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We present MorphJ: a language for specifying general classes whose members are produced by

iterating over members of other classes. We call this technique “class morphing” or just “mor-
phing”. Morphing extends the notion of genericity so that not only types of methods and fields,

but also the structure of a class can vary according to type variables. This adds a disciplined

form of meta-programming to mainstream languages and allows expressing common program-
ming patterns in a highly generic way that is otherwise not supported by conventional techniques.

For instance, morphing lets us write generic proxies (i.e., classes that can be parameterized with

another class and export the same public methods as that class); default implementations (e.g.,
a generic do-nothing type, configurable for any interface); semantic extensions (e.g., specialized

behavior for methods that declare a certain annotation); and more. MorphJ’s hallmark feature is
that, despite its emphasis on generality, it allows modular type checking: a MorphJ class can be

checked independently of its uses. Thus, the possibility of supplying a type parameter that will

lead to invalid code is detected early—an invaluable feature for highly general components that
will be statically instantiated by other programmers. We demonstrate the benefits of morphing

with several examples, including a MorphJ reimplementation of DSTM2, a software transactional

memory library, which reduces 1,484 lines of Java reflection and bytecode engineering library calls
to just 586 lines of MorphJ code.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Program-
ming—program synthesis, program transformation; D.3.3 [Programming Languages]: Lan-

guage Constructs and Features; D.2.13 [Software Engineering]: Reusable Software

General Terms: Design, Languages

Additional Key Words and Phrases: meta-programming, language extensions, morphing

1. INTRODUCTION

Consider the following task: how would you write a piece of code that, given any
class X, returns another class that contains the exact same methods as X, but logs
each method’s return value? That is, the code is a reusable representation of the
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functionality “logging”, and abstracts over the exact structure of the class (i.e., its
declared methods) it may be applied to.

Capturing this level of abstraction has traditionally been only possible with tech-
niques such as meta-object protocols (MOPs) [Kiczales et al. 1991], aspect-oriented
programming (AOP) [Kiczales et al. 1997], or various forms of meta-programming
(e.g., reflection and ad-hoc program generation using quote primitives, string tem-
plates, or bytecