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1. INTRODUCTION

One of the paradoxes of logic programming is that such a small fragment of
formal logic serves as such a powerful programming language. This contrast
has led to many attempts to make the language more powerful by extending the
fragment, but these attempts generally backfire. The extended languages can be
implemented, and are in a sense more powerful; but these extensions usually
disrupt the relationship between the meaning of programs as programs and
the meaning as logic. In these cases, the implementation of the program-as-
program can no longer be considered as computing a distinguished model of
the program-as-logic. Even worse, the result of running the program may not
correspond to any model at all.

The problem is illustrated by the many attempts to extend logic programming
with negation (of atoms in the clause bodies). The generally accepted computa-
tional interpretation of negated atoms is negation-as-failure. Intuitively, a goal
∼A succeeds iff the subcomputation that attempts to establish A terminates and
fails. Despite its simple computational formulation, negation-as-failure proved
to be extremely difficult to formalize from a semantic point of view (an overview
of the existing semantic treatments is given in the next section). Moreover, the
existing approaches are not purely model-theoretic in the sense that the mean-
ing of a given program can not be computed by solely considering its set of
models. This is a sharp difference from classical logic programming (without
negation), in which every program has a unique minimum Herbrand model
(which is the intersection of all its Herbrand models).

This article presents a purely model-theoretic semantics for negation-as-
failure in logic programming. In our semantics, the meaning of a program is,
as in the classical case, the unique minimum model in a program-independent
ordering. The main contributions of this article can be summarized as follows:

—We argue that a purely declarative semantics for logic programs with
negation-as-failure should be based on an infinite-valued logic. For this pur-
pose, we introduce an expanded truth domain that has an uncountable lin-
early ordered set of truth values between False (the minimum element) and
True (the maximum), with a Zero element in the middle. The truth values
below Zero are ordered like the countable ordinals while those above Zero
have the reverse order. This new truth domain allows us to define in a logical
way the meaning of negation-as-failure and to distinguish it in a very clear
manner from classical negation.

—We introduce the notions of infinite-valued interpretation and infinite-valued
model for logic programs. Moreover, we define a partial ordering �∞ on
infinite-valued interpretations which generalizes the subset ordering of clas-
sical interpretations. We then demonstrate that every logic program that uses
negation-as-failure, has a unique minimum (infinite-valued) model MP un-
der �∞. This model can be constructed by appropriately iterating a simple TP
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operator through the countable ordinals. From an algorithmic point of view,
the construction of MP proceeds in an analogous way as the iterated least
fixpoint approach [Przymusinski 1989]. There exist however crucial differ-
ences. First and most important, the proposed approach aims at producing
a unique minimum model of the program; this requirement leads to a more
demanding logical setting than existing approaches and the construction of
MP is guided by the use of a family of relations on infinite-valued interpreta-
tions. Second, the definition of TP in the infinite-valued approach is a simple
and natural extension of the corresponding well-known operator for classical
logic programming; in the existing approaches the operators used are com-
plicated by the need to keep track of the values produced at previous levels of
the iteration. Of course, the proposed approach is connected to the existing
ones since, as we demonstrate, if we collapse the true and false values of MP
to (classical) True and False we get the well-founded model.

—We derive an alternative characterization of the minimum model MP which
generalizes the well-known model intersection theorem of classical logic pro-
gramming. To our knowledge, this is the first such result in the area of
negation-as-failure (because such constructions can not be obtained if one
restricts attention to either two or three-valued semantical approaches).

The rest of the article is organized as follows: Section 2 discusses the prob-
lem of negation and gives a brief outline of the most established semantic ap-
proaches. Section 3 outlines the infinite-valued approach. Section 4 introduces
infinite-valued interpretations and models, and discusses certain orderings on
interpretations that will play a vital role in defining the infinite-valued seman-
tics. The TP operator on infinite-valued interpretations is defined in Section 5
and an important property of the operator, namely α-monotonicity, is estab-
lished. In Section 6, the construction of the model MP is presented. Section 7 es-
tablishes various properties of MP , the most important of which is the fact that
MP is the minimum model of P under the ordering relation �∞. Section 8 intro-
duces an alternative characterization of the minimum model. Finally, Section 9
concludes the article with discussion on certain aspects of the infinite-valued
approach.

2. THE PROBLEM OF NEGATION-AS-FAILURE

The semantics of negation-as-failure is possibly the most broadly studied prob-
lem in the theory of logic programming. In this section, we first discuss the
problem and then present the main solutions that have been proposed until
now.

2.1 The Problem

Negation-as-failure is a notion that can be described operationally in a very sim-
ple way, but whose declarative semantics has been extremely difficult to specify.
This appears to be a more general phenomenon in the theory of programming
languages:
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“It seems to be a general rule that programming language features
and concepts which are simple operationally tend to be complex de-
notationally, whereas those which are simple denotationally tend to
be complex operationally” [Ashcroft and Wadge 1982].

The basic idea behind negation-as-failure has as follows: suppose that we are
given the goal ← ∼A. Now, if ← A succeeds, then ← ∼A fails; if ← A fails
finitely, then ← ∼A succeeds. For example, given the program

p ←
r ← ∼p
s ← ∼q

the query ← r fails because p succeeds, while ← s succeeds because q fails.
To illustrate the problems that result from the above interpretation of nega-

tion, consider an even simpler program:

works ← ∼tired

Under the negation-as-failure rule, the meaning of the above program is cap-
tured by the model in which tired is False and works is True.

Consider on the other hand the program:

tired ← ∼works

In this case, the correct model under negation-as-failure is the one in which
works is False and tired is True.

However, the above two programs have exactly the same classical models,
namely:

M0 = {(tired, False), (works, True)}
M1 = {(tired, True), (works, False)}
M2 = {(tired, True), (works, True)}

We therefore have a situation in which two programs have the same model
theory (set of models) but different computational meanings. Obviously, this im-
plies that the computational meaning does not have a purely model-theoretic
specification. In other words, one can not determine the intended model of a
logic program that uses negation-as-failure by just examining its set of clas-
sical models. This is a very sharp difference from logic programming without
negation in which every program has a unique minimum model.

2.2 The Existing Solutions

The first attempt to give a semantics to negation-as-failure was the so-called
program completion approach introduced by Clark [1978]. In the completion of
a program the “if” rules are replaced by “if and only if” ones and also an equality
theory is added to the program (for a detailed presentation of the technique,
see Lloyd [1987]). The main problem is that the completion of a program may
in certain cases be inconsistent. To circumvent the problem, Fitting [1985] con-
sidered 3-valued Herbrand models of the program completion. Later, Kunen
[1987] identified a weaker version of Fitting’s semantics that is, recursively
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enumerable. However, the last two approaches do not overcome all the objec-
tions that have been raised regarding the completion (see, e.g., the discussion
in Przymusinska and Przymusinski [1990] and in van Gelder [1993]).

Although the program completion approach proved useful in many appli-
cation domains, it has been superseded by other semantic approaches, usually
termed under the name canonical model semantics. The basic idea of the canon-
ical model approach is to choose among the models of a program a particular
one which is presumed to be the model that the programmer had in mind. The
canonical model is usually chosen among many incomparable minimal models
of the program. Since (as discussed in the last subsection) the selection of the
canonical model can not be performed by just examining the set of (classical)
models of the program, the choice of the canonical model is inevitably driven
by the syntax of the program. In the following we discuss the main semantic
approaches that have resulted from this body of research.

A semantic construction that produces a single model is the so-called strat-
ified semantics [Apt et al. 1988]. Informally speaking, a program is stratified
if it does not contain cyclic dependencies of predicate names through negation.
Every stratified logic program has a unique perfect model, which can be con-
structed in stages. As an example, consider again the program:

p ←
r ← ∼p
s ← ∼q.

The basic idea in the construction of the perfect model is to rank the predicate
variables according to the maximum “depth” of negation used in their defining
clauses. The variables of rank 0 (like p and q above) are defined in terms of
each other without use of negation. The variables of rank 1 (like r and s) are
defined in terms of each other and those of rank 0, with negation applied only
to variables of rank 0. Those of rank 2 are defined with negations applied only
to variables of rank 1 and 0; and so on. The model can then be constructed in
stages. The clauses for the rank 0 variables form a standard logic program, and
its minimum model is used to assign values for the rank 0 variables. These are
then treated as constants, so that the clauses for the rank 1 variables no longer
have negations. The minimum model is used to assign values to the rank 1
variables, which are in turn converted to constants; and so on.

