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Abstract—The optimal placement of service facilities largely determines the capability of a data network to efficiently support its

users’ service demands. As centralized solutions over large-scale distributed environments are extremely expensive, inefficient or

even infeasible, distributed approaches that rely on partial topology and demand information are the only credible approaches to

the service placement problem, even at the expense of non-guaranteed optimality. In this paper, we propose a distributed service

migration heuristic that iteratively solves instances of the 1-median problem pushing progressively the service to more cost-

effective locations. Key to our algorithm is a traffic-aware centrality metric, called weighted conditional betweenness centrality

(wCBC), that captures the ability of a node to act as service demand concentrator and is employed in both selecting the nodes and

setting their weights for the 1-median problem instance. The assessment of our heuristic proceeds in two steps. First, assuming

(ideal) knowledge of the invoked wCBC metric, we carry out a proof-of-concept study that demonstrates the effectiveness of

the heuristic over synthetic and real-world topologies as well as its advantages against comparable local-search-like migration

schemes. Next, we devise practical protocol implementations that approximate the heuristic using local measurements of transit

traffic and preserve the excellent accuracy and fast convergence properties of the algorithm for different routing policies. Our

solution applies to a broad range of networking scenarios, and is very relevant to the emerging trends for in-network storage and

involvement of the end-user in the creation and distribution of lightweight (autonomic) service facilities.

✦

1 INTRODUCTION

O NE of the most significant changes in networked com-

munications over the last few years concerns the role

of the end-user. Traditionally the end-user has been almost

exclusively the consumer of content and services generated

by explicit entities referred to as content and service

providers, respectively. Nowadays, Web2.0 technologies

have enabled a paradigm shift towards more user-centric

approaches to content generation and provision. This shift

is strongly evidenced in the abundance of User-Generated

Content (UGC) in social networking sites, blogs, wikis,

or video distribution sites such as YouTube, which have

motivated even the rethinking of the Internet architecture

fundamentals [1], [2]. The generalization of the UGC
concept towards services is increasingly viewed as one of

the major trends in user-oriented networking [3].

The user-oriented service creation concept aims at engag-

ing end-users in the generation and distribution of service

components, more generally service facilities [4]. There

already exist online applications that enable end-users to

compose their own customized combination of heteroge-

neous web sources through easy-to-use graphical interfaces.

Google App Engine [5] and Yahoo! Pipes [6] are typical

examples of what is often referred to as web-based mashup

tools. At the same time, efforts are under way to develop

platforms that will engage end users in the creation of

services with telecom-based features (i.e., messaging, voice
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calls etc) integrated over the Next Generation Networks [7].

In parallel with the proliferation of the so-called User-

Generated Service (UGS) paradigm, significant research

effort is being carried out on the design and deploy-

ment of energy-efficient data storage architectures. Nano-

datacenters have been proposed with the aim to offload part

of the data management operations from the conventional

power-hungry data-centers [8]. Numerous ISP-owned home

gateways can be instrumented through virtualization tech-

nologies to host those lightweight peer servers and create

a distributed Internet service platform that leverages end-

user proximity. This shift towards more distributed data

storage paradigms is further evidenced in a) the emerging

Information-centric networking (ICN) paradigm [9] and

its “in-network storage” argument; b) the realization of

distributed-fashion social networks. In ICN, the network is

equipped with functionality that allows it to contribute ac-

tively and reliably to the distribution of information objects.

Likewise, Diaspora presents an instance of a social network

implemented over interconnected nodes (i.e., pods) that are

hosted by numerous individual users on dedicated local

storage. Each node operates an instance of the Diaspora

software that turns it into a personal server [10].

In the intersection of the aforementioned trends emerges

a rich ecosystem of highly autonomic service facilities that

will be generated in pretty much every network location

and considered independent of other software entities; many

of these services will have strongly local scope, and will

require, in principle, access to storage resources in various

network locations. The technical challenge then is how to

optimally place these services to minimize their access cost.

However, more than ever before, the search is for scalable

distributed service placement approaches that can be car-
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ried out by typical network devices, without specialized

processing capacity.

Motivated by these challenges, our work proposes a

scalable decentralized heuristic algorithm that iteratively

moves services from their generation location to the net-

work location that minimizes their access cost. We follow

earlier work on service placement in viewing the problem as

an instance of the facility location problem [11]; precisely,

we employ the 1-median formulation that is deemed more

suitable for the user-centric service paradigm. Contrary to

centralized approaches, where a single super-entity with

global information about network topology and service

demand solves the problem in a single iteration, we let

it migrate towards its optimal location over a few hops. In

each hop, a small-scale and simpler 1-median problem is

solved so that the computational load is spread amongst the

nodes along the migration path.

The service migration path is derived by invoking a

node centrality metric we have devised earlier in [12] and

call weighted Conditional Betweenness Centrality (wCBC).

This metric assesses the capacity of a network node to

route service demand load from the rest of the network

towards the current service location. Therefore, the metric

can effectively identify directions (fig. 1.b) of high demand

attraction, i.e., network areas presenting high demand for

the service. The metric help us competely determine the

subgraph wherein the small-scale 1-median problem will be

solved (1-median subgraph): first, by selecting the nodes of

the subgraph and, then, by modulating the demand weights

with which each one participates in the 1-median problem

formulation. We detail the metric and the way it is used by

our algorithm which we call cDSMA, in Sections 3 and 4.

Our contributions are both on the theoretical and practical

front. From theoretical point of view, we propose a novel

heuristic algorithm for the well-studied 1-median problem,

which comes under the broader family of local-search

techniques. The algorithm’s convergence and approxima-

tion properties are discussed in Section 4. The negative

result in this respect is that cDSMA is not a constant-

ratio approximation algorithm, since synthetic examples

can be constructed, where its deviation from the optimal

cannot be bounded. On a practical note, we provide a

systematic specification and evaluation of our algorithm,

from the initial concept and properties down to practical

implementation concerns as presented is Sections 6 and 7.

First, we carry out a proof-of-concept analysis (Sec-

tion 6) over synthetic network topologies and under the

ideal assumption that nodes can obtain accurate topological

and demand information for the whole network. Essentially,

this analysis tests the effectiveness of our metric as a

guide of the service migration and exposes main properties

and advantages of cDSMA. Next, maintaining these ideal

conditions, the algorithm is shown to achieve remarkably

high accuracy and fast convergence over real-world ISP

topologies of hundreds of nodes, even when the 1-median

problem iterations are solved with no more than 6% of

the total network nodes. Hence, in realistic settings, and

contrary to the theoretical worst-case prescriptions, cDSMA

shows excellent potential to approximate the optimal so-

lution. Moreover, it demonstrates remarkable scalability

and robustness properties to service demand estimation

inaccuracies across the network. Finally, it needs much

fewer migration hops to yield placements of given accuracy

than pure local-search policies, which seek for the next

service migration hop within the local neighborhood of its

current location (fig. 1.a).

Later in Section 7, we relax the assumption of ideal

global information and propose a real-world distributed im-

plementation for cDSMA, catering for all challenges related

to distributed operation: how the node each time hosting

the service collects topological and demand information

and how it uses it to reconstruct the inputs needed by the

algorithm. The implementation leverages the straightfor-

ward interpretation of the wCBC metric so that each node

can locally obtain estimate values of its own wCBC and

communicate them via dedicated messages to the current

service host. This information can then be processed by the

service host to extract partial topological information about

the 1-median subgraph and determine the next service host

on its migration path. The implementations can exercise

further flexibility regarding how many nodes will measure

and report their local estimates to the service host node. As

shown in Section 8, this way they effectively tradeoff the

algorithm accuracy with the generated message overhead.

2 THE SERVICE PLACEMENT PROBLEM

The optimal placement of service facilities within network

structures has been typically tackled as an instance of the

facility location problem [11]. Input to the problem is the

topology of the network nodes that may host services, their

costs of installation and the distribution of service demand

across the network users. The objective is to place services

in a way that minimizes the joint cost of their installation

and access over all users. Installation costs however are

more relevant to settings of diverse capacity nodes where

the service set-up cost can amount to a non-negligible part

of a node’s computational capacity. Such is the case of the

traditional server-client model rather than the considered

distributed environment of equally powerful nodes. Here,

the lightweight services are expected to impose the same

minimal set-up cost across all nodes. Hence, the optimal

placement of up to k replicas of service instances is treated

as a k-median problem [11]. Otherwise, when storage is re-

stricted, a knapsack problem [13] formulation is employed.

