  A ( y = 1 4 )  
Liege (~ = 17) ^ (U = 11) 

Rivers 

Name Geometry 
Meuse ((y < 17) A (Sx -- y _< 78) A (y >_ 12)) V 

( (y  < 12) ^ (x - y = 6) A (y > 11)) v 
( ( y < l l )  A (x -- 2y = --5) A (y :> 9)) V 
((y < 9) A (~ = 13) A (U > 6)) 

Scheldt I ((y < 17) A ( .  + y = 26) ^ (y > 16)) V 
((y < 16) ^ (2x - ~ = 4) ^ (y > 14)) V 
((x 59) A(x >_7) A(y= 14))V 
((y _< 14) A (--3X 4- 2y = 7) A (y :> 11)) V 
( (y  _< 11) A (2x 4- y = 21) A (y _> 9)) 

Regions 
Name Geometry 
Brussels 
Flanders 

Walloon Region 

(y < 13) A ( .  < 11) A (y > 12) A ( .  > 10) 
(y < 17) ^ (5 .  -- y < 7S) A ( .  -- 14y < --150) ^ ( .  + y > 45)^ 
(3x -- 4y > --53) A ('~((y < 13) A (* < 11) A (y > 12) A (x > 10))) 
( ( *  - -  14y >_ --150) A (y < 12) A (19x 4- 7y < 375) A (x - -  2 y  _< 15)A 
(5 .  + 4y > sg) A (x > 13)) V ( ( - .  + 3y > 5) A ( .  + U > 45)^ 
(x -- 14y > --150) ^ ( .  > 13)) 

Fig.  4. Representation of the spatial database of Belgium shown in Figure 1. 

In all the remaining queries, we shall assume the input database consists 
of one relation S of type [0, n]. We shall also use point-variables instead of 
real variables, e.g., equations such as (x < y) should be interpreted as (xl < 
yl) A . . . A  (zn < Yn). In particular, (x ¢ 0) means (xx ¢ 0) A . . . A  (zn ¢ 0) and 
not (xl ¢ O) V...V (x. ¢ 0)! 

Example 3. The following FO + linear-expression decides whether S is bounded: 

(3d ) (Vx) (Vy) (S (x )  A S ( y )  = > - d  < y - x  < d) .  

Example 4. Several topological properties of a semi-linear set can be computed 
in FO + linear. For instance, the topological interior of S is computed by the 
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following FO + linear expression: 

(3d)((d ¢ 0) A (Vy)(x - d < y < x + d) ~ S(y )). 

Similarly, the topological closure and topological boundary of S can be computed 
in FO + linear. 

In spite of all this, FO+linear can not be considered as a fully adequate query 
language. Afrati et al. [2] proved that the query "Does the semi-linear set S lie 
on a line?" is not expressible in FO + linear. The list of non-expressible FO + 
linear-queries is further extended in [33] with the predicate collinear(x,y,z), 
which checks if the three points x, y, and z are collinear, and the predicate 
ch(xl , . . . ,  Xm, y), which computes all points y belonging to the convex hull of 
the set of points { x l , . . . ,  xm}. 

3 T h e  T o p o l o g i c a l  D a t a  M o d e l  

In this section, we focus on a spatial database model suited for applications 
in which knowledge about the relative positions of spatial objects is of impor- 
tance rather than exact information about the geometric position of the spatial 
data. We limit the discussion to spatial databases that, conceptually, consist 
of points, curves between these points and areas formed by these curves in the 
two-dimensional Euclidean plane. These databases are commonly referred to as 
spatial databases in the topological data model. We will use a railway system as 
an example application that can be modeled in this way. 

We discuss a representation of this type of databases by means of a finite 
data structure that is primarily geared towards supporting queries that involve 
only topological properties of the spatial database. This is reflected by the fact 
that this data structure represents topologically equivalent spatial databases in 
the same way, but also represents topologically non-equivalent spatial databases 
in a different way. A representation that satisfies these properties corresponds to 
an interface which allows the user to concentrate precisely on all the topological 
properties of the spatial database. 

Finally, to conclude this section, we present a language to query spatial da- 
tabases in the topological data model. 