An extension of the notion of stratification is local stratification
[Przymusinski 1988]; intuitively, in a locally stratified program, predicates
may depend negatively on themselves as long as no cycles are formed when
the rules of the program are instantiated. Again, every locally stratified pro-
gram has a unique perfect model [Przymusinski 1988]. The construction of the
perfect model can be performed in an analogous way as in the stratified case
(the basic difference being that one can allow infinite countable ordinals as
ranks). It is worth noting that although stratification is obviously a syntacti-
cally determinable condition, the class of locally stratified logic programs is �1

1-
complete [Cholak and Blair 1994]. It should also be noted here that there exist
some interesting cases of logic programming languages where one can establish
some intermediate notion between stratification and local stratification which
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is powerful and decidable. For example, in temporal logic programming [Orgun
1994; Orgun and Wadge 1992] many different temporal stratification no-
tions have been defined, and corresponding decision tests have been proposed
[Zaniolo et al. 1993; Ludäscher 1998; Rondogiannis 2001].

The stratified and locally stratified semantics fail for programs in which
some variables are defined (directly or indirectly) in terms of their own nega-
tions, because these variables are never ranked. For such programs we need
an extra intermediate neutral truth value for certain of the negatively recur-
sively defined variables. This approach yields the “well-founded” construction
and it can be shown [van Gelder et al. 1991] that the result is indeed a model of
the program. Many different constructive definitions of the well-founded model
have been proposed; two of the most well-known ones are the alternating fix-
point [van Gelder 1989, 1993] and the iterated least fixpoint [Przymusinski
1989]. The well-founded model approach is compatible with stratification (it is
well-known that the well-founded model of a locally stratified program coincides
with its unique perfect model [van Gelder et al. 1991]).

An approach that differs in philosophy from the previous ones is the so-
called stable model semantics [Gelfond and Lifschitz 1988]. While the “canonical
model” approaches assign to a given program a unique “intended” model, the
stable model semantics assigns to the program a (possibly empty) family of
“intended” models. For example, the program

p ← ∼p

does not have any stable models while the program

p ← ∼q
q ← ∼p

has two stable models. The stable model semantics is defined through an el-
egant stability transformation [Gelfond and Lifschitz 1988]. The connections
between the stable model semantics and the previously mentioned canonical
model approaches have been investigated in the literature. More specifically, it
is well-known that every locally stratified program has a unique stable model
which coincides with its unique perfect model [Gelfond and Lifschitz 1988].
Moreover, if a program has a two-valued well-founded model then this coin-
cides with its unique stable model [van Gelder et al. 1991] (but the converse
of this does not hold in general, see again [van Gelder et al. 1991]). Finally,
as it is demonstrated in Przymusinski [1990], the notion of stable model can
be extended to a three-valued setting; then, the well-founded model can be
characterized as the smallest (more precisely, the F-least, see Przymusinski
[1990]) three-valued stable model. The stable model approach has triggered
the creation of a new promising programming paradigm, namely answer-set
programming [Marek and Truszczynski 1999; Gelfond and Leone 2002].

It should be noted at this point that the infinite-valued approach proposed in
this article contributes to the area of the “canonical model” approaches (and not
to the area of stable model semantics). In fact, as we argue in the next section,
the infinite-valued semantics is the purely model-theoretic framework under
which the existing canonical model approaches fall.
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The discussion in this section gives only a top-level presentation of the re-
search that has been performed regarding the semantics of negation-as-failure.
For a more in-depth treatment, the interested reader should consult the many
existing surveys for this area (such as, e.g., Apt and Bol [1994], Baral and
Gelfond [1994], Przymusinska and Przymusinski [1990], and Fitting [2002]).

3. THE INFINITE-VALUED APPROACH

There is a general feeling (which we share) that when one seeks a unique model,
then the well-founded semantics is the right approach to negation-as-failure.
There still remains however a question about its legitimacy, mainly because the
well-founded model is in fact one of the minimal models of the program and
not a minimum one. In other words, there is nothing that distinguishes it as a
model.

Our goal is to remove the last doubts surrounding the well-founded model
by providing a purely model-theoretic semantics (the infinite-valued semantics)
that is compatible with the well-founded model, but in which every program
with negation has a unique minimum model. In our semantics, whenever two
programs have the same set of infinite-valued models, then they have the same
minimum model.

Informally, we extend the domain of truth values and use these extra val-
ues to distinguish between ordinary negation and negation-as-failure (in fact,
classical negation can be seen as strictly stronger than negation-as-failure in
the sense that ¬A is a more forceful statement than ∼A). Consider again the
program:

p ←
r ← ∼p
s ← ∼q.

Under the negation-as-failure approach both p and s receive the value True.
We would argue, however, that in some sense p is “truer” than s. Namely, p
is true because there is a rule which says so, whereas s is true only because
we are never obliged to make q true. In a sense, s is true only by default. Our
truth domain adds a “default” truth value T1 just below the “real” truth T0, and
(by symmetry) a weaker false value F1 just above (“not as false as”) the real
false F0. We can then understand negation-as-failure as combining ordinary
negation with a weakening. Thus, ∼ F0 = T1 and ∼ T0 = F1. Since negations
can effectively be iterated, our domain requires a whole sequence . . . , T3, T2, T1
of weaker and weaker truth values below T0 but above the neutral value 0;
and a mirror image sequence F1, F2, F3, . . . above F0 and below 0. In fact, to
capture the well-founded model in full generality, we need a Tα and a Fα for
every countable ordinal α.

We show that, over this extended domain, every logic program with
negation has a unique minimum model; and that in this model, if we
collapse all the Tα and Fα to True and False respectively, we get the
three-valued well-founded model. For the example program above, the min-
imum model is {(p, T0), (q, F0), (r, F1), (s, T1)}. This collapses to {(p, True),
(q, False), (r, False), (s, True)}, which is the well-founded model of the program.
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Consider now again the program works←∼tired. The minimum model
in this case is {(tired, F0), (works, T1)}. On the other hand, for the program
tired ←∼works the minimum model is {(tired, T1), (works, F0)}. As it will be-
come clearer in the next section, the minimum model of the first program is not
a model of the second program, and vice-versa. Therefore, the two programs do
not have the same set of infinite-valued models and the paradox identified in
the previous section, disappears. Alternatively, in the infinite-valued seman-
tics the programs works ←∼tired and tired ←∼works are no longer logically
equivalent.

The proof of our minimum-model result proceeds in a manner analogous to
the classical proof in the negation-free case. The main complication is that we
need extra auxiliary relations to characterize the transitions between stages
in the construction. This complication is unavoidable and due to the fact that
in our infinite truth domain negation-as-failure is still antimonotonic. The ap-
proximations do converge on the least model, but not monotonically (or even
antimonotonically). Instead (speaking loosely) the values of variables with stan-
dard denotations (T0 and F0) are computed first, then those (T1 and F1) one level
weaker, then those two levels weaker, and so on. We need a family of relations
between models to keep track of this intricate process (whose result, neverthe-
less, has a simple characterization).

In other words, we consider logic programs with negation as specifying an
induction process in which the values we assign to variables accumulate in
stages. This idea originates from the well-known techniques for the construction
of the well-founded model (see, e.g., Przymusinski [1989]). Recently, this idea
was also made more explicit in Denecker et al. [2001] in which the authors
propose the thesis that logic programs with negation should still be considered
as specifying inductive definitions that are not however monotonic.1 In terms of
the nonmonotonic induction view, our different levels of truth record the stages
at which the values are assigned to variables. Expanding the truth domain
allows us to give a model-theoretic treatment of nonmonotonic induction.

4. INFINITE-VALUED MODELS

In this section, we define infinite-valued interpretations and infinite-valued
models of programs. In the following discussion, we assume familiarity with
the basic notions of logic programming [Lloyd 1987]. We consider the class of
normal logic programs:

Definition 4.1. A normal program clause is a clause whose body is a con-
junction of literals. A normal logic program is a finite set of normal program
clauses.

We follow a common practice in the area of negation, which dictates that
instead of studying (finite) logic programs it is more convenient to study their
(possibly infinite) ground instantiations [Fitting 2002]:

1This work was brought to our attention during the reviewing process.
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Definition 4.2. If P is a normal logic program, its associated ground in-
stantiation P∗ is constructed as follows: first, put in P∗ all ground instances of
members of P ; second, if a clause A ← with empty body occurs in P∗, replace
it with A ← true; finally, if the ground atom A is not the head of any member
of P∗, add A ← false.