We focus on the 1-median formulation that seeks to

minimize the access cost of a single service replica since it

matches better the expected features of the User-Generated

Service paradigm. Recent evidence confirms the existence

of few highly popular service/content objects and many

others of interest to significantly fewer users [14]. UGS

will enable the generation of service facilities in various

network locations from a highly versatile set of ama-

teur user-service providers. The huge majority of these

lightweight service instances will be requiring minimum

storage resources and addressing users in the “proximity”

of the user-service provider, either geographical or social

(friends, colleagues, etc.), so that their replication across
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a. b. c. d.

Fig. 1. a,b)1-median subgraph nodes under local-search heuristics(a) and cDSMA(b). c) With node 7 as current

service host, two nodes (8 and 11) in the highlighted subgraph G̃7 map demand from the rest of the network
(terms wmap(8; 7), wmap(11; 7)). d) By crediting the demand of the G \ G̃Host nodes only on the entry nodes C

and L of the highlighted G̃F subgraph, cDSMA moves the service to the optimal location C.

the network would not be justified1.

We assume that the network topology is represented by

an undirected connected graph G = (V,E) of |V | nodes
and |E| links. A subset VS ⊆ V of the total network nodes

are enabled (or even willing) to act as service host sites and

along with the set ES ⊆ E of edges linking them, form

the, generally disconnected, subgraph G̃ = (VS , ES). Each

potential service host k ∈ VS may serve one or more users

attached to some network node n ∈ V and accessing the

service with different intensity, generating demand w(n)
for it. The goal is to minimize over all network users the

access cost of a service facility, which is

Cost(k) =
∑

n∈V
w(n) · d(k, n) (1)

when the service is located at node k ∈ VS . The distances

d(k, n) may have different context, depending on routing

policies and the network dimensioning process. The ex-

position of the algorithm hereafter assumes that minimum

cost paths coincide with minimum hopcount paths but

its adaptation to more general shortest-path concepts is

straightforward.

2.1 Why a distributed heuristic algorithm for ser-
vice migration

Centralized solutions are inefficient, if at all feasible, for

our problem. From a pure algorithmic point of view, the

1-median problem complexity2 is bounded by O(|V |3).
Hence, while not prohibitive, it does not scale well and

improvements are necessary, especially for larger networks.

More significantly, centralized approaches assume the exis-

tence of a super-entity with global topological and service

demand information that has the resources and the mandate

to determine and realize the placements. This implies an

implicit logical hierarchy in the role of network nodes,

which in many cases is not present. Moreover, given that

(minor) user demand shifts or network topology changes

1. For instance, a customized tour service generated by a mashup tool
user to provide urban points of a certain interest, would most likely be
accessed only by those who share that interest and reside in the same area.

2. In comparison, the k-median problem is NP-hard in general topolo-
gies so that much of the research effort around it has been devoted to the
design of efficient approximation algorithms [15].

may be frequent and alter the optimal service location, it

is neither practical nor affordable to each time centrally

compute a new problem solution.
Our approach is to replace the one-shot placement of

service with its few-step migration towards the optimal

location. This way we end up solving a few 1-median prob-

lems of dramatically smaller scale and complexity instead

of coping with the global 1-median optimization problem.

Central to the algorithm is a metric inspired from Complex

Network Analysis [16] that we call Weighted Conditional

Betweenness Centrality (wCBC) [12]. For every transit lo-

cation of the service in the network, the wCBC is a measure

of the demand each node routes towards the current service

host node and is used for two tasks. First, it identifies

nodes in G̃ with the highest wCBC values as candidates

for hosting the service in the next iteration. These nodes

form the service-host-node-dependent 1-median subgraph,

wherein the optimization for the next-best service location

is solved. Secondly, the metric simplifies the mapping of the

service demand from the rest of the network nodes on this

subgraph. This task is deemed mandatory to appropriately

weigh the service demand gradients across the network.

We detail the metric and its practical interpretation in

Section 3.

3 WEIGHTED CONDITIONAL BETWEEN-
NESS CENTRALITY

Central to our distributed approach is the Weighted Con-

ditional Betweenness Centrality (wCBC) metric. It orig-

inates from the well-known betweenness centrality metric

and captures both topological and service demand informa-

tion for each node.

3.1 Capturing network topology: from BC to CBC

Betweenness centrality (BC) reflects to what extent a node

lies on the shortest paths linking other nodes. Let σst denote

the number of shortest paths between any two nodes s and

t in a connected graph G = (V,E). If σst(u) is the number

of shortest paths passing through the node u ∈V, then the

betweenness centrality index of node u is given by:

BC(u) =
∑

s,t∈V,s6=t6=u

σst(u)

σst
(2)
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BC(u) captures the ability of a node u to control or assist

the establishment of paths between pairs of nodes. It is an

average value estimated over all network pairs.

In [17] we proposed the Conditional BC (CBC), as a way

to capture the topological centrality of a random network

node with respect to a specific node t. It is defined as

CBC(u; t) =
∑

s∈V,u6=t

σst(u)

σst
(3)

with σst(s) = 0. Note that the summation is over all

|V − 1| node pairs involving node t rather than all possible

|V |(|V |−1) node pairs, as in (2). Effectively, CBC assesses

to what extent a node u acts as a shortest path aggregator

towards the current service location t, by enumerating the

shortest paths to t involving u from all other network nodes.

In the supplemental material we compute the CBC values

and their distributions over simple network topologies.

3.2 Capturing service demand: from CBC to
wCBC

A high number of shortest paths through the node u does

not necessarily mean that equally high demand load stems

from the sources of those paths. Weighted conditional be-

tweenness centrality (wCBC) enhances the pure topology-

aware CBC metric in a way that takes into account the

service demand that can be routed through the shortest

paths towards the service location [12]. The shortest path

ratios of σst(u) to σst in Eq. (3) are now weighted by the

demand loads generated by each node s as follows:

wCBC(u; t) =
∑

s∈V,u6=t

w(s) ·
σst(u)

σst
. (4)

Note that σut(u) = σut so that the wCBC(u; t) value

of node u is lower bounded by its own demand w(u).
Therefore, wCBC assesses to what extent a node can serve

as demand load concentrator towards a given service loca-

tion. Clearly, when the demand for a service is uniformly

distributed across the network nodes, the wCBC metric

degenerates to the CBC one, within a scale constant.

3.2.1 Approximating the metric with measurements

The wCBC(u; t) metric practically represents the service

demand that node u routes toward node t, including its own
demand w(u) and the transit demand wtrans(u; t) flowing
from other network nodes through u towards t. Therefore,
individual nodes may, in principle, estimate their own

metric values wCB̂C through passive measurements [18]

of the service demand they route towards the current service

host node. In other words, what is actually computed

theoretically in (4) for node u demanding global infor-

mation about the network topology and service demand,

can be locally approximated by u providing the basis for

the practical implementation of a distributed solution. The

approximation lies in the fact that what is measured, even

with perfect accuracy, is not always equal to the nominal

wCBC value, as specified in (4). For example, when there

are, say m, shortest paths between a given node pair (s, t)
but the routing protocol uses only one of those, a node will

measure the full demand of s, whereas, theoretically, the
contribution to the nominal wCBC value is the (1/m)th

of the measured one. We will see later in section 7 that

what matters is the estimate of the actual demand routed

through the node rather than a wCBC approximation.

4 THE CDSM ALGORITHM DESCRIPTION

Our centrality-driven Distributed Service Migration Algo-

rithm (cDSMA) progressively steers the service towards its

optimal location via a finite number of steps.

Step 1: Initialization. The first algorithm iteration is

executed at node s in G̃ that initially generates the service

facility (pseudocode line 2). In subsequent iterations, the

new reference node is the one each time hosting the service.

Step 2: Metric computation and 1-median subgraph

derivation. Next, the wCBC(u; s) metric is computed3 for

every node u in the network graph G̃. Nodes in G̃ featuring

the top α% wCBC values, together with the node currently

hosting the service (Host) form the 1-median subgraph

G̃Host over which the 1-median problem will be solved

(lines 3−4 and 15−16). Clearly, its size and the algorithm

complexity are directly affected by the α parameter choice.

Step 3: Mapping the demand of the remaining nodes on

the subgraph. To account for the contribution of the “out-

side world” to the service provisioning cost, the demand

for service from nodes in G \ G̃Host (i.e., the non-shaded

nodes in fig. 1.c) is mapped on the G̃Host ones. To do this

correctly and with no redundancy, the algorithm credits the

demand of some outside node z only to the first “entry”

G̃Host node encountered on each shortest path (over G),

from z towards the service host. Thus, the weights w(n) for
calculating the service access cost at node n in the G̃Host

subgraph (see Section 2) are replaced by effective demands:

weff (n;Host) = w(n) + wmap(n;Host), where (assum-

ing that Host is node t):

wmap(n; t) =
∑

z∈{G\G̃t}

w(z)
σ′
zt(n)

σzt
(5)

σ′
zt(n) =

σzt∑

j=1

1I{n∈SPzt(j)
⋂

n= argmin
u∈SPzt(j)

d(z,u)}

with SPzt(j) standing for the jth element of the shortest

path set from node z to node t. For example, in fig. 1.c the

original service demand of node, say, 16 is not mapped on

all the G̃7 nodes lying on the shortest paths from 16 to the

Host 7 (i.e., 11, 12 and 8), but only on 11.
The mapping step and its rationale can be better under-

stood in the following example. In the network of fig. 1.d

the service migrates towards the lowest cost location, which

under uniform demand is node C. Assume that the G̃Host

subgraph size is 4 and at some migration step the service re-

sides at node F . The top wCBC nodes around F are C, K
and L. The cDSMA assigns weff values only to the entry-

nodes C and L, weff (C;F ) = 6 and weff (L;F ) = 3,
and while setting the wmap values of nodes F and K to

3. For the actual wCBC computation, which involves solving the all-
pairs shortest path problem, we properly modified the scalable algorithm
in [19] for betweenness centrality computation, with runtime O(|V ||E|).
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zero, effectively identifies the gradient direction towards

the node C. Thus, it better projects the demand attraction

forces on the selected nodes, C being the stronger. On the

contrary, if we map the demand of nodes in G \ G̃Host

on all G̃Host nodes, we end up with weff (F ;F ) = 8 and

weff (K;F ) = 3. The service then cannot identify node C
as the next-best location and locks at node F .

Step 4: 1-median problem solution and service migration

to the new host node. Any centralized technique (e.g., [15])

may be used to solve this small-scale optimization problem

and determine the next best location of the service in

G̃Host. Note that the pairwise physical distances between

G̃Host nodes in Eq. (1) are computed over the original

graph G (see fig. 2). We call s the current service location

(line 21) while the optimal one in G̃Host is assigned

to Host (line 22). As long as node s (a) yields higher

cost than the candidate Host node (line 10); and (b) the

candidate Host has not been used as a service host before

(lines 11−13), the service is moved there and the algorithm

iterates through steps 2-4. Progressively, cDSMA steers the

service to the (globally) lowest-cost location.

Fig. 2. Left: Selected 1-median subgraph G̃C com-
prised solely of (highlighted) nodes that represent ser-

vice host candidates over a non-weighted grid topol-

ogy. Right: The corresponding overlay that reflects the
physical distances between all G̃C node pairs. Aggre-

gated physical links are presented with thick lines.

Algorithm 1 cDSMA in G̃(VS , ES)

1. choose randomly node s
2. place SERV ICE @ s

3. for all u ∈ G̃ do compute wCBC(u; s), set flag(u) = 0
4. G̃s ← {α% of G̃ with top wCBC values} ∪ {s}
5. for all u ∈ G̃s do

6. compute wmap(u; s)
7. weff (u; s)← wmap(u; s) + w(u)

8. compute cost C(u) in G̃s

9. Host ← 1-median solution in G̃s

10. while CHost < Cs do

11. if flag(Host) == 1 then

12. abort
13. else
14. move SERV ICE to Host, flag(s) = 1
15. for all u ∈ G̃ do compute wCBC(u;Host)
16. G̃Host ← {α% of G̃ with top wCBC values}∪{Host}
17. for all u ∈ G̃Host do

18. compute wmap(u;Host)
19. weff (u;Host)← wmap(u;Host) +w(u)

20. compute cost C(u) in G̃Host

21. s← Host
22. Host← 1-median solution in G̃Host

23. end if

24. end while

Fig. 3. A ring topology of N = 2k nodes under a
non-uniform demand pattern results in symmetric (with

respect to B) demand mapping on the GB entry nodes

K and L. This blocks the service migration process and
yields a highly suboptimal solution.

Convergence and approximation properties: We com-

plete the description of cDSMA by elaborating on its con-

vergence properties and theoretic capability to approximate

the optimal solution. Clearly, a service facility following the

migration process of Algorithm 1 will visit any G̃ network

node at most once (see condition in line 12). Thus, our

heuristic will take O(|V |) steps to terminate. Its theoretical

performance bounds are studied next.

Proposition 4.1: cDSMA provides no constant factor

approximation guarantee.

Proof: We sketch a counterexample that leads to

arbitrarily bad solution quality: Assume, without loss of

generality, that a ring topology consists of N = 2k
(k ∈ Z

+) potential service host nodes i.e., G̃ ≡ G. Every

node but one aggregates a unit of demand load from the

users it serves (see fig. 3); the single heavy hitter node A
generatesW units of demand load and the service facility is

generated at the anti-diametric ring node B. Under cDSMA

the current service host B will select αN nodes with α < 1,
that will form its GB subgraph. Interestingly enough, the

demand that will be mapped on the GB-chain entry nodes

(i.e., K and L) is such that the initial location becomes a

local minimum for every value of α < 1. Therefore, the
service remains with node B without initiating at all the

migration process. The global access cost CcDSMA(B) is

CcDSMA(B) = 2
k−1∑

i=1

i+Wk =
N2 + 2N(W − 1)

4
(6)

On the other hand, the optimal service location is at node

A, where the cost is:

COPT = 2

i=k−1∑

i=1

i+ k =
N2

4
(7)

Therefore, their ratio equals:

CcDSMA(B)

COPT
= 1 + 2

W − 1

N
(8)

Eq. 8 shows that the resulting placement may become

arbitrary bad as the demand of the heavy hitter rises.

Proposition 4.1 suggests that there are combinations of

network topology and demand that may generate such sym-

metric 1-median subgraph mappings that trap the service in

a (local) minimum and prematurely terminate the migration

process. On the positive side of the particular unfavorable

example, the approximation ratio improves fast as the net-
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work size N grows, i.e., when the migration becomes more

relevant; whereas for small networks (of one or two tens

of nodes), the placement task is computationally feasible

centrally. More generally, our experimentation results in

Section 6 and, more notably, in Section 8, demonstrate

that cDSMA actually provides excellent accuracy for all

realistic scenarios of network topologies and demand distri-

butions even for very small sizes of the 1-median subgraph.

Similar behavior is not uncommon to appear in approxima-

tion algorithms, especially those that tackle computationally

difficult problems; parallels can be drawn with the well-

known k-means algorithm that is a hill-climbing approach

to the partitioning of data points into k disjoint clusters. It is

widely used in practice although it occasionally converges

to local minima that can be arbitrarily bad in terms of

accuracy, when compared to the optimal clustering [20].

5 EVALUATION METHODOLOGY

Our evaluation of the algorithm proceeds in two steps.

First, in Section 6, we study its behavior under the ideal

assumption that nodes avail perfect global information

about the network topology and the service demand. This

proof-of-concept validation is carried out over both syn-

thetic and real-world network topologies and under vari-

ous service demand distributions. Later in Section 8 we

assess a realistic protocol implementation proposal, earlier

presented in Section 7. Hereafter, we treat each network

node as a potential service-providing location i.e., G̃ ≡ G,

testing the performance of our algorithm as well as its

practical implementations against the worst-case4 network

conditions.

Network topology: The synthetic topologies we experi-

ment with are Barabási-Albert (B-A) graphs [21] and two-

dimensional rectangular grids. The specific graph models

were chosen deliberately since they bear very different

and distinct structural properties. The B-A graphs form

pure probabilistically and can reproduce a highly skewed

node degree distribution that approximates the power-law

shape reported in literature [22]. Grids, on the other hand,

exhibit strictly regular structure with constant node degree

and diameter that grows exponentially with the number

of network nodes. The synthetic network topologies let us

highlight the behavior of cDSMA in the presence of general

network structure properties.

Nevertheless, the ultimate assessment of our algorithm

is carried out over real-world ISP network topologies.

The recently published dataset [23] we consider includes

numerous snapshots of 14 different AS topologies, cor-

responding to Tier-1, Transit and Stub ISPs [24]. The

data were collected daily during the period 2004-08 with

the help of a multicast discovering tool called mrinfo,

which circumvents the complexity and inaccuracy of more

conventional measurement tools such as traceroute. We

focus on the larger Transit and Tier-1 ISP datafiles sizing

up to approximately 1000 nodes and show results for a

4. For instance, a limited number of service host nodes may allow the
use of unicast routing rather than some sort of flooding scheme for com-
municating the protocol-related messages of a cDSMA implementation.

representative subset featuring adequate variance in size,

diameter, and connectivity degree statistics.