3.1 A Typica l  Appl ica t ion  

Travel information is often provided to the train traveler by means of a spatial 
database such as the railway map shown in Figure 5. In this map, cities (or their 
railway stations) are represented by points labeled with the city name and train 
tracks between the stations are represented by curves connecting these points. 

Such spatial database (or map) does not contain exact geographic informa- 
tion. There is no information in this map concerning the exact position of cities 
or railway stations. It also contains no information to answer a metric query 
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Calais ~ Antwerp 

~ over 

Sheffield ~ 

Newcastle ~ Manchester 

Liverpool 

Fig. 5. A railroad map. 

such as "What  is the distance between London and Calais?" Since the traveler's 
main concern is not the longitude or latitude of cities he is also not surprised 
to find London shown right of Brussels in Figure 5 while in reality it is west of 
Brussels. 

On the other hand, with the help of such maps, the traveler can answer his 
or her typical queries such as "Is there a connection from Brussels to Liverpool 
with a stop in London?" or "Do I pass Dover before passing Calais when travel- 
ing from Antwerp to London?" The class of queries which are of importance to a 
traveler is formed by those queries involving only properties of the map which are 
topological in nature. Here, concepts such as adjacency, connectivity, and con- 
tainment are in the focus. The topological properties of a map are exactly those 
properties that  are shared by any two spatial databases that  can be obtained 
from each other by a topological deformation 4. As an example of topologically 
equivalent spatial databases we take the map of Figure 5 and a representation of 
the same railway system by a conventional map which corresponds more closely 
to reality. Since in the former map the length of lines is not related to the actual 
length of the trajectory, length is not a topological property. Since, however, 
both maps show the same connections, connectedness is a topological property. 

In the present section, we elaborate on the idea of topological property in the 
context of databases consisting of points, curves between these points, and areas 
formed by these curves [26]. For a survey of other application domains that  can 
be modeled by means of a finite number of points in the plane and curves con- 

4 The notion of topological deformation will be made precise later. 
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Fig.  6. An example of a spatial database in the topological data  model. 

necting them, we refer to Chapter 5 of the book by Laurini and Thompson [21] 
and references therein. 

3.2 S p a t i a l  D a t a b a s e s  in  t h e  T o p o l o g i c a l  D a t a  M o d e l  

In this section, we exactly define what we mean by spatial data  and spatial 
databases in the topological data  model. We work in the Euclidean plane R 2. 

D e f i n i t i o n  1. A spatial database in the topological data model consists of a finite 
set of labeled points, a finite set of labeled curves, and a finite set of labeled areas. 
Each point label is assigned to a distinct point in R 2. Each curve label is assigned 
to a distinct non-self-intersecting continuous curve 5 in l=t ~ that  starts and ends 
in a labeled point and does not contain any other labeled points except these. 
Two curves only intersect in a labeled point. Each area label is assigned to a 
distinct area formed by the labeled curves. 

We remark that  this definition allows curves to start  and end in the same 
point, i.e., the database may contain loops. It also may contain multiple curves 
between two points. It is easily shown that  for a database with n curve labels 
the number of area labels is bounded by n + 1. 

We apply the following notational convention throughout  the remainder of 
this section: Roman lower-case characters p, q , . . .  denote point labels, Roman 
capitals A, B , . . .  denote curve labels and Greek characters a,  f l , . . ,  are used for 
area labels. 

Figure 6 gives an example of a spatial database. This database has eight 
points, one of which (w) is isolated. It contains ten curves, three of which 
(A, I, and J)  are loops. There are five areas, one of which (a) is unbounded. 

In topological terms, this is a simple Jordan curve [24]. 
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Fig.  7. Two topologically equivalent databases. 

3.3 R e p r e s e n t a t i o n s  o f  Spa t i a l  D a t a b a s e s  in t h e  Topolog ica l  D a t a  
M o d e l  

The example application of Section 3.1 shows that  in the topological data  model 
the interpretation of spatial data is topological in nature. In other words, spatial 
databases in the topological data  model contain information about topological 
properties and contain, e.g., no information about metric properties. 

When we want to effectively represent spatial databases in the topological 
da ta  model, and we know that  only topological properties are under considera- 
tion, it may be desirable to have a representation of a spatial database which is 
topologically invariant, meaning that  topologically equivalent databases will be 
represented in the same way. Ideally, a representation should also be lossless, 
in the sense that  two databases that  are not topologically equivalent will be 
represented differently. 

In order to define these concepts formally, we first have to make the notion 
of topologically equivalent databases precise. Figure 7 gives an example of two 
equivalent spatial databases. Intuitively, two spatial databases are topologically 
equivalent if one can be obtained from the other by a continuous deformation. 
Mathematically, this continuous deformation is formalized by the notion of iso- 
topy [24]. An isotopy h is a continuous series (ht ] 0 < t < 1) ofhomeomorphisms 
of the plane. We thus define: 

D e f i n i t i o n 2 .  Two spatial databases D1 and ~2 are called topologically equiva- 
lent if there exists an isotopy h in R 2 such that  h0(:D1) = :D1 and hi(D1) = :D2, 
with the understanding that  h respects the labels of points, curves, and areas. 

D e f i n i t i o n 3 .  A representation of a spatial database is called topologically in- 
variant if any two topologically equivalent spatial databases are represented in 
the same way. A representation of a spatial database is called lossless if any two 
spatial databases that  are not topologically equivalent are distinguished by the 
representation. 
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R1 R2 R3 R4 

A p q  A a  fl a p a l  p A a 1 

A q p  A r i a  a q B 2  p C 8 2 

B q r  B a 7 a r C 3  p D r 3 

B r q  B 7  a r p D 1  q B a 1 

C r p  C a ~ t3 s E 2  q A r 2 

C p r  C ~  a r t F 3  q F 7 3 

Fig.  8. The relations R1, R2, R3 and R4 illustrated. 

Example 5. As an example of a representation of spatial databases in the topo- 
logical da ta  model we take the representation underlying the cartography system 
of the US Bureau of the Census [8] (see also [26]). Here a spatial database is rep- 
resented by means of a classical database consisting of four relations, R1, R2, R3, 
and R4, on the labels of points, curves, and areas. 

- R, gives for every curve its two endpoints; 
- R2 gives for every curve its two adjacent areas; 
- R3 give for each area its border of alternatingly curves and points; and 
- R4 gives for each point its neighborhood of alternatingly curves and areas. 

For relation R3, a clockwise order is agreed upon for outer borders of ar- 
eas and a counter-clockwise order is used for holes in areas. For relation R4, a 
clockwise order is used. 

Figure 8 illustrates the relations R1, R2, R3, and R4 for the depicted spatial 
database. 
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The following property shows that  this representation can be reduced to the 
relation R4 only. 

Proposition4. R1, R2, and R3 can be deduced from R4. 

P r o o f .  To deduce R1 and R2 we have the following algebra expressions: 

R1 = T1215(crt#5(~r2=s(R4 x R4))) U II2ts(aa#7(a1=5(~=6(R4 x n4)))) ,  

R2 = //237(O'3~7(0"2=6(R4 X R4))). 

To deduce R3 we have//123(Ra) ---- / /312(R4) and 

(otpAi) E R3 
(.qB) n123(R ) (.qBi + 1) n3 
(ApQ) E R1 

[] 

It is more convenient to denote the relation R4 of Example 5 for each labeled 
point p as a circular alternating list of curve and area labels rather than as a set 
of tuples [19]. Actually, this alternating list of labels corresponds to the labels 
of the curves and areas that  an observer, placed in the point p, sees when he 
makes a full clockwise circular scan of the environment of the point p. A formal 
definition of this alternating circular list was given in [19] and it was referred to 
as the observation of a spatial database from the point p and denoted as Obs(p). 
The collection of the observations of a spatial database from each of its points 
is called the observation of the spatial database. The observation of a spatial 
database satisfies the first requirement of a representation: 

P r o p o s i t i o n 5 .  [19] The observation of a spatial database is an invariant rep- 
resentation of a spatial database. 

Is this representation, on the other hand, lossless? The answer is no. Figure 9 
contains two spatial databases that can certainly not be obtained from one an- 
other by a continuous deformation. So, they are not topologically equivalent but  
nevertheless represented identically by means of their observation. We have for 
both the following: 

Obs(p) = (c~CSD~A), Obs(s) = (¢EflDSI), 
Obs(q) = (aA~FTB), Obs(t) = (eGTFflE), 
Obs(r) = (aBTH~C), Obs(u) = (eISH'TG). 

Hence, drastically different spatial databases can be represented in exactly 
the same way by means of their observations. In [19] it is shown, however, that  
there is a single cause for this phenomenon: by explicitly marking one of the 
areas as the unbounded area, losslessness is achieved. 
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Fig .  9. Two spatial  databases tha t  are not topologically equivalent but  tha t  have 
the same observation. 

T h e o r e m  6. [19] A spatial database is losslessly represented by its observation 
and the the label of the unbounded area. 

Indeed, the two spatial databases of Figure 9 mainly differ in the fact that  for 
the first e is the label of the unbounded area while it is the label for a bounded 
one in the second database.  Theorem 6 justifies the introduction of a reserved 
label, a °°, for the unbounded area. 

3.4 Q u e r y i n g  S p a t i a l  D a t a b a s e s  in t h e  T o p o l o g i c a l  D a t a  M o d e l  

To query spatial  databases in the topological da ta  model we introduce the fol- 
lowing 3-sorted first-order language ~PCA. 

£:PCA has three sorts of variables: 

-- boldfaced lower-case characters are used for point-variables: p, q, r , . . . ;  
- boldfaced capitals are used for curve-variables: A, B, C . . . .  ; and 
- boldfaced Greek characters are used for area-variables: c~, fi, ~/ , . . . .  

The  language £:PCA has one constant: a °°, the label of the unbounded area. 
A term in £:PCA is 

- p = q with p and q point-variables; 
- A = B with A and B curve-variables; 
- (x = / 3  with o~ and fi area-variables; 
- a = aoo with a an area-variable; 
- A a B  C Obs(p)  with p a point-variable, A and B curve-variables and c~ an 

area-variable or the area-constant aoo; or 
- o~ = Obs(p)  with p a point-variable, and oL an area-variable or the area- 

constant ~oo. 

An expression in ~PCA is 
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- a term; 
- a combination of expressions using V, A, --, --+; or 
- (Bp)~, (3A)~0 and ( 3 a ) ~  with ~ an expression and p a point-variable, A a 

curve variable and a an area-variable. 

A query expressed in £PCA has the form 

{(Pl, • •., Pn, A t , . . .  Am, a l , . . ,  a/~) I ~ ( P l , . . - ,  Pn, A 1 , . . .  Am, a l , . . ,  ak)} ,  

where ~ ( P t , . . . ,  Pn, A t , . . . ,  Am, a t , . . ,  ak) is an expression in •PCA with free 
point-variables P t , . . . ,  P,~, free curve-variables A t , . . . ,  Am and free area-varia- 
bles a l , . .  • ak .  

A a B  C Obs(p) means that the observation of the database from p has the 
form ( . . .  A a B . . . ) .  The term a -- Obs(p) is redundant if a spatial database is 
not allowed to contain isolated labeled points. The semantics of the expressions 
in £:PCh is clear. It should be noticed, however, that  the language/:PCA includes 
A a B  C Obs(p) as a term but does not include the construction a A ~  C Obs(p) 
as a term. The following property explains why. 

P r o p o s i t i o n 7 .  a A ~  C Obs(p) if and only i f ( 3 B ) B a A  C Obs (p )A(3C)Af lC  
C Obs(p) A (V'y)(VD)A'yD C Obs(p) -+ ('t = ~ V "y - a ) .  

P r o o f .  If a A ~  C Obs(p),  then the list Obs(p) is of the form . . .  B a A ~ C  . . . .  
This proofs the existence of a B and C with the desired properties. If we assume 
(3~/)(3D)A'rD C Obs(p)A--'y = flh-,~, = a ,  then there are three areas adjacent 
to A. This is clearly impossible. If a = ~,  we have the same conclusion since 
(3"y)(3D)A'vD C Obs(p) A--'7 = a is in contradiction with the fact tha t  A is 
not a loop in p. 