The program P∗ is in essence a (generally infinite) propositional program.
In the rest of this paper, we will assume that all programs under consideration
(unless otherwise stated) are of this form.

The existing approaches to the semantics of negation are either two-valued
or three-valued. The two-valued approaches are based on classical logic that
uses the truth values False and True. The three-valued approaches are based
on a three-valued logic that uses False, 0 and True. The element 0 captures
the notion of undefined. The truth values are ordered as: False < 0 < True (see,
e.g., Przymusinski [1989]).

The basic idea behind the proposed approach is that in order to obtain a
minimum model semantics for logic programs with negation, it is necessary
to consider a much more refined multiple-valued logic which is based on an
infinite set of truth values, ordered as follows:

F0 < F1 < · · · < Fω < · · · < Fα < · · · < 0 < · · · < Tα < · · · < Tω < · · · < T1 < T0.

Intuitively, F0 and T0 are the classical False and True values and 0 is the
undefined value. The values below 0 are ordered like the countable ordinals.
The values above 0 have exactly the reverse order. The intuition behind the
new values is that they express different levels of truthfulness and falsity. In
the following, we denote by V the set consisting of the above truth values. A
notion that will prove useful in the sequel is that of the order of a given truth
value:

Definition 4.3. The order of a truth value is defined as follows: order(Tα) =
α, order(Fα) = α and order(0) = +∞.

The notion of “Herbrand interpretation of a program” can now be generalized:

Definition 4.4. An (infinite-valued) interpretation I of a program P is a
function from the Herbrand Base BP of P to V .

In the rest of the article, the term “interpretation” will mean an infinite-
valued one (unless otherwise stated). As a special case of interpretation, we
will use ∅ to denote the interpretation that assigns the F0 value to all atoms of
a program.

In order to define the notion of model of a given program, we need to extend
the notion of interpretation to apply to literals, to conjunctions of literals and
to the two constants true and false (for the purposes of this article, it is not
actually needed to extend I to more general formulas):

Definition 4.5. Let I be an interpretation of a given program P . Then, I
can be extended as follows:
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—For every negative atom ∼p appearing in P :

I (∼ p) =



Tα+1 if I (p) = Fα

Fα+1 if I (p) = Tα

0 if I (p) = 0.

—For every conjunction of literals l1, . . . , ln appearing as the body of a clause
in P :

I (l1, . . . , ln) = min{I (l1), . . . , I (ln)}.
Moreover, I (true) = T0 and I (false) = F0.

It is important to note that the above definition provides a purely logical
characterization of what negation-as-failure is; moreover, it clarifies the dif-
ference between classical negation (which is simply reflection about 0) and
negation-as-failure (which is reflection about 0 followed by a step towards 0).
The operational intuition behind the above definition is that the more times a
value is iterated through negation, the closer to zero it gets.

The notion of satisfiability of a clause can now be defined:

Definition 4.6. Let P be a program and I an interpretation of P . Then, I
satisfies a clause p ← l1, . . . , ln of P if I (p) ≥ I (l1, . . . , ln). Moreover, I is a
model of P if I satisfies all clauses of P .

Given an interpretation of a program, we adopt specific notations for the set
of atoms of the program that are assigned a specific truth value and for the
subset of the interpretation that corresponds to a particular order:

Definition 4.7. Let P be a program, I an interpretation of P and v ∈ V .
Then I ‖ v = {p ∈ BP | I (p) = v}. Moreover, if α is a countable ordinal, then
I�α = {(p, v) ∈ I | order(v) = α}.

The following relations on interpretations will prove useful in the rest of the
article:

Definition 4.8. Let I and J be interpretations of a given program P and α

be a countable ordinal. We write I =α J , if for all β ≤ α, I ‖ Tβ = J ‖ Tβ and
I ‖ Fβ = J ‖ Fβ .

Example 4.9. Let I = {(p, T0), (q, T1), (r, T2)} and J = {(p, T0), (q, T1),
(r, F2)}. Then, I =1 J , but it is not the case that I =2 J .

Definition 4.10. Let I and J be interpretations of a given program P and
α be a countable ordinal. We write I �α J , if for all β < α, I =β J and either
I ‖ Tα ⊂ J ‖ Tα and I ‖ Fα ⊇ J ‖ Fα, or I ‖ Tα ⊆ J ‖ Tα and I ‖ Fα ⊃ J ‖ Fα.
We write I �α J if I =α J or I �α J .

Example 4.11. Consider the interpretations I = {(p, T0), (q, T1), (r, F2)}
and J = {(p, T0), (q, T1), (r, T2)}. Obviously, I �2 J .

Definition 4.12. Let I and J be interpretations of a given program P . We
write I �∞ J , if there exists a countable ordinal α (that depends on I and J )
such that I �α J . We write I �∞ J if either I = J or I �∞ J .
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Notice that in the above definition α depends on the interpretations I and
J . More specifically, for any given I and J , α is the least countable ordinal for
which I�α is not equal to J�α. Therefore, �∞ is not in general equal to �α for
any particular fixed α.

It is easy to see that the relation �∞ on the set of interpretations of a given
program, is a partial order (i.e., it is reflexive, transitive and antisymmetric).
On the other hand, for every countable ordinal α, the relation �α is a preorder
(i.e., reflexive and transitive). The following lemma gives a condition related to
�∞ which will be used in a later section:

LEMMA 4.13. Let I and J be two interpretations of a given program P. If,
for all p in P, I (p) ≤ J (p), then I �∞ J.

PROOF. If I = J , then obviously I �∞ J . Assume I �= J and let α be the
least countable ordinal such that I�α �= J�α. Now, for every p in P such that
J (p) = Fα, we have I (p) ≤ Fα. However, since I and J agree on their values
of order less than α, we have I (p) = Fα. Therefore, I ‖ Fα ⊇ J ‖ Fα. On the
other hand, for every p in P such that I (p) = Tα, we have J (p) ≥ Tα. Since I
and J agree on their values of order less than α, we have J (p) = Tα. Therefore,
I ‖ Tα ⊆ J ‖ Tα. Since I�α �= J�α, we get I �α J which implies I �∞ J .

The relation �∞ will be used in the coming sections in order to define the
minimum model semantics for logic programs with negation-as-failure.

Example 4.14. Consider the program P :

p ← ∼q
q ← false.

It can easily be seen that the interpretation MP = {(p, T1), (q, F0)} is the least
one (with respect to �∞) among all infinite-valued models of P . In other words,
for every infinite-valued model N of P , it is MP �∞ N .

We can now define a notion of monotonicity that will be the main tool in
defining the infinite-valued semantics:

Definition 4.14. Let P be a program and let α be a countable ordinal. A
function � from the set of interpretations of P to the set of interpretations of P
is called α-monotonic iff for all interpretations I and J of P , I �α J ⇒ �(I ) �α

�(J ).

Based on the notions defined above, we can now define and examine the prop-
erties of an immediate consequence operator for logic programs with negation-
as-failure.

5. THE IMMEDIATE CONSEQUENCE OPERATOR

In this section, we demonstrate that one can easily define a TP operator for
logic programs with negation, based on the notions developed in the last sec-
tion. Moreover, we demonstrate that this operator is α-monotonic for all count-
able ordinals α. The α-monotonicity allows us to prove that this new TP has a
least fixpoint, for which however ω iterations are not sufficient. The procedure
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required for getting the least fixpoint is more subtle than that for classical logic
programs, and will be described shortly.

Definition 5.1. Let P be a program and let I be an interpretation of P . The
operator TP is defined as follows2:

TP (I )(p) = lub{I (l1, . . . , ln) | p ← l1, . . . , ln ∈ P}.
TP is called the immediate consequence operator for P .

The following lemma demonstrates that TP is well defined:

LEMMA 5.2. Every subset of the set V of truth values has a least upper bound.

PROOF. Let VF and VT be the subsets of V that correspond to the false and
true values respectively. Let S be a subset of V . Consider first the case in which
S ∩ VT is nonempty. Then, since VT is a reverse well-order, the subset S ∩ VT
must have a greatest element, which is clearly the least upper bound of S.

Now assume that S ∩ VT is empty. Then, the intermediate truth value 0 is
an upper bound of S. If there are no other upper bounds in VF , then 0 is the
least upper bound. But if the set of upper bounds of S in VF is nonempty, it
must have a least element, because VF is well ordered; and this least element
is clearly the least upper bound of S in the whole truth domain V .

Example 5.3. Consider the program:
p ← ∼q
p ← ∼p
q ← false.

and the interpretation I = {(p, T0), (q, T1)}. Then, TP (I ) = {(p, F2), (q, F0)}.
Example 5.4. For a more demanding example consider the following infi-

nite program:
p0 ← false q ← p0
p1 ← ∼p0 q ← p1
p2 ← ∼p1 q ← p2
p3 ← ∼p2 q ← p3

. . . . . . .

Let I = {(q, F0), (p0, F0), (p1, F1), (p2, F2), . . .}. Then, it can be easily seen that
TP (I ) = {(q, Fω), (p0, F0), (p1, T1), (p2, T2), . . .}.

One basic property of TP is that it is α-monotonic, a property that is illus-
trated by the following example:

Example 5.5. Consider the program:
p ← ∼q
q ← false.

Let I = {(q, F0), (p, T2)} and J = {(q, F1), (p, T0)}. Clearly, I �0 J . It can easily
be seen that TP (I ) = {(q, F0), (p, T1)} and TP (J ) = {(q, F0), (p, T2)}, and obvi-
ously TP (I ) �0 TP (J ).

2The notation TP (I )(p) is possibly more familiar to people having some experience with functional
programming: TP (I )(p) is the value assigned to p by the interpretation TP (I ).

ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.



Minimum Model Semantics for Logic Programs • 453

The following lemma establishes the α-monotonicity of TP . Notice that a sim-
ilar lemma also holds for the well-founded semantics (see, e.g., Przymusinski
[1989]).

LEMMA 5.6. The immediate consequence operator TP is α-monotonic, for all
countable ordinals α.

PROOF. The proof is by transfinite induction on α. Assume the lemma holds
for all β < α. We demonstrate that it also holds for α.

Let I , J be two interpretations of P such that I �α J . We first establish
that the values of order less that α remain intact by TP . Since I �α J , for all
β < α we have I �β J and J �β I . By the induction hypothesis, we have
that TP (I ) �β TP (J ) and TP (J ) �β TP (I ), which implies that TP (I ) =β TP (J ),
for all β < α. It remains to show that TP (I ) ‖ Tα ⊆ TP (J ) ‖ Tα and that
TP (I ) ‖ Fα ⊇ TP (J ) ‖ Fα. We distinguish these two cases.

We first demonstrate that TP (I ) ‖ Tα ⊆ TP (J ) ‖ Tα. Assume that for some
atom p in P it is TP (I )(p) = Tα. We need to show that TP (J )(p) = Tα. Obviously,
TP (J )(p) ≤ Tα (if it was TP (J ) (p) > Tα, then it would also be TP (I ) (p) > Tα

since for all β < α, TP (I ) =β TP (J )). Consider now the fact that TP (I ) (p) = Tα.
This implies that there exists a rule of the form p ← q1, . . . , qn, ∼w1, . . . , ∼wm
in P whose body evaluates under I to the value Tα. This means that for all qi,
1 ≤ i ≤ n, I (qi) ≥ Tα and for all wi, 1 ≤ i ≤ m, I (∼ wi) ≥ Tα (or equivalently,
I (wi) < Fα). But then, since I �α J , the evaluation of the body of the above
rule under the interpretation J also results to the value Tα. This together with
the fact that TP (J )(p) ≤ Tα allows us to conclude (using the definition of TP )
that TP (J )(p) = Tα.

It now remains to demonstrate that TP (I ) ‖ Fα ⊇ TP (J ) ‖ Fα. Assume that
for some atom p in P , TP (J )(p) = Fα. We need to show that TP (I )(p) = Fα.
Obviously, TP (I )(p) ≥ Fα since TP (I ) =β TP (J ), for all β < α. Now, the fact that
TP (J )(p) = Fα implies that for every rule for p in P , the body of the rule has
a value under J that is less than or equal to Fα. Therefore, if p ← q1, . . . , qn,
∼ w1, . . . , ∼ wm is one of these rules, then either there exists a qi, 1 ≤ i ≤ n,
such that J (qi) ≤ Fα, or there exists a wi, 1 ≤ i ≤ m, such that J (∼ wi) ≤ Fα

(or equivalently J (wi) > Tα). But then, since I �α J , the body of the above rule
evaluates under I to a value less than or equal to Fα. Therefore, TP (I )(p) ≤
Fα. This together with the fact that TP (I )(p) ≥ Fα imply that TP (I )(p) =
Fα.

It is natural to wonder whether TP is monotonic with respect to the relation
�∞. This is not the case, as the following example illustrates:

Example 5.7. Consider the program:

p ← ∼q
s ← p
t ← ∼s
t ← u
u ← t
q ← false.
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Consider the following interpretations: I = {(p, T1), (q, F0), (s, F0), (t, T1),
(u, F0)} and J = {(p, T1), (q, F0), (s, F1), (t, F1), (u, F1)}. Obviously, I �∞ J be-
cause I �0 J . However, we have TP (I ) = {(p, T1), (q, F0), (s, T1), (t, T1), (u, T1)}
and also TP (J ) = {(p, T1), (q, F0), (s, T1), (t, T2), (u, F1)}. Clearly, TP (I ) ��∞
TP (J ).

The fact that TP is not monotonic under �∞ appears to suggest that if we
want to find the least (with respect to �∞) fixpoint of TP , we should not rely on
approximations based on the relation �∞. The way that this minimum fixpoint
can be constructed, is described in the following section.

6. CONSTRUCTION OF THE MINIMUM MODEL MP
In this section, we demonstrate how the minimum model MP of a given program
P can be constructed. The construction can informally be described as follows.
As a first approximation to MP , we start with the interpretation that assigns
to every atom of P the value F0 (as already mentioned, this interpretation is
denoted by ∅). We start iterating the TP on ∅ until both the set of atoms that have
a F0 value and the set of atoms having a T0 value, stabilize. We keep all these
atoms whose values have stabilized and reset the values of all remaining atoms
to the next false value (namely, F1). The procedure is repeated until the F1 and
T1 values stabilize, and we reset the remaining atoms to a value equal to F2,
and so on. Since the Herbrand Base of P is countable, there exists a countable
ordinal δ for which this process will not produce any new atoms having Fδ or
Tδ values. At this point, we stop the iterations and reset all remaining atoms
to the value 0. The above process is illustrated by the following example:

Example 6.1. Consider the program:

p ← ∼q
q ← ∼r
s ← p
s ← ∼s
r ← false.

We start from the interpretation I = {(p, F0), (q, F0), (r, F0), (s, F0)}. Iterating
the immediate consequence operator twice, we get in turn the following two
interpretations:

{(p, T1), (q, T1), (r, F0), (s, T1)}
{(p, F2), (q, T1), (r, F0), (s, T1)}.

Notice that the set of atoms having an F0 value as well as the set of atoms
having a T0 value, have stabilized (there is only one atom having an F0 value
and none having a T0 one). Therefore, we reset the values of all other atoms to
F1 and repeat the process until the F1 and T1 values converge:

{(p, F1), (q, F1), (r, F0), (s, F1)}
{(p, T2), (q, T1), (r, F0), (s, T2)}
{(p, F2), (q, T1), (r, F0), (s, T2)}.
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Now, the order 1 values have converged, so we reset all remaining values to F2
and continue the iterations:

{(p, F2), (q, T1), (r, F0), (s, F2)}
{(p, F2), (q, T1), (r, F0), (s, T3)}
{(p, F2), (q, T1), (r, F0), (s, F4)}.

The order 2 values have converged, and we reset the value of s to F3:

{(p, F2), (q, T1), (r, F0), (s, F3)}
{(p, F2), (q, T1), (r, F0), (s, T4)}.

The fact that we do not get any order 3 value implies that we have reached the
end of the iterations. The final model results by setting the value of s to 0:

MP = {(p, F2), (q, T1), (r, F0), (s, 0)}.
As it will be demonstrated, this is the minimum model of the program under
�∞.

The above notions are formalized by the definitions that follow.