Service demand distribution: At a first level, our assess-

ment distinguishes between uniform and non-uniform de-

mand scenarios. Though far from realistic, uniform demand

scenarios let us study the exclusive impact of network topol-

ogy upon the behavior of the algorithm. On the contrary,

under non-uniform demand distributions, the algorithm is

exposed to the simultaneous influence of network topology

and service demand dynamics. Mathematically speaking, a

Zipf distribution models the preference w(n; s,N) of nodes

n, n ∈ N to a given service as: w(n; s,N) = 1/ns

∑
N
l=1 1/ls

.

Practically, the distribution could correspond to the nor-

malized service request rate. Increasing the parameter s
from 0 to ∞, the distribution asymmetry grows from zero

(uniform demand) towards higher values. At a second level,

we consider two options as to how the non-uniform service

demand emerges spatially within the network. In the default

option, each node randomly generates demand according to

the Zipf law. The alternative is to introduce geographical

correlation by concentrating nodes with high demand in

the same network area. This second scenario lends itself to

modeling services with strongly local scope.

Algorithm performance metrics: We are concerned with

two metrics when assessing the performance of cDSMA.

The first one relates to its accuracy, i.e., how well it ap-

proximates the optimal solution. It is defined as the average

normalized excess cost, βalg , and equals the ratio of the

service access cost our algorithm achieves, Calg(α;G,w),
over the cost achieved by the optimal solution (derived by

a brute-force centralized algorithm assuming availability of

global topology and demand information) Copt(G,w), for
given network topology G and demand distribution w:

βalg(α;G,w) = E[
Calg(α;G,w)

Copt(G,w)
] (9)

βalg clearly depends on the percentage α of the network

nodes participating in the solution. Less intuitively yet in-

line with Section 4, greater α values may not result in βalg

improvement. Closely related to βalg are the ⌈|GHost|⌉ǫ
indices corresponding to the minimum size of the 1-median

subgraph our heuristic requires to achieve access cost that

falls within 100 · ǫ% of the optimal. Hereafter, we set ǫ
to 0.025 and use the notation without the subscript. The

second metric is the migration hop count, hm, which is

generally a function of α and reflects how fast the algorithm

converges to its (sub)optimal solution. Smaller hm values

imply faster service deployment and less overhead involved

in transport and service set-up/shut-down tasks.

When the involved parameters vary along the network

instances (e.g., B-A graphs) or the service demand distri-

bution, we present results that are the averages over 10

different topologies and/or 10 different vectors of Zipf-

distributed demand values. We repeat a number of simu-

lation runs (i.e., 20, 40 and 50) to obtain a sample up to

at least 7% of the {net topology, demand vectors} space.

Typically, the average values are presented together with

the 95% confidence intervals, estimated over the runs.
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6 CDSMA PROOF-OF-CONCEPT STUDY

6.1 Synthetic topologies experiments

Figure 4 plots the average normalized excess cost βalg for

B-A like graphs5 and grids of 100 nodes against the GHost

size under different demand patterns. As expected, the error

induced by cDSMA tends to decrease with the GHost size

despite the non-monotonicity of the corresponding curves.

Grid topology: Under uniform demand the regular struc-

ture of the grid renders the most central points of the grid,

i.e., its barycenter, the optimal service locations. Therefore,

the demand gradient is directed towards the grid center. The

migrating service moves along it; nevertheless, the closer

it gets to the grid center the more intense are the attraction

forces from the nodes that lie behind it. As a result, there

are nodes around the optimal grid location(s) that impede

the local search and become traps for the migrating service

(see fig 5.a). This is due to a combination of the subgraph

size (i.e., α) and the topology symmetry. More specifically,

the demand mapping step correctly assigns higher weff

values to those nodes in the GHost subgraph that are closer

to the optimal location, pulling the service to its direction.

However, the current host exhibits the lowest access cost

among all the GHost nodes and terminates the service

migration. As the α percentage grows bigger the optimal

GHost location is shifted away from the current service host

and thus, the number of trap nodes decreases (see fig 5.b,c).

The shift from uniform to a more skewed spatially

uncorrelated demand distribution results in the trap nodes

being anywhere within the network. In particular, the traps

will appear in nodes that lie somewhere in-between heavy

hitters and stand under the influence of approximately equal

attraction forces (fig 5.d). The service gets locked there,

much as happened under the uniform demand case. The

difference now is that as we let α grow, the GHost subgraph

will stretch to many directions, namely the ones that heavy

hitters use to reach the current service host. This means

that we will need on average more nodes than before in

order to overcome the traps. Consequently the normalized

cost ratio converges to one more slowly (fig. 4.d).

When the demand distribution is spatially correlated

(i.e., the interest in the service is concentrated in a par-

ticular neighborhood, as when the service has strongly

local scope), a cluster of nodes with high service demand

appears in a random area within the grid. Let K cluster

nodes collectively represent some percentage z% of the

total demand for the service, whereas the other N − K
nodes share the remaining (100− z)% of the demand. We

call the ratio z/(100− z) the demand spatial contrast Csp.

In 2D grids, clusters are formed by a cluster head node

together with its R-hop neighbors. The contrast can then be

written as: Csp(R, s) =
∑K

n=1 w(n;s,N)∑
N
n=K+1 w(n;s,N)

=
∑K

n=1 1/ns

∑
N
n=K+1 1/ns

and the average normalized excess cost becomes a function

of both α and the contrast value. The βalg(α,Csp) values
for a 10x10 grid topology under spatially random and

5. To obtain proper B-A networks, we would need network sizes in
the order of thousands of nodes. Hence, strictly speaking, the scale-free
networks of a few hundred nodes’ size we experiment with are small to
be called B-A networks. We retain the name for ease of reference.

TABLE 1

Impact of spatially correlated service demands

skewness s Csp(1, s) βalg(0.1) βalg(0.1, Csp)
1 0.786 1.026±0.016 1.013± 0.010
2 8.540 1.002±0.003 1.0±0.0

correlated (R = 1) distribution of demands are reported

in the rightmost columns of Table 1, respectively. Having

the top demand values stemming from a certain network

neighborhood we actually “produce” a single pole of strong

attraction for the migrating service. cDSMA now follows

the demand gradient more effectively than before. As the

percentage of the total cluster nodes’ demand grows larger

(i.e., higher Csp), the pole gets even stronger driving the

service firmly to the optimal location.

B-A graphs: The B-A graph characteristics seem to am-

plify the service trap phenomena. Regardless the generation

location the high-degree hub nodes of B-A graphs [21]

are correctly identified as low-cost solutions and therefore

cDSMA has the service moved there already with its first

hop. As the hub node communicates directly with almost all

GHost nodes, it is likely to become the minimum cost node.

In a B-A graph of 100 nodes, where we iterate generating

a service at each node under uniform demand, 62 times

the service locks on 3 different hub nodes other than the

optimal; and this is almost consistently done in the first hop.

A closer look reveals that such local minima appear robust

to the GHost size in line with fig 4.a. Fig. 5.f depicts an

example of cDSMA behavior when the service is generated

in some node and subsequently moves to a sub-optimal hub.

By increasing the number of selected nodes we essentially

tend to include in the GHost subgraph a direct neighbor of

the current high-degree service host. Thus we get the same

final cost across a wide α range. Moreover, when the GHost

is big enough to find the optimal host, it does so by directly

moving there from the generation location; accordingly, the

hopcount remains on average slightly over one. When a

non-uniform demand pattern emerges, the combination of

the high degree nodes with the presence of heavy-hitters,

on average works in favor of cDSMA. In the above B-A

graph of 100 nodes, for 39.5 times averaged over 4 different

demand vectors, the service locks on the 3 different sub-

optimal hub nodes.

The above results suggest that the cDSMA performance

while closely approximating the optimal exhibits sensitivity

to certain connectivity properties of the network topology.

In the presence of high degree hub nodes assisted by low

average path length the algorithm requires relatively high

GHost size to correctly determine the next best solution.

Moreover, the randomization introduced by skewed demand

distributions does not necessarily benefits the algorithm

(e.g., grids). In the sequence, we validate these general rules

about cDSMA over real-world network topologies.

