
Towards a Unified Runtime 
Model for Managing Networked 
Classes of Digital Objects

Kostas Saidis and Alex Delis
{saiko,ad}@di.uoa.gr

Department of Informatics & Telecommunications

University of Athens

2nd DELOS Workshop on Foundations of Digital Libraries
ECDL 2007, Budapest, Hungary, September 20th 2007



The Goal

Develop a general-purpose, reusable 
system that can act as a common 
runtime for developing any DL
In DELOS terms, we discuss how to 
develop a DL Management System!



What? Why? How?



The DLMS

DL Services

DLMS

Sources of 
Material



Highway to Hell

Do we develop DLs in the COBOL way?



The COBOL Way

Ad-hoc, tailor-made solution to 
specific use cases and scenarios
Build a DL that supports a specific:

storage solution
set of digital material types
service provision environment

Rebuild the DL when any of these 
change (new user requirement, new 
technology, etc)



Stairway to Heaven

A Unified Runtime Model for DLs



A Unified DL Runtime Model

Handle DL-specific deployment / 
development variations uniformly
Operate atop heterogeneous storage 
solutions
Handle semantically diverse types of 
material in a uniform manner
Allow DL Application Logic to 
synthesize digital object information 
in any service provision environment 
of choice



How to get there

We identify the critical attributes of 
an effective DL Runtime Model:

1. It should be based on a storage-
independent logical model

2. It should operate in a service-neutral 
manner

3. It should provide powerful conceptual 
modeling capabilities to the DL 
designer

4. It should be expressive and easy to 
use (productive) for the DL developer



1. Storage Independence

A storage-independent Logical 
Model:

Allow DLMS to operate atop any DO 
Stores (databases, XML repositories, 
etc)
Offer a unified Logical View of 
heterogeneously stored DOs (local, 
remote, whatever)
Move DOs between DO Stores
DO Interoperation/Integration-ready!



Our Proposed Log. Model



Masking Out Storage Variations

We use the DO Store Driver notion
“Translate” Diverse Physical Models 
into a unified Logical Model

DO Store Driver A DO Store Driver B

XML DB

DO Store Driver API

DLMS



DO Store Driver API



2. Modeling Power

Represent semantically diverse DOs
in a uniform manner (using a single 
“language”)
Allow DL designer to use all four 
established abstraction principles:

Aggregation/Decomposition
Grouping/Individualization
Classification/Instantiation
Generalization/Specialization



DO Classes/Types
DOs as compound entities comprised of 
metadata sets, streams, relation contexts 
and behavior schemes
A self-contained definition of these 
attributes, viewed as DO meta-
information, provides a DO Class/Type 
Digital Object Prototypes (ECDL 2005 & 2006, DLIB 5-6/2007)

At runtime, DOs are treated as instances 
of DO Classes (automatically)
Support Aggregation, Grouping, 
Classification/Instantiation



Example



3. Service Neutrality

A Runtime Environment that realizes 
the Logical Model:

Employ appropriate structures to stage 
DO information/data at runtime
Expose an API to access/modify such 
runtime structures
Cycle: Load / Wrap / Access & Modify / 
Unwrap / Serialize
Let the services decide the service 
provision details (e.g. protocols, user 
interfaces, etc) 



Service Neutral DO Behavior
Behavior Schemes: Projections on a DO’s
structure/namespace



4. Expressiveness

Do more with less!
A domain-specific DO Management 
“language”
RDBMS acts as an SQL Interpreter 
(for the DB application developer)
DLMS should be a DOML Interpreter 
(for the DL application developer)



Programming Example



Our Proposal for the DLMS



Discussion
Ref. Model

DLs should be viewed as applications build with the 
DLMS 
The model will be finalized not when there is nothing 
more to add but when there is nothing more to take 
away

DO Classes/Types
Think of them as guides to load/manage/store data at 
runtime – A DOP is not a way to store things
A stored digital object can have multiple types at 
runtime

Future Work
DO Integration/Interoperation: DO Store Drivers can 
make DLs appear as remote sources of each other
Indexing / searching contradicts storage-independence
DOPs Inheritance – Reuse and Polymorphism



Thank God it’s Over!
Thank you for your patience!
Comments? Questions?

Email: saiko@di.uoa.gr
An older version of our approach in 
action: http://pergamos.lib.uoa.gr/
Public Release of DOPs framework:
http://www.dops-framework.net