Definition 6.2. Let P be a program, let I be an interpretation of P and α

a countable ordinal. Moreover, assume that I �α TP (I ) �α T 2
P (I ) �α · · · �α

T n
P (I ) �α · · ·, n < ω. Then, the sequence {T n

P (I )}n<ω is called an α-chain.

Definition 6.3. Let P be a program, let I be an interpretation of P and
assume that {T n

P (I )}n<ω is an α-chain. Then, we define the interpretation Tω
P,α(I )

as follows:

Tω
P,α(I )(p) =




I (p) if order(I (p)) < α

Tα if p ∈ ⋃
n<ω(T n

P (I ) ‖ Tα)
Fα if p ∈ ⋂

n<ω(T n
P (I ) ‖ Fα)

Fα+1 otherwise.

The proof of the following lemma follows directly from the above definition:

LEMMA 6.4. Let P be a program, I an interpretation of P and α a countable
ordinal. Assume that {T n

P (I )}n<ω is an α-chain. Then, for all n < ω, T n
P (I ) �α

Tω
P,α(I ). Moreover, for all interpretations J such that, for all n < ω, T n

P (I ) �α J,
it is Tω

P,α(I ) �α J.

The following definition and lemma will be used later on to suggest that the
interpretations that result during the construction of the minimum model, do
not assign to variables values of the form Tα where α is a limit ordinal.

Definition 6.5. An interpretation I of a given program P is called reason-
able if for all (p, Tα) ∈ I , α is not a limit ordinal.

LEMMA 6.6. Let P be a program and I a reasonable interpretation of P.
Then, for all n < ω, T n

P (I ) is a reasonable interpretation of P. Moreover, if
{T n

P (I )}n<ω is an α-chain, then Tω
P,α(I ) is a reasonable interpretation of P.

PROOF. The proof of the first part of the theorem is by induction on n. For
n = 0, the result is immediate. Assume that T k

P (I ) is reasonable, and consider
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the case of T k+1
P (I ). Now, if (p, Tα) belongs to T k+1

P (I ), where α is a limit ordinal,
then there must exist a clause p ← B in P such that T k

P (I )(B) = Tα. But this
implies that there exists a literal l in B such that T k

P (I )(l ) = Tα. If l is a positive
literal, then this is impossible due to the induction hypothesis. If l is a negative
literal, this is impossible from the interpretation of ∼ in Definition 4.5.

The proof of the second part of the theorem is immediate: if (p, Tα) ∈ Tω
P,α(I ),

then (by the definition of Tω
P,α) there exists k < ω such that (p, Tα) ∈ T k

P (I ). But
this is impossible from the first part of the theorem.

We now define a sequence of interpretations of a given program P (which
can be thought of as better and better approximations to the minimum model
of P ):

Definition 6.7. Let P be a program and let:

M0 = Tω
P,0(∅)

Mα = Tω
P,α(Mα−1) for successor ordinal α

Mα = Tω
P,α

(⊔̂
β<α Mβ

)
for limit ordinal α

where: (⊔̂
β<α

Mβ

)
(p) =

{
(
⋃

β<α(Mβ�β))(p) if this is defined
Fα otherwise

The M0, M1, . . . , Mα, . . . are called the approximations to the minimum model
of P .

From the above definition, it is not immediately obvious that the approxima-
tions are well defined. First, the definition of Tω

P,α presupposes the existence of
an α-chain (e.g., in the definition of M0 one has to demonstrate that {T n

P (∅)}n<ω is
a 0-chain). Second, in the definition of

⊔̂
β<α Mβ above, we implicitly assume that⋃

β<α(Mβ�β) is a function. But in order to establish this, we have to demonstrate
that the domains of the relations Mβ�β, β < α, are disjoint (i.e., that no atom
participates simultaneously to more than one Mβ�β). The following lemma clar-
ifies the above situation. Notice that the lemma consists of two parts, which are
proven simultaneously by transfinite induction. This is because the induction
hypothesis of the second part is used in the induction step of the first part.

LEMMA 6.8. For all countable ordinals α:

(1) Mα is well defined, and
(2) TP (Mα) =α Mα.

PROOF. The proof is by transfinite induction on α. We distinguish three cases:

Case 1. α = 0. In order to establish that the sequence {T n
P (∅)}n<ω is a 0-chain,

we use induction on n. For the basis case, observe that ∅ �0 TP (∅). Moreover, if
we assume that T n

P (∅) �0 T n+1
P (∅), using the 0-monotonicity of TP we get that

T n+1
P (∅) �0 T n+2

P (∅). Therefore, for all n < ω, T n
P (∅) �0 T n+1

P (∅). It remains to
establish that TP (M0) =0 M0.
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From Lemma 6.4, T n
P (∅) �0 M0, for all n. By the 0-monotonicity of TP , we

have that for all n < ω, T n+1
P (∅) �0 TP (M0); moreover, obviously ∅ �0 TP (M0).

Therefore, for all n < ω, T n
P (∅) �0 TP (M0). But then, from the second part

of Lemma 6.4, M0 �0 TP (M0). It remains to show that TP (M0) �0 M0. Let
p be an atom in P such that M0(p) = F0. Then, for all n, T n

P (∅)(p) = F0.
This means that for every clause of the form p ← B in P and for all n < ω,
T n

P (∅)(B) = F0. This implies that there exists a literal l in B such that for all
n < ω, T n

P (∅)(l ) = F0 (this is easily implied by the fact that {T n
P (∅)}n<ω is a

0-chain). Therefore, M0(l ) = F0 and consequently M0(B) = F0, which shows
that TP (M0) (p) = F0. Consider on the other hand an atom p in P such that
TP (M0) = T0. Then, there exists a clause p ← B in P such that M0(B) = T0.
This implies that for all literals l in B, M0(l ) = T0. But then there exists a k
such that for all l in B and all n ≥ k, T n

P (∅)(l ) = T0 (this again is implied by the
fact that {T n

P (∅)}n<ω is a 0-chain). This implies that for all n ≥ k, T n
P (∅)(B) = T0

which means that for all n ≥ k, T n+1
P (∅)(p) = T0. Consequently, M0(p) = T0.

Case 2. α is a limit ordinal. Then, Mα = Tω
P,α(

⊔̂
β<α Mβ). Based on the induc-

tion hypothesis one can easily verify that the domains of the relations Mβ�β,
β < α, are disjoint and therefore the quantity

⊔̂
β<α Mβ is well defined (intu-

itively, the values of order less than or equal to β in Mβ have stabilized and
will not change by subsequent iterations of TP ). Moreover, it is easy to see that
the sequence {T n

P (
⊔̂

β<α Mβ)}n<ω is an α-chain (the proof is by induction on n and
uses the α-monotonicity of TP ).

It remains to establish that TP (Mα) =α Mα. We first show that
Mα �α TP (Mα). Since {T n

P (
⊔̂

β<α Mβ)}n<ω is an α-chain, from Lemma 6.4,
T n

P (
⊔̂

β<α Mβ) �α Mα, for all n < ω. Using the α-monotonicity of TP we get
that for all n < ω, T n+1

P (
⊔̂

β<α Mβ) �α TP (Mα); moreover,
⊔̂

β<α Mβ �α TP (Mα)
(since

⊔̂
β<α Mβ �α TP (

⊔̂
β<α Mβ) and TP (

⊔̂
β<α Mβ) �α TP (Mα)). Therefore, we

have that for all n < ω, T n
P (

⊔̂
β<α Mβ) �α TP (Mα). But then, by Lemma 6.4,

Mα �α TP (Mα). Notice that this (due to the definition of �α) immediately im-
plies that for all β < α, Mα =β TP (Mα).