6.2 Real-world network topologies experiments

The ultimate assessment of cDSMA is carried out over

real-world ISP network topologies, which do not typically

have the predictable structural properties of B-A graphs and

grids. Still, as detailed in the supplement, insightful analo-

gies regarding the cDSMA behavior can be drawn between
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Fig. 4. Synthetic topologies of 100 nodes : cDSMA accuracy vs. 1-median subgraph size under uniform (a,b)

and Zipf (c,d) demand distribution.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

H
o

p
c
o

u
n

t

percentage α

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

1.05

1.1

1.15

1.2

N
o

rm
a

liz
e

d
 c

o
s
t 

Normalized cost

Hopcount

a. |GHost| = 5 b. |GHost| = 7 c. |GHost| = 12 d. |GHost| = 5 e. |GHost| = 16 f. B-A Traps Robustness

Fig. 5. The trap nodes (dark dots) as a function of the GHost subgraph size for a 7x7 grid under uniform (a,b,c)

and non-uniform demand (d,e) that emerges by nodes 3 and 37 being equally heavy hitters. For the former case
(optimal is 25) the traps vanish when |GHost| = 14, while for the latter (optimal is 24) when |GHost| = 18. In

subfigure f, scaling the GHost size can hardly help the service overcome a high degree B-A trap node.

real-world and synthetic topologies. Table 2 summarizes

the performance of cDSMA over the data that represent the

real-world topologies6. It reports the minimum number of

nodes |GHost| required (across the demand vectors in case

of non-uniform demand pattern) to achieve a solution that

lies within 2.5% of the optimal; the corresponding average

migration hop count hm is also shown.

The |GHost| values show a notable insensitivity to both

topological structure and service demand dynamics. Al-

though the considered ISP topologies differ significantly

in size and diameter, the required 1-median subgraph size

does not change substantially. Employing 4.5% of the total

number of nodes or 6% for the least favorable case suffices

to obtain very good accuracy across all ISP topologies.

Likewise, the required 1-median subgraph size remains

in almost all experiments practically invariable with the

demand distribution skewness. Although for larger values of

s, few nodes become stronger attractors for the algorithm,

the added value for its accuracy is in most considered

datasets negligible. Even for the larger topologies that

appear more sensitive to service demand variations, the

|GHost| differences across the skewness values are no

more than 4% of the total network size. This two-way

insensitivity of cDSMA is of major importance as: a) the

computational complexity of the local 1-median problem

can be negligible and scales well with the network size and

diameter. b) the algorithm performance is robust to possibly

inaccurate estimates of the service demand each node

poses. In Section 8 we will see how our practical cDSMA

implementation maintains similar welcome characteristics.

6. Several files miss some edges resulting in more than one connected
components [24]. Thus, a pre-processing task using a linear-time algo-
rithm [25], is needed to retrieve the maximal connected component mCC.

6.3 cDSMA vs. locality-oriented service migration

It is instructive to compare cDSMA against stricter “local-

search” approaches to distributed service migration. One

example is the R-ball heuristic used in [26], where the

search for a better service host is a priori bounded within

the r-hop distance neighborhood of the node each time

hosting the service7. On the contrary, cDSMA invests

more effort and intelligence in selecting the service host

candidates. The resulting 1-median subgraph is spatially

stretched along paths consisting of highly “central” nodes

and oversteps the local neighborhood “barriers”. This is

clearly illustrated in fig. 6 showing the hopcount distri-

bution between the service host node and the selected

each time 1-median subgraph nodes, as extracted from five

executions of cDSMA under Zipf demand with s=2.
To highlight what cDSMA gains by the more informed

derivation of the 1-median subgraph, we compare it against

its variant that implements the R-ball heuristic, hereafter

called Locality-Oriented Migration (LOM). Both variants

use the same demand mapping mechanism (Section 4) to

capture the demand from nodes lying outside the induced

1-median subgraphs. The comparison between cDSMA and

LOM, illustrated in Table 3, proceeds as follows. We first

generate asymmetric service demand (Zipf distribution with

s = 1) across the network. We compute the globally

optimal service host node and select a fixed set of service

generation nodes, at Dgen hops away from the optimal

location. We then calculate the values of βalg and hm

metrics for the two approaches along with the mean number

of nodes included in the 1-median subgraph GLOM for

each execution. For the cDSMA, we have set the parameter

7. A direct side-by-side comparison of the two service migration
approaches is not applicable since the r-ball heuristic is combined with
service replication, thus coping with the k-median problem.
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TABLE 2

Mean hopcount and ceiling |GHost| values for various datasets under different demand distributions
s=0 s=1 s=2

ISP Dataset id/AS# mCC nodes Diameter <Degree> < hm > ⌈|GHost|⌉ < hm > ⌈|GHost|⌉ < hm > ⌈|GHost|⌉
type:Tier-1

Global Crossing 36/3549 76 10 3.71 1.00±0.23 6 1.63±0.35 3 3.32±0.78 2

-//- 35/3549 100 9 3.78 1.30±0.34 7 1.26±0.16 6 1.45±0.22 4

NTTC-Gin 33/2914 180 11 3.53 1.0±0.0 18 1.11±0.13 10 1.08±0.09 8

Sprint 23/1239 184 13 3.06 1.40±0.36 8 1.22±0.15 7 1.95±0.31 4

-//- 21/1239 216 12 3.07 1.40±0.41 7 1.42±0.19 6 1.50±0.12 5

Level-3 27/3356 339 24 3.98 2.23±0.58 4 3.15±0.24 3 2.41±0.40 5

-//- 13/3356 378 25 4.49 2.27±0.59 4 2.48±0.37 4 2.22±0.34 6

Sprint 20/1239 528 16 3.13 1.40±0.62 11 1.27±0.21 21 1.09±0.11 24

type:Transit

TDC 52/3292 72 9 3.28 1.20±0.29 5 1.09±0.12 5 1.46±0.28 4

DFN-IPX-Win 41/680 253 14 2.62 1.40±0.36 7 1.35±0.23 6 1.49±0.19 6

JanetUK 40/786 336 14 2.69 1.23±0.31 11 1.13±0.08 9 1.30±0.12 6

Iunet 39/1267 711 13 3.45 1.0±0.0 11 1.03±0.06 43 0.99±0.01 9

α = 2% yielding 1-median subgraphs of size 4 for Datasets

23, 33 and 7 for Dataset 27 (Table 3).
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Fig. 6. Hopcount distribution of 1-median nodes from
the Host under cDSMA.

In most of our experiments, LOM demonstrates compa-

rable accuracy to our heuristic. It suffices to set R=1 to

obtain near-optimal service placements, while taking more

nodes into account seems to offer no extra gain. Still, the

LOM approach exhibits two disadvantages when compared

against cDSMA. First, LOM needs far more migration

hops than cDSMA since it hard bounds the length of a

single migration hop. For R=1, in particular, the LOM

performs as many hops as Dgen to reach the optimal

service location. On the other hand, cDSMA chooses the

most “appropriate” candidate host nodes allowing them to

stretch across the demand gradient direction; consequently,

it leads the service fast to prominent locations. As a positive

side-effect, it almost decouples the convergence speed of

the algorithm from the service generation location. Thus,

it does not differentiate user nodes according to their

proximity to the globally optimum location inducing a

notion of fairness in the performance they get. Secondly, the

LOM heuristic imposes much less flexibility in determining

the size of the 1-median subgraph. For R=2, LOM may end

up seeking for the next best service host node among an

order of magnitude more candidate hosts than cDSMA. On

the other hand, taking R=1 does not always suffice; in the

Dataset 27 experiment (Dgen = 14) the migration process

stops prematurely one hop away from the service generation

location yielding prohibitively high cost.

7 A PRACTICAL CDSMA IMPLEMENTATION

A practical real-world implementation of cDSMA needs

to cope with two main challenges. Firstly, information

residing with individual network nodes has to be collected

at the node each time hosting the service. This information

includes the wCBC and weff values that guide the 1-

median subgraph derivation and the demand mapping steps,

respectively (Section 4). Secondly, even if this information

is compiled by each node in a distributed manner, equations

4 and 5 imply that global information about the network

topology and demand is required.

The second concern is partly addressed by the net

interpretation of the wCBC metric, as already discussed

in section 3.2.1. The wCBC(u; t) value represents the

aggregate traffic demand flowing through node u towards

the service host node t. Therefore, the {wCBC} values

can be locally inferred at each node by directly measuring

their transit traffic load that is destined for node t. How
accurately the measured values {wCB̂C} match the the-

oretical values {wCBC}, as defined in eq. 4, depends on

the network topology and routing protocol. The network

topology may present each single node pair with one or

more shortest (a.k.a. minimum hopcount) paths; while the

routing protocol may use one, more than one or none of

them. Therefore, leaving measurement inaccuracies aside,

the two sets of values coincide when: (a) the topology

gives rise to a single shortest path between all network

node pairs (e.g., tree topologies) and the routing protocol

routes traffic over this single shortest path; (b) the topology

induces multiple shortest paths between all network node

pairs (e.g., lattice topologies) and the routing protocol splits

the traffic demand equally among all of them. In general,

the routing protocol can be viewed as a transformation

F : {wCBC} → {wCB̂C}, which becomes an identity

one in the two particular scenarios mentioned above. In this

section, we present the proposed cDSMA implementation

in a step-by-step fashion. We iterate on how this implemen-

tation addresses the aforementioned practical challenges

under a single-path routing (SP) hypothesis (see fig.7). Our

comprehensive study of the multi-path routing case (MP) is

presented in the supplemental material due to limited space.