For the other implication, we observe that  the observation of the database 
from p looks like . . .  B a A ~ C  . . .  or like . . .  B a A 8 1 D 1  . . .  8nAf lC  . . . .  The first 
case implies aA/~ C Obs(p). In the second case, ~1 = fl or 81 = a .  The former 
of these two again yields the desired result. In the case 81 = a ,  we have ~ - a ,  
whence the proposition. [] 

We note that  the condition (V'y)(VD)A'~D C Obs(p) -+ ('y = fl V "r = a )  is 
necessary in the previous proposition. If we consider a spatial database with one 
point p with Obs(p) = (Ba°°ATAa°°Ca°°),  we do not have a°°Aa ~ C Obs(p) 
but  still there exists a B and a C such that  B a ~ A  C Obs(p) and Aa°°C C 
Obs(p). 

On the other hand, we have 

P r o p o s i t i o n 8 .  The constructions A a B  C Obs(p) cannot be expressed in terms 
of the constructions a A ~  C Obs(p). 

P r o o f .  For both spatial databases in Figure t0, a A a  C Obs(p),  a B a  C 
Obs(p), and a C a  C Obs(p) hold. 

For the first, A a B  C Obs(p) holds, but for the second A a B  C Obs(p) does 
not hold. So, AotB C Obs(p) cannot be expressed in terms of the others. [] 
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~ s  r ~  C B B s 
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q q 

Fig. 10. Two spatial databases with the same area-curve-area information. 

As a first example of a query expressed in ~PCA we take the query "Does the 
spatial database contain a loop?" This is a Boolean query (n = 0, m = 0 and 
k = 0) and it is expressed by the formula 

(3p)(3a)(313)(3A) -~a = ]3 A ctA]3 C Obs(p) A /3As  C Obs(p), 

in which we use the abbreviation from Proposition 7. 
The relations R1, R2, R3, and R4 of Section 3.3 can all be expressed in £PCA: 

- (A,p ,q)  E R1 if and only if (-~p - qA (3a)(3fl) ctA/3 C Obs(p) AflAct C 
Obs(q)) V (p ---- q A (3a)(3fl) -~a -- fl A a A f l  C Obs(p) A/3Aot C Obs(p)); 

- (A, or,/3) E R2 if and only if (3p) orAl3 C Obs(p); 
- (a ,p,  A, i) E Ra if and only if (3fl) /3As  C Obs(p) and to determine the 

order of the tuples in Rs: (a, p, A, i) ERa  and (a,  q, B, i ÷ 1) E Ra if and 
only if (313) flAot C Obs(p) A (3fl) BIBs C Obs(q) A B~tA C Obs(q); 

- (p, A, a ,  i) E R4 if and only if ( 3 B ) A a B  C Obs(p) and to determine the 
order of the tuples in R4: (p, A, c¢, i) E R4 and (p, B, fl, i ÷ 1) E R4 if and 
only if A a B  C Obs(p) A aB]3 C Obs(p) A (3C) B]3C C Obs(p). 

An important query in the context of spatial databases in the topological 
data model is "Is the database connected?" Connectivity for a binary relation 
is not expressible in the first-order calculus for relational databases (see, e.g., 
Chapter 17 of [1]). For spatial databases in the topological data model we have 

Open  P r o b l e m :  Is connectivity expressible in £PCA? 

Again following the results for the classical case, we see that connectivity is 
expressible in ~PCA-~" fixpoint. We define the relation Ci for points p and q as 
follows: Ci(p, q) is true ff and only if there is a path from p to q of length at 
most i in the spatial database. Clearly, C1 is expressible in ~PCA. Let 

~(T) = CI(p, q) V T(p, q) V (3r)(T(p, r) V C1(r, q)). 
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Then dearly Ci+l = ~(Ci). For non-inflationary fixpoint semantics, the least 
fixpoint C of ~ can be used to express "Is the database connected?": 

(Vp)(Vq) - p  = q --~ C(p,  q). 
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