It remains to show that TP (Mα) �α Mα. It suffices to show that TP (Mα) ‖
Tα ⊆ Mα ‖ Tα and TP (Mα) ‖ Fα ⊇ Mα ‖ Fα. The former statement is im-
mediate since (by Lemma 6.6) values of the form Tα, where α is a limit or-
dinal, do not arise. Consider now the latter statement and let p be an atom
in P such that Mα(p) = Fα. Then, by the definition of Tω

P,α, we get that for
all n ≥ 0, T n

P (
⊔̂

β<α Mβ)(p) = Fα. Assume that TP (Mα)(p) �= Fα. Then, since
Mα =β TP (Mα) for all β < α, it has to be TP (Mα)(p) > Fα. But then this means
that there exists a clause p ← B in P such that Mα(B) > Fα. This implies that
for every literal l in B, Mα(l ) > Fα. But then, by a case analysis on the possible
values that Mα(l ) may have, one can show that there exists a k such that for all
l in B and for all n ≥ k, T n

P (
⊔̂

β<α Mβ)(l ) > Fα. In other words, for this particular
clause there exists a k such that for all n ≥ k, T n

P (
⊔̂

β<α Mβ)(B) > Fα. But this
implies that for all n ≥ k, T n+1

P (
⊔̂

β<α Mβ)(p) > Fα (contradiction). Therefore,
TP (Mα)(p) = Fα.
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Case 3. α is a successor ordinal. Then, Mα = Tω
P,α(Mα−1). As before, it

is straightforward to establish that {T n
P (Mα−1)}n<ω is an α-chain. Moreover,

demonstrating that Mα �α TP (Mα) is performed in an entirely analogous way
as in Case 2. Notice that this (due to the definition of �α) immediately implies
that for all β < α, Mα =β TP (Mα).

It remains to show that TP (Mα) �α Mα. For this, it suffices to establish
that TP (Mα) ‖ Tα ⊆ Mα ‖ Tα and TP (Mα) ‖ Fα ⊇ Mα ‖ Fα. Consider the
former statement and let TP (Mα)(p) = Tα, for some p in P . Then, since Mα =β

TP (Mα) for all β < α, it has to be Mα(p) ≤ Tα. Moreover, since TP (Mα)(p) = Tα,
there exists a clause p ← B in P such that Mα(B) = Tα. This implies that for
every literal l in B, Mα(l ) ≥ Tα. By a case analysis on the possible values that
Mα(l ) may have, one can show that there exists a k such that for all n ≥ k,
T n

P (Mα−1)(l ) = Mα(l ). This implies that for all n ≥ k, T n
P (Mα−1)(B) = Mα(B) =

Tα. This implies that for all n ≥ k, T n+1
P (Mα−1)(p) ≥ Tα and therefore Mα(p) ≥

Tα. Now, since Mα(p) ≤ Tα, we conclude that Mα(p) = Tα.
The proof for the latter part of the statement is similar to the corresponding

proof for Case 2.

The following two lemmas are now needed in order to define the minimum
model of a given program:

LEMMA 6.9. Let P be a program. Then, there exists a countable ordinal δ

such that:

(1) Mδ ‖ Tδ = ∅ and Mδ ‖ Fδ = ∅
(2) for all β < δ, Mβ ‖ Tβ �= ∅ or Mβ ‖ Fβ �= ∅
This ordinal δ is called the depth of P3.

PROOF. The basic idea behind the proof is that since BP is countable and the
set of countable ordinals is uncountable, there can not exist an onto function
from the former set to the latter. More specifically, consider the set S of pairs
of truth values of the form (Tα, Fα), for all countable ordinals α. Consider the
function F that maps each p ∈ BP to (Tα, Fα) if and only if p ∈ Mα ‖ Fα ∪ Mα ‖
Tα. Assume now that there does not exist a δ having the properties specified
by the theorem. This would imply that every member of the range of F would
be the map of at least one element from BP . But this is impossible since BP is
countable while the set S is uncountable. To complete the proof, take as δ the
smallest countable ordinal α such that Mα ‖ Tα = ∅ and Mα ‖ Fα = ∅.

The following property of δ reassures us that the approximations beyond Mδ

do not introduce any new truth values:

LEMMA 6.10. Let P be a program and let δ be as in Lemma 6.9. Then, for all
countable ordinals γ ≥ δ, Mγ ‖ Tγ = ∅ and Mγ ‖ Fγ = ∅.

PROOF (OUTLINE). The proof is by transfinite induction on γ . The basic idea
is that if either Mγ ‖ Tγ (respectively, Mγ ‖ Fγ ) was nonempty, then Mδ ‖ Tδ

(respectively, Mδ ‖ Fδ) would have to be nonempty.

3The term “depth” was first used by Przymusinski [1989].
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We can now formally define the interpretation MP of a given program P :

MP (p) =
{

Mδ(p) if order(Mδ(p)) < δ

0 otherwise.

As it will be shown shortly, MP is the least fixpoint of TP , the minimum model of
P with respect to �∞, and when it is restricted to three-valued logic, it coincides
with the well-founded model [van Gelder et al. 1991].

7. PROPERTIES OF MP
In this section, we demonstrate that the interpretation MP is a model of P .
Moreover, we show that MP is in fact the minimum model of P under �∞.

THEOREM 7.1. The interpretation MP of a program P is a fixpoint of TP .

PROOF. By the definition of MP and from Lemma 6.10, we have that for all
countable ordinals α, MP =α Mα. Then, for all α, TP (MP ) =α TP (Mα) =α Mα =α

MP . Therefore, MP is a fixpoint of TP .

THEOREM 7.2. The interpretation MP of a program P is a model of P.

PROOF. Let p ← B be a clause in P . It suffices to show that MP (p) ≥ MP (B).
We have:

MP (p) = TP (MP )(p) (because MP is a fixpoint of TP )
= lub{MP (BC) | (p ← BC) ∈ P} (Definition of TP )
≥ MP (B) (Property of lub)

Therefore, MP is a model of P .

The following lemma will be used in the proof of the main theorem of this
section:

LEMMA 7.3. Let N be a model of a given program P. Then, TP (N ) �∞ N.

PROOF. Since N is a model of P , then for all p in P and for all clauses of the
form p ← B in P , N (p) ≥ N (B). But then:

TP (N )(p) = lub{N (B) | (p ← B) ∈ P} ≤ N (p)

Therefore, we have that TP (N )(p) ≤ N (p) for all p in P . Using Lemma 4.13,
we get that TP (N ) �∞ N .

THEOREM 7.4. The infinite-valued model MP is the least (with respect to �∞)
among all infinite-valued models of P.

PROOF. Let N be another model of P . We demonstrate that MP �∞ N . It
suffices to show that for all countable ordinals α, if for all β < α, MP =β N ,
then MP �α N . The proof is by transfinite induction on α. We distinguish three
cases:

Case 1. α = 0. We need to show that MP �0 N . Now, since MP =0 M0, it
suffices to show that M0 �0 N . By an inner induction, we demonstrate that for
all n < ω, T n

P (∅) �0 N . The basis case is trivial. Assume that T n
P (∅) �0 N . Using

the 0-monotonicity of TP , we get that T n+1
P (∅) �0 TP (N ). From Lemma 7.3, it
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is TP (N ) �∞ N which easily implies that TP (N ) �0 N . By the transitivity
of �0 we get that T n+1

P (∅) �0 N . Therefore, for all n < ω, T n
P (∅) �0 N . Using

Lemma 6.4, we get that M0 �0 N .

Case 2. α is a limit ordinal. We need to show that MP �α N . Since MP =α

Mα, it suffices to show that Tω
P,α(

⊔̂
β<α Mβ) �α N . This can be demonstrated

by proving that for all n < ω, T n
P (

⊔̂
β<α Mβ) �α N . We proceed by induction on

n. For n = 0, the result is immediate. Assume the above statement holds for
n. We need to demonstrate the statement for n + 1. Using the α-monotonicity
of TP , we get that T n+1

P (
⊔̂

β<α Mβ) �α TP (N ). Now, it is easy to see that for all
β < α, TP (N ) =β N (this follows from the fact that for all β < α, Mα =β N ).
From Lemma 7.3, we also have TP (N ) �∞ N . But then TP (N ) �α N . Using the
transitivity of �α, we get that T n+1

P (
⊔̂

β<α Mβ) �α N . Therefore, for all n < ω,
T n

P (
⊔̂

β<α Mβ) �α N . Using Lemma 6.4 we get that Mα �α N .

Case 3. α is a successor ordinal. The proof is very similar to that for
Case 2.

COROLLARY 7.5. The infinite-valued model MP is the least (with respect to
�∞) among all the fixpoints of TP .

PROOF. It is straightforward to show that every fixpoint of TP is a model
of P (the proof is identical to the proof of Theorem 7.2). The result follows
immediately since MP is the least model of P .

Finally, the following theorem provides the connection between the infinite-
valued semantics and the existing semantic approaches to negation:

THEOREM 7.6. Let NP be the interpretation that results from MP by col-
lapsing all true values to True and all false values to False. Then, NP is the
well-founded model of P.