7.1 Service host advertisement

Every time the service carries out a cDSMA-driven mi-

gration hop, the new host initiates a service advertisement

phase (see Fig. 7.b) to inform all network nodes about the

current service location. This task may be carried out by

any efficient flooding scheme requiring O(|E|) messages

and O(D) time, where D is the network diameter. Note

that this step is sine qua non for all protocol instances real-
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TABLE 3

Convergence speed and accuracy of LOM and cDSMA on real-world topologies

Dataset 23 Dataset 33 Dataset 27

Dgen: 3 4 5 7 3 4 5 7 10 3 4 5 7 10 14

LOM βalg 1 1.0299 1.0434 1.0299 1 1 1 1 1 1 1 1 1 1 2.67

R=1 hm 3 2 2 4 3 4 5 7 10 3 4 5 7 10 1

mean|GLOM | 7.2 9.5 8 7.8 5 5 5.3 5.9 5.8 5 4.8 4.3 5.2 5 5.5

LOM βalg 1 1.0299 1.0434 1.0299 1 1 1 1 1 1 1 1 1 1 1

R=2 hm 2 1 1 2 2 2 3 4 5 2 2 3 4 5 8

mean|GLOM | 28.3 29.5 28 22.3 14.3 14.7 14.3 18.2 18.8 17.7 14.7 11 15.2 15 14.7

cDSMA βalg(2%) 1 1.0299 1.0434 1.0299 1 1 1 1 1 1 1 1 1 1 1

hm 1 1 1 2 1 2 2 3 4 1 1 1 2 2 2

a. The graph G(E,V ) b. Advertisement phase (service at A) c. Host determines GA d. Host solves 1-median

Fig. 7. Example of cDSMA protocol implementation under single-path routing and uniform demand.

izing distributed service placement under dynamic demand

patterns (e.g., [26], [27]).

7.2 Reporting of local wCBC estimates and infer-
ence of the 1-median subgraph

Drawing on passive measurements [18] each node u ∈
G = (V,E) derives an estimate wCB̂C(u; t) of the traffic

demand flowing through u towards the current service host

node t. These estimates are then reported to node t via

dedicated measurement-reporting messages in O(D) time.

Nodes can separately report the portion of traffic demand

w(u) originating from themselves and the transit traffic

wtrans(u; t) originating from other nodes towards t, with

wCB̂C(u; t) = wtrans(u; t) + w(u) (10)

The service host node then ranks the reported values and

selects the nodes with the top α|V | values to form the

1-median subgraph, wherein the 1-median problem will

eventually be solved (see 3.2.1).
Besides bearing the two traffic demand values, these

O(|V |) dedicated messages are exploited further to offer

the current service host node with a (partial) view of the 1-

median subgraph topology. As each measurement-reporting

message travels on its shortest path towards the Host, it
records all nodes lying on it. The inferred GHost topology

exhibits attributes that depend on whether the employed

routing protocol makes use of one or more, when available,

shortest paths among given node pairs; herein we present

our study for the former case. Single-path routing is the

standard practice; a single path is used for routing traffic

between two nodes at any point in time and resilience to

failures is achieved by the use of (hot) stand-by paths (links)

that are activated upon failure of the operational one. Under

the SP routing policy the following proposition is relevant:
Proposition 7.1: In each iteration of cDSMA, the 1-

median subgraph under single-path routing policy is a tree

rooted at the current service host node.
Proof: Since each node communicates with the current

service host Host via a single shortest-path route, the

selection of nodes for the 1-median subgraph is carried out

on the spanning tree rooted at Host, as induced by the

routing protocol operation. The only case that the resulting

subgraph GHost may not be a tree is when the node

selection criterion results in a non-connected subgraph. But

this is not possible with wCB̂C as the node selection

criterion. To see this, consider any node, say z, which is

part of the 1-median subgraph. Then for all nodes k lying

on the A−Host shortest path, it holds

wCB̂C(k;Host) = wtrans(k; t) +w(k)

≥ wtrans(z; t) + w(z) + w(k)

= wCB̂C(z;Host) + w(k)

≥ wCB̂C(z;Host) (11)

that is, all nodes lying in the shortest path A − Host
report wCB̂C values at least as high as that of node A.
Hence, if A is selected as member of the subgraph, all

nodes between A and Host on the tree branch A−Host
are selected as subgraph nodes as well, implying that the

subgraph is connected and, thus, a tree 8.

Corollary 7.1: Under SP routing, the distance of any

GHost node from the Host is upper-bounded by α|V |-1.
Proof: Since GHost is a tree rooted at Host, the

greatest distance from the root to a node equals the height

of an α|V |-node tree, which is a · |V | − 1.
We denote the set of node records appearing on the message

of node x with msgx, their cardinality with |msgx| and
the mth node entry in msgx with msgx(m). Fig. 8 (left)

presents the topological information that would become

available to the node A in Fig. 7.c by the end of this step.

Next we explain that the topological information commu-

nicated by these dedicated messages suffices for carrying

out the demand mapping task on the 1-median subgraph

without the need for any additional feedback from the

8. Even when there is a tie in the wCBC values of two or more
nodes, the current service host can use the topological information in
the measurement-reporting messages to choose the node(s) that preserve
the tree property.
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network nodes. In the supplementary material we show how

this can also be realized under the MP routing option.

7.3 Demand mapping on the 1-median subgraph

After the derivation of the 1-median subgraph, the cur-

rent service host needs to further process the α|V |
measurement-reporting messages that correspond to the

selected subgraph nodes.

Proposition 7.1 has two favorable implications that

greatly simplify the realization of the demand mapping

task. Firstly, the weff values of all nodes can be computed

through direct additions and subtractions of the reported

wCB̂C values. Therefore, for leaf nodes x of the resulting

tree T , weff (x; t) = wCB̂C(x; t); whereas, for all inner
nodes u

weff (u; t) = wCB̂C(u; t)−
∑

z∈Ch(u;T )

wCB̂C(z; t) (12)

where Ch(u;T ) is the set of child nodes of u in T . Sec-
ondly, the parsing of the measurement-reporting messages

does not have to be exhaustive. Instead, the α|V | messages

of the 1-median subgraph (tree) nodes can be sorted and

parsed in decreasing length order. Since messages originat-

ing from internal tree nodes with a single child are subsets

of the longer messages originating from the external tree

nodes, they can be safely discarded without any information

loss. For example, in fig. 8 (right), the messages msgF and

msgB are discarded upon parsing their first node entry.

Algorithm 2 Message header parsing and demand mapping

under SP (DeMaSP)

1. input: set of selected nodes in GHost,
2. {msgu} ∀u ∈ GHost

3. output: vector weff (u) ∀u ∈ GHost

4. Initialization
5. for all x ∈ GHost do weff (x) = wCB̂C(x)
6. vector B ← sort all msgx in decreasing order of |msgx|
7.
8. for i = 1 up to Len(B) do
9. parse B(i) = msgx
10. for m = 1 up to |msgx| − 1 do

11. if msgx(m) is marked then
12. if m > 1 then

13. k = msgx(m − 1), l = msgx(m)
14. weff (l) = weff (l)− wCB̂C(k)
15. end

16. drop msgx
17. else

18. if m > 1
19. k = msgx(m − 1), l = msgx(m)
20. weff (l) = wCB̂C(l) −wCB̂C(k)
21. end

22. mark msgx as read
23. end if

24. end for
25. end for

26. weff (Host) = w(Host) + (wtrans(Host;Host) −∑
z∈Ch(Host;T )

wCB̂C(z)

Algorithm 2, hereafter called DeMaSP, summarizes the

process. DeMaSP sequentially parses the measurement-

reporting messages of nodes selected for the 1-median

subgraph (selected nodes) in decreasing length order of

Fig. 8. Left: Header format of msgnode1i , the message

sent from node 1 of GHost to the Host. Right: Message
headers in decreasing length for the GA of fig.7.c

their msg part. The output variable weff , one for each

selected node, is initialized to the reported measured traffic

values. While parsing the messages, DeMaSP subtracts the

portion of traffic demand that has already been credited to

nodes of higher depth in the 1-median tree. For instance, it

computes the weff (B) of the internal node B (fig. 7c) by

subtracting the sum of the wCB̂C reported values of its

child nodes over the emerging tree i.e., D and F , from

the node’s own wCB̂C(B;A); the outcome equals the

w(C) plus the native w(B). Finally, the Host assigns to

itself the amount of demand that has not been credited

on the selected nodes; it equals its own demand w(Host)
plus the difference between the measured incoming traffic

demand, denoted by wtrans(Host;Host), and the sum of

the wCB̂C values of its first neighbours that belong to the

tree T of selected nodes i.e., Ch(Host;T ).

7.4 1-median solution within the GHost subgraph

The second input needed for the reduced 1-median solution

is the pairwise distances between all GHost nodes. This can

be acquired as follows: The current Host notifies each of

the top wCB̂C nodes with unicast messages of which other

nodes (co-players) are included in the GHost and queries

them for their pairwise distances. Each node determines its

distance to the other co-players via a mechanism such as

the ping utility (O(α2|V |2) steps, O(α2|V |2) messages),

and communicates them (O(α|V |) messages) to the host.

7.5 Additional considerations

cDSMA can be applied under any deployed routing strat-

egy, even when the paths actually used are not the minimum

hopcount (or shortest in a different sense). In that case,

the theoretical {wCBC} and the measured {wCB̂C}
values will deviate, even under single-path routing and tree

topologies. The cDSMA will derive a probably different

subgraph and the weights of the nodes in this graph

will be correspondingly affected. However, the algorithm

will carry its task as usual; it cannot know and does

not care about learning how exactly the routing protocol

in operation transforms the field of theoretical {wCBC}
values. Similarly, a cDSMA implementation can cope with

the limitation of the service hosts to a certain portion of

the network nodes, as considered earlier in the algorithm

description. Clearly, the 1-median subgraph G̃Host under

(any sense of) SP routing will not necessarily be connected

due to the arbitrary presence of non-service-host nodes

across the topology (e.g., Proposition 7.1 does not hold).

Nevertheless, its adaptation is straightforward; these nodes

should be treated as the non-selected nodes of the DeMaMP

algorithm presented in the supplemental material.
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8 PERFORMANCE OF CDSMA PRACTICAL

IMPLEMENTATIONS

We now compare both our practical implementations of

cDSMA, i.e., over single-path (cDSMASP ) and multipath

(cDSMAMP ) routing, against their theoretical primitive

(cDSMATH) in Section 4. Effectively, we repeat the

experiments of Section 6.2 over the ISP network topologies:

the service facilities are generated at the same initial

locations, the demand vectors coincide with those employed

in Section 6.2, and the 1-median subgraph sizes are set to

those ⌈|GHost|⌉ values that yield solutions of cost within

2.5% of the optimal for the theoretical cDSMA (Table 2).

For the multipath routing case, we assume that traffic

destined for the Host is equally split over each of those

u’s outgoing links that leverage shortest paths to the Host.
We first evaluate our practical implementation assuming

that all network nodes are engaged in performing and

reporting traffic demand measurements (see section 7.2).

Later we relax this requirement, delegating the measure-

ment task only to nodes within the r-hop neighborhood

of the current service host letting r modulate the accuracy

vs. generated message overhead tradeoff.

Network-wide traffic measurements. Table 4 reports the

performance of our practical implementation in terms of

mean normalized cost and hopcount values when the cur-

rent service host collects traffic measurements by every

network node. Both practical instances turn out to be on

average as accurate as their theoretical primitive; indeed,

in most cases they provide solutions with cost within 2.5%

of the optimal. This close match holds across different

ISP network topologies and demand patterns suggesting

that cDSMA is adequately robust to variations of network

topology and traffic demand. More importantly, our practi-

cal schemes respond successfully to the different ways the

underlying routing protocols transform the actual spatial

demand distribution. As a result, a service user is expected

to experience consistently close-to-optimal performance

irrespective of the employed routing protocol. On the other

hand, some increased confidence intervals suggest that a

few nodes in the corresponding samples trap the migrating

service and therefore increase the placement costs. Since

the 1-median subgraphs of the experiments in Table 4 are

carried out with at most 6% of the respective network

nodes, a slight increase of the subgraph size is tolerable

and could improve the quality of the solution.

cDSMASP typically needs only slightly more hops to

reach the final host-node than cDSMATH , even if the

spatial stretch of the nodes it selects each time is upper

bounded (see Section 7.2). This stands in agreement with

fig. 6, where, even for higher asymmetry (s=2), the number

of GHost nodes under cDSMATH that lies further than the

inherent bound of cDSMASP is negligible. Accordingly,

the service migration hops under cDSMAMP are pretty

much the same with those under cDSMATH . Overall and

with respect to the network diameter and the ⌈|GHost|⌉
size, both cDSMA practical instances take no more than

three hops, on average, to reach their final location. Effec-

tively, this minimizes the installation costs on intermediate

hosts along the migration path and the overhead of host

advertisements/measurement reports.

Traffic measurements within the Rmsr-hop neighborhood.

We repeat the same experiments; service advertisement

takes place like before but now the service host-node

prompts only those nodes lying within Rmsr hops to com-

municate their traffic measurement values. Table 5 captures

the tradeoff between the achieved algorithm accuracy and

generated overhead in terms of measurement reporting

messages. The latter is quantified by the average number of

the path-recording dedicated messages (Dd msg) that serve

as the cDSMA input. The obvious goal is to bound them

at the expense of a negligible performance penalty. We

also report ∆(av.msg), which is the difference between

the average of the total number of messages when the

traffic measurements are performed by all nodes and by

nodes within Rmsr hops, respectively. Table 5 reveals

that both practical instances of cDSMA preserve high

performance standards even when traffic measurements are

spatially restricted. Although we keep the α percentages

constant and equal to the corresponding ones employed in

Table 2 and 4 experiments, the GHost size varies across

iterations being upper-bounded by ⌈|GHost|⌉. This affects

the accuracy of our implementation for small Rmsr values.

Nevertheless, Rmsr values of four or five hops suffice to

achieve performance that lies on average within 3.5% of

the optimal for both ISP topologies and demand dynamics.

Although the Rmsr bound, in principle, hurts the

cDSMA advantage of longer migration hops towards the

final location, the resulting penalty is no more than one hop,

on average, when compared to the network-wide measure-

ment case. In terms of message overhead this means that

we need to bear at most one more service advertisement

task. On the other hand, as Rmsr scales, the hopcount

to destination decreases and the number of measurement

reporting nodes (i.e., |GHost−{Host}| ) slightly increases.

The average number of cDSMA dedicated messages re-

mains practically unaffected and in the order of tens. The

total number of messages under the bounded-measurement

implementation decreases with Rmsr in light of the fewer

advertisements, whereas its counterpart under the network-

wide measurements remains constant. This is clear in the

∆(av.msg) values, which suggest a substantial message

number reduction for the former case, up to several hun-

dreds for the recommended Rmsr values of four or five.

9 ENGINEERING PROPERTIES

We conclude the cDSMA description outlining its capacity

to operate in the presence of dynamic demand variations

and/or network failures.

cDSMA and dynamic (spatial) demand: Since end-users

may access the storage resources through both fixed and

mobile devices, they may connect to different system

nodes in the course of time. Hence, cDSMA will need

to respond to temporal variations of the service demand.

For a given service placement, there are two ways to track

changes and accordingly trigger a new service migration

process. The first option has the service host node perform

regular (time-based) executions of the algorithm in “search
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TABLE 4

Performance of practical implementation under the theoretical ⌈|GHost|⌉ values

cDSMASP cDSMAMP

s=0 s=1 s=0 s=1

Dataset

id β(⌈|GHost|⌉) hm β(⌈|GHost|⌉) hm β(⌈|GHost|⌉) hm β(⌈|GHost|⌉) hm

36 1.0039±0.0152 1.50±0.36 1.0316±0.0145 1.80±0.31 1.0135±0.0219 1.13±0.31 1.0170±0.0131 1.37±0.06

35 1.0122±0.0122 1.30±0.40 1.0229±0.0210 1.30±0.17 1.0087±0.0111 1.10±0.22 1.0145±0.0123 1.41±.006

33 1.0378±0.0441 0.97±0.13 1.0461±0.0278 1.12±0.14 1.0244±0.0408 1.0±0.0 1.0185±0.0152 1.02±0.03

23 1.0132±0.0356 1.53±0.48 1.0255±0.0164 1.25±0.18 1.0±0.0 1.43±0.36 1.0123±0.0084 1.17±0.05