PROOF (OUTLINE). We consider the definition of the well-founded model given
by Przymusinski [1989]. This construction uses three-valued interpretations
but proceeds (from an algorithmic point of view) in a similar way as the con-
struction of the infinite-valued model. More specifically, the approximations of
the well-founded model are defined in Przymusinski [1989] as follows (for a
detailed explanation of the notation, see Przymusinski [1989]):

M0 = 〈T∅, F∅〉
Mα = Mα−1 ∪ 〈TMα−1 , FMα−1〉 for successor ordinal α

Mα = (
⋃

β<α Mβ) ∪ 〈T⋃
β<α Mβ

, F⋃
β<α Mβ

〉 for limit ordinal α.

Notice that we have slightly altered the definition of Przymusinski [1989] for
the case of limit ordinals; the new definition leads to exactly the same model
(obtained in a smaller number of steps). One can now show by a transfinite
induction on α that the above construction introduces at each step exactly the
same true and false atoms as the infinite-valued approach.
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8. AN ALTERNATIVE CHARACTERIZATION OF THE MINIMUM MODEL

In this section, we demonstrate an alternative characterization of the minimum
model MP of a program P . Actually, the proposed characterization generalizes
the well-known model intersection theorem [vanEmden and Kowalski 1976;
Lloyd 1987] that applies to classical logic programs (without negation).

The basic idea behind this new characterization can be described as follows.
Let P be a given program and let M be the set of all its infinite-valued models.
We now consider all those models in M whose part corresponding to T0 values
is equal to the intersection of all such parts for all models in M, and whose
part corresponding to F0 values is equal to the union of all such parts for all
models in M. In other words, we consider all those models from M that have
the fewest possible T0 values and the most F0 values. This gives us a new set
S0 of models of P (which as we demonstrate is nonempty). We repeat the above
procedure starting from S0 and now considering values of order 1. This gives
us a new (nonempty) set S1 of models of P , and so on. Finally, we demonstrate
that the limit of this procedure is a set that contains a unique model, namely
the minimum model MP of P . The above (intuitive) presentation can now be
formalized as follows:

Definition 8.1. Let S be a set of infinite-valued interpretations of a given
program and α a countable ordinal. Then, we define

∧α S = {(p, Tα) | ∀M ∈
S, M (p) = Tα} and

∨α S = {(p, Fα) | ∃M ∈ S, M (p) = Fα}. Moreover, we define⊙α S = (
∧α S)

⋃
(
∨α S).

Let P be a program and let M be the set of models of P . We can now define
the following sequence of sets of models of P :

S0 = {M ∈ M | M�0 = ⊙0 M}
Sα = {M ∈ Sα−1 | M�α = ⊙α Sα−1} for successor ordinal α

Sα = {M ∈ ⋂
β<α Sβ | M�α = ⊙α ⋂

β<α Sβ} for limit ordinal α.

Example 8.2. Consider again the program of Example 6.1:

p ← ∼q
q ← ∼r
s ← p
s ← ∼s
r ← false.

We first construct the set S0. We start by observing that one of the models
of the program is the interpretation {(r, F0), (q, T1), (p, F2), (s, 0)}. Since this
model does not contain any T0 value, we conclude that, for all M ∈ S0, M ‖
T0 = ∅. Moreover, since the above model contains (r, F0), we conclude that, for
all M ∈ S0, (r, F0) ∈ M . But this implies that (q, T1) ∈ M , for all M ∈ S0
(due to the second rule of the program and the fact that M ‖ T0 = ∅). Using
these restrictions, one can easily obtain restrictions for the values of p and s.
Therefore, the set S0 consists of the following models:

S0 = {{(r, F0), (q, T1), (p, vp), (s, vs)} | F2 ≤ vp ≤ T1, 0 ≤ vs ≤ T1, us ≥ vp}.
ACM Transactions on Computational Logic, Vol. 6, No. 2, April 2005.



462 • P. Rondogiannis and W. W. Wadge

Now, observe that the model {(r, F0), (q, T1), (p, F2), (s, 0)} belongs to S0. Since
this model contains only one T1 value, we conclude that for all M ∈ S1, M ‖
T1 = {q}. Then, the set S1 is the following:

S1 = {{(r, F0), (q, T1), (p, vp), (s, vs)} | F2 ≤ vp ≤ T2, 0 ≤ vs ≤ T2, us ≥ vp}.
Using similar arguments as above we get that the set S2 is the following:

S2 = {{(r, F0), (q, T1), (p, F2), (s, vs)} | 0 ≤ vs ≤ T3}.
In general, given a countable ordinal α, we have:

Sα = {{(r, F0), (q, T1), (p, F2), (s, vs)} | 0 ≤ vs ≤ Tα+1}.
Observe that the model {(r, F0), (q, T1), (p, F2), (s, 0)} is the only model of the
program that belongs to all Sα.

Consider now a program P and let S0, S1, . . . , Sα, . . . be the sequence of sets
of models of P (as previously defined). We can now establish two lemmas that
lead to the main theorem of this section:

LEMMA 8.3. For all countable ordinals α, Sα is nonempty.

PROOF. The proof is by transfinite induction on α. We distinguish three cases:

Case 1. α = 0. Let N ∗ be the following interpretation:

N ∗(p) =



T0, if ∀M ∈ M (M (p) = T0)
F0, if ∃M ∈ M (M (p) = F0)
T1, otherwise.

It is easy to show (by a case analysis on the value of N ∗(p)) that N ∗ is a model of
program P and therefore (due to the way it has been constructed) that N ∗ ∈ S0.

Case 2. α is a successor ordinal. Let N ∈ Sα−1 be a model of P . We construct
an interpretation N ∗ as follows:

N ∗(p) =




N (p), if order(N (p)) < α

Tα, if ∀M ∈ Sα−1 (M (p) = Tα)
Fα, if ∃M ∈ Sα−1 (M (p) = Fα)
Tα+1, otherwise.

We demonstrate that N ∗ is a model of P . Assume it is not. Then, there exists
a clause p ← B in P such that N ∗(p) < N ∗(B). We perform a case analysis on
the value of N ∗(p):

— N ∗(p) = Fβ , where β ≤ α. Then, there exists M ∈ Sα−1 such that M (p) =
Fβ . Since M is a model of P , for all clauses p ← BC in P , M (BC) ≤ Fβ .
Consequently, for every such clause, there exists a literal lC in BC such that
M (lC) ≤ Fβ . But then, it is also N ∗(lC) ≤ Fβ (by the definition of N ∗ and since
all models in Sα−1 agree on the values of order less than α). This implies that
N ∗(BC) ≤ Fβ . Therefore, for all clauses of the form p ← BC, it is N ∗(p) ≥
N ∗(BC) (contradiction).

— N ∗(p) = Tβ , β ≤ α. Since we have assumed that N ∗(p) < N ∗(B), it is N ∗(B) >

Tβ . This implies that for every literal l in B, it is N ∗(l ) > Tβ . But then,
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given any M ∈ Sα−1, it is also M (l ) > Tβ (since all models in Sα−1 agree
on the values of order less than α). Therefore, M (B) > Tβ . But then, since
M (p) = Tβ , M is not a model of P (contradiction).

— N ∗(p) = Tα+1. Since we have assumed that N ∗(p) < N ∗(B), it is N ∗(B) ≥ Tα.
But then, for every l ∈ B, it is N ∗(l ) ≥ Tα. Take now a model M ∈ Sα−1
such that M (p) < Tα (such a model must exist because otherwise it would
be N ∗(p) ≥ Tα). Now, it is easy to see that for every literal l in B, since
N ∗(l ) ≥ Tα, it is M (l ) = N ∗(l ). This implies that M (B) ≥ Tα. But since
M (p) < Tα, M is not a model of P (contradiction).

Therefore, N ∗ is a model of P . Moreover, due to the way it has been constructed,
N ∗ ∈ Sα.

Case 3. α is a limit ordinal. Let N0 ∈ S0, N1 ∈ S1, . . . , Nβ ∈ Sβ , . . . , β < α,
be models of P . We construct an interpretation N as follows:

N (p) =
{

(
⋃

β<α(Nβ�β))(p) if this is defined
Tα otherwise.

It is easy to see that N is a model of P and that N ∈ ⋂
β<α Sβ . This implies that

the set
⋂

β<α Sβ is nonempty (which is needed in the definition that will follow).
Now we can define an interpretation N ∗ as follows:

N ∗(p) =




N (p), if order(N (p)) < α

Tα, if ∀M ∈ ⋂
β<α Sβ (M (p) = Tα)

Fα, if ∃M ∈ ⋂
β<α Sβ (M (p) = Fα)

Tα+1, otherwise.

Then, using a proof very similar to the one given for Case 2 above, we can demon-
strate that N ∗ is a model of P . Due to the way that it has been constructed, it
is obviously N ∗ ∈ Sα.

LEMMA 8.4. There exists a countable ordinal δ such that, if M ∈ Sδ, then:

(1) M�δ = ∅, and
(2) for all γ < δ, M�γ �= ∅.

PROOF. Since BP is countable, there can not be uncountably many Sα such
that if M ∈ Sα, M�α �= ∅. Therefore, we can take δ to be the smallest ordinal
that satisfies the first condition of the lemma.

We can now demonstrate the main theorem of this section, which actually
states that there exists a unique model of P that belongs to all Sα:

THEOREM 8.5.
⋂

α Sα is a singleton.

PROOF. We first demonstrate that
⋂

α Sα can not contain more than one
models. Assume that it contains two or more models, and take any two of them,
say N and M . Then, there must exist a countable ordinal, say γ , such that
N�γ �= M�γ . But then, N and M can not both belong to Sγ , and consequently
they can not both belong to

⋂
α Sα (contradiction).
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It remains to show that
⋂

α Sα is nonempty. By Lemma 8.4, there exists δ

such that if M ∈ Sδ then M�δ = ∅ (and for all γ < δ, M�γ �= ∅). Let N ∈ Sδ

be a model (such a model exists because of Lemma 8.3). We can now create
N ∗ which is identical to N but in which all atoms whose value under N has
order greater than δ are set to the value 0. We demonstrate that N ∗ is a model
of the program. Assume it is not. Consider then a clause p ← B such that
N ∗(p) < N ∗(B). There are three cases:

— N ∗(p) = Fβ , β < δ. Then, N (p) = Fβ and since N is a model of P , we
have N (B) ≤ Fβ . But this easily implies that N ∗(B) ≤ Fβ , and therefore
N ∗(p) ≥ N ∗(B) (contradiction).

— N ∗(p) = Tβ , β < δ. Then, N (p) = Tβ and since N is a model of P , we
have N (B) ≤ Tβ . But this easily implies that N ∗(B) ≤ Tβ , and therefore
N ∗(p) ≥ N ∗(B) (contradiction).

— N ∗(p) = 0. Now, if N (p) ≤ 0 then (since N is a model) it is also N (B) ≤ 0. This
easily implies that N ∗(B) ≤ 0. Therefore, N ∗(p) ≥ N ∗(B) (contradiction). If,
on the other hand, N (p) > 0, then N (p) < Tδ (because N ∗(p) = 0). Now, since
N is a model, we have N (B) < Tδ. But this easily implies that N ∗(B) ≤ 0
and therefore N ∗(p) ≥ N ∗(B) (contradiction).

It is straightforward to see that (due to the way that it has been constructed)
N ∗ ∈ Sα for all countable ordinals α. Therefore, N ∗ ∈ ⋂

α Sα.

Finally, we need to establish that the model MP of P produced through the
TP operator coincides with the model produced by the above theorem:

THEOREM 8.6.
⋂

α Sα = {MP }
PROOF. Let N ∗ be the unique element of

⋂
α Sα. Intuitively, due to the way

that it has been constructed, N ∗ is “as compact as possible” at each level of truth
values. More formally, for every model M of P and for all countable ordinals
α, if for all β < α, N ∗ =β M , then N ∗ �α M (the proof is immediate due to
the way that the sets Sα are constructed). Then, this implies that N ∗ �∞ M .
Take now M to be equal to MP . Then, N ∗ �∞ MP and also (from Theorem 7.4)
MP �∞ N ∗. But since �∞ is a partial order, we conclude that N ∗ = MP .

9. DISCUSSION

In this section, we argue (at an informal level) that the proposed approach to
the semantics of negation is closely related to the idea of infinitesimals used
in Nonstandard Analysis. Actually, our truth domain can be understood as the
result of extending the classical truth domain by adding a neutral zero and a
whole series of infinitesimal truth values arbitrarily close to, but not equal to,
the zero value.

Infinitesimals can be understood as values that are smaller than any “nor-
mal” real number but still nonzero. In general, each infinitesimal of order n+1
is considered to be infinitely smaller than any infinitesimal of order n. It should
be clear now how we can place our nonstandard logic in this context. We con-
sider negation-as-failure as ordinary negation followed by “multiplication” by
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an infinitesimal ε. T1 and F1 can be understood as the first order infinitesimals
εT and εF , T2 and F2 as the second order infinitesimals ε2T and ε2 F , and so on.

Our approach differs from the “classical” infinitesimals in that we include
infinitesimals of transfinite orders. Even in this respect, however, we are not pi-
oneers. Conway [1976], in his famous book On Numbers and Games, constructs
a field No extending the reals that has infinitesimals of order α for every ordinal
α—not just, as our truth domain, for every countable ordinal. Lakoff and Nunez
[2000] give a similar (less formal) construction of what they call the granular
numbers. It seems, however, that we are the first to propose infinitesimal truth
values.

But why are the truth values we introduced really infinitesimals? Obviously,
εT is smaller than T , ε2T is smaller than εT , and so on. But why are they
infinitesimals—on what grounds can we claim that εT , for example, is infinitely
smaller than T . In the context of the real numbers, this question has a simple
answer: ε is infinitely smaller than 1 because n ∗ ε is smaller than 1 for any
integer n. Unfortunately, this formulation of the notion of “infinitely smaller”
has no obvious analogue in logic because there is no notion of multiplying a
truth value by an integer.

There is, however, one important analogy with the classical theory of in-
finitesimals that emerges when we study the nonstandard ordering between
models introduced. Consider the problem of comparing two hyperreals each of
which is the sum of infinitesimals of different orders, that is, the problem of
determining whether or not A < B, where A = a0 + a1 ∗ ε + a2 ∗ ε2 + a3 ∗ ε3 + · · ·
and B = b0 + b1 ∗ ε + b2 ∗ ε2 + b3 ∗ ε3 +· · · (with the ai and bi standard reals). We
first compare a0 and b0. If a0 < b0, then we immediately conclude that A < B
without examining any other coefficients. Similarly, if a0 > b0, then A > B. It
is only in the case that a0 = b0 that the values a1 and b1 play a role. If they are
unequal, A and B are ordered as a1 and b1. Only if a1 and b1 are also equal do
we examine a2 and b2, and so on.

To see the analogy, let I and J be two of our nonstandard models and consider
the problem of determining whether or not I �∞ J . It is not hard to see that the
formal definition of I �∞ J (given in Section 4) can also be characterized as fol-
lows. First, let I0 be the finite partial model which consists of the standard part
of I—the subset I ‖ T0 ∪ I ‖ F0 of I obtained by restricting I to those variables
to which I assigns standard truth values. Next, I1 is the result of restricting I to
variables assigned order 1 infinitesimal values (T1 and F1), and then replacing
T1 and F1 by T0 and F0 (so that I1 is also a standard interpretation). The higher
“coefficients” I2, I3, . . . are defined in the same way. Then (stretching notation)
I = I0 + I1 ∗ ε + I2 ∗ ε2 + · · · and likewise J = J0 + J1 ∗ ε + J2 ∗ ε2 + · · ·. Then to
compare I and J we first compare the standard interpretations I0 and J0 using
the standard relation. If I0 �0 J0, then I �∞ J . But if I0 = J0, then we must
compare I1 and J1, and if they are also equal, I2 and J2, and so on. The analogy
is actually very close, and reflects the fact that higher order truth values are
negligible (equivalent to 0) compared to lower order truth values.

It seems that the concept of an infinitesimal truth value is closely related to
the idea of prioritizing assertions. In constructing our minimal model the first
priority is given to determining the values of the variables that receive standard
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truth values. This is the first approximation to the final model, and it involves
essentially ignoring the contribution of negated variables because a rule with
negated variables in its body can never force the variable in the head of the
clause to become T0. In fact, the whole construction proceeds according to a
hierarchy of priorities corresponding to degrees of infinitesimals. This suggests
that infinitesimal truth could be used in other contexts which seem to require
prioritizing assertions, such as for example in default logic.
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