21 1.0391±0.0529 1.26±0.32 1.0339±0.0206 1.34±0.18 1.0±0.0 1.53±0.36 1.0122±0.0132 1.48±0.07

27 1.0±0.0 2.30±0.62 1.0016±0.0036 3.39±0.33 1.0±0.0 2.23±0.58 1.0018±0.0040 3.23±0.06

13 1.0165±0.0481 3.07±1.01 1.0160±0.0093 2.59±0.39 1.0±0.0 2.87±1.09 1.0105±0.0069 2.36±0.06

20 1.0144±0.0124 1.33±0.44 1.0311±0.0225 1.26±0.12 1.0279±0.0400 1.13±0.29 1.0055 ±0.0051 1.29±0.04

52 1.0091±0.0132 0.97±0.13 1.0103±0.0059 1.13±0.21 1.0045±0.0099 1.07±0.18 1.0076±0.0062 1.10±0.02

41 1.0154±0.0137 1.07±0.18 1.0153±0.0103 1.40±0.26 1.0151±0.0135 1.07±0.32 1.0092±0.0078 1.50±0.14

40 1.0119±0.0144 1.0±0.0 1.0194±0.0096 1.16±0.19 1.0149±0.0154 1.27±0.32 1.0127±0.0093 1.09±0.04

39 1.0144±0.0080 1.0±0.0 1.0195±0.0118 0.99±0.01 1.0125±0.0080 0.98±0.11 1.0096±0.0069 1.09±0.06

TABLE 5

Performance of practical implementation when Rmsr bounds the number of measurement reporting nodes

cDSMASP

Dataset 35 Dataset 20

Rmsr : 2 3 4 5 2 3 4 5

under uniform demand (s=0)

βRmsr 1.0275 ± 0.0541 1.0122±0.0122 1.0122±0.0122 1.0122±0.0122 1.0133±0.0126 1.0149±0.0124 1.0144±0.0124 1.0144±0.0124

hm 1.65±0.53 1.45±0.43 1.30±0.40 1.30±0.40 2.20±0.61 1.65±0.50 1.55±0.48 1.35±0.44

av(Dd msg) 8 ± 1 8±1 8±1 8±1 11±1 12±1 13±1 13±1

∆(av.msg) 89 ± 1 108±1 122±1 122±1 278±1 567±1 618±1 723±1

under non-uniform demand (s=1)

βRmsr 1.0306±0.0217 1.0299±0.0210 1.0299±0.0210 1.0299±0.0210 1.0357±0.0228 1.0338±0.0225 1.0322±0.0228 1.0322±0.0229

hm 1.83 ± 0.36 1.48±0.22 1.35±0.17 1.30±0.17 2.29±0.60 1.77±0.38 1.55±0.27 1.43±0.21

av(Dd msg) 7 ± 1 7±1 7±1 7±1 15±1 18±1 21±1 23±1

∆(av.msg) 65±1 99±1 111±1 116±1 115±1 385±1 498±1 559±1

cDSMAMP

Dataset 35 Dataset 20

Rmsr : 2 3 4 5 2 3 4 5

under uniform demand (s=0)

βRmsr 1.0429±0.0739 1.0087±0.0111 1.0087±0.0111 1.0087±0.0111 1.0420±0.0501 1.0340±0.0451 1.0314±0.0427 1.0349±0.0452

hm 1.25±0.39 1.25±0.32 1.10±0.22 1.10±0.22 1.88±0.65 1.50±0.54 1.42±0.51 1.25±0.39

av(Dd msg) 6 ± 1 7±1 7±1 7±1 10±1 11±1 12±1 12±1

∆(av.msg) 89±1 88±1 103±1 103±1 195±1 393±1 434±1 523±1

under non-uniform demand (s=1)

βRmsr 1.2655±0.5016 1.0141±0.0123 1.0145±0.0123 1.0145±0.0123 1.0539±0.0138 1.0254±0.0170 1.0131±0.0099 1.0079±0.0066

hm 2.02±0.19 1.75±0.10 1.56±0.08 1.51±0.08 2.21±0.18 1.91±0.12 1.65±0.08 1.56±0.07

av(Dd msg) 7 ± 1 8±1 8±1 8±1 15±1 21±1 23±1 26±1

∆(av.msg) 75±1 101±1 120±1 125±1 188±1 342±1 476±1 521±1

of” demand-shift incidents. The second one is the event-

based execution of the algorithm, whereby reported demand

changes from measurement-performing nodes trigger the

execution of the cDSMA. In case the demand shift occurs

while the migration process is in progress, cDSMA, thanks

to its iterative operation, can identify online a new demand

gradient generated by an emerging heavy hitter. In each

iteration the global service demand is locally captured by

the mapping mechanism and used as a new input.

cDSMA and fault tolerance: Standard fault tolerance

mechanisms can be tailored for the cDSMA operation. To

begin with, single replica schemes like cDSMA are more

vulnerable to network failures than schemes supporting

replication. cDSMA stays unaffected upon crashes of nodes

that do not currently host the service. Otherwise, every IP-

enabled node capable of hosting a service has to ensure

the availability of one or more synchronized back-up nodes

to serve as the Hot-Standby alternative hosts [28]. In each

cDSMA iteration i.e., intermediate or final service location,

the current host can greedily nominate the second best

solution within the 1-median subgraph as the back-up host

that will be engaged if needed to restore the cDSMA normal

operation. Most likely that node will lie in the physical

proximity of the active host and thus, provide a low-cost

alternative. On the other hand, cDSMA can cope with link

failures provided that the network graph remains connected;

the underlying routing protocol recovers the routes that

involve broken links and the migration proceeds normally.

10 RELATED WORK

Out of the vast literature that studies placement problems

under the lenses of discrete optimization we focus on the

distributed solutions and identify two main approaches:

those adopting a facility location approach [11] and those

drawing on a knapsack problem formulation [13]. Place-

ment problems can be cast in the knapsack framework when

constrained storage is considered. More relevant to our

service deployment scenario though is the former approach

that attracts both theoretical and practical interest. The the-

oretical thread relates to the approximability of the facility

location problem by distributed approaches. Algorithms are

typically executed over a complete bipartite graph where
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the m facilities and n client nodes communicate with

each other in synchronous send-receive rounds. Moscibroda

and Wattenhofer in [29] draw on a primal-dual approach

earlier devised by Jain and Vazirani [30], to derive a

distributed algorithm that trades-off the approximation ratio

with the communication overhead assuming O(logn) bits

message size. More recently, Pandit and Pemmaraju [31]

have derived an alternative distributed algorithm for the

metric facility location that runs in k rounds achieving an

O(m2/
√
k · n3/

√
k)-approximation.

Our work, on the other hand, comes under the broader

family of heuristic algorithms. Though less mathematically

rigorous, they are practically implementable and most often

extremely effective. In most of the proposed solutions in

this context, the available content/service facilities migrate

towards their optimal location. In [32] the authors propose

a joint optimization of content replication and placement,

suited for wireless networks. Nevertheless, their method-

ology resembles the one we follow. They formulate a ca-

pacitated multi-commodity optimization problem and break

it down to a multitude of single-commodity problems that

seek to minimize the corresponding cost of one information

item available at each facility. Each problem is solved mim-

icking a local search technique that relies on measurements

of the demand queries each node serves. Accordingly, these

measurements drive the content replication and hand-over

to the facility’s immediate neighbors.

Even closer to our work is the paper of Smaragdakis

et al. [26] that proposes the R-ball heuristic. They reduce

the original k-median problem in multiple smaller-scale 1-

median problems solved within an area of R-hops from

the current location of each service facility. This concept

has been realized into a functional system by the authors

of [33] who consider practical improvements to cope with

churn events of p2p overlays. In Section 6.3 we have

detailed how cDSMA compares with a similar, local-search

oriented approach. A slightly different instance of the

iterative service migration through locally-determined hops

has been adopted by Oikonomou and Stavrakakis in [27].

They exploit the shortest-path tree structures induced on

the network graph by the routing protocol operation to

estimate upper bounds for the aggregate cost when the

service migrates to its immediate neighbors. The process

is therefore decelerated by those short migration hops.

11 CONCLUSION

In view of the proliferation of user-centric service instances

across the Internet and the ever increasing in-network

storage capabilities, we have developed a scalable and

effective heuristic approach to deal with the complexity and

limitations of their distributed placement. Our algorithm

relies on node centrality insights to iteratively migrate ser-

vice facilities towards near-optimal locations under various

demand dynamics achieving very good accuracy and fast

convergence. Most importantly, it lends to realistic protocol

implementations that preserve its advantages regardless the

employed routing policies and exhibit welcome scalability

properties with respect to the number of the involved nodes

and message overhead.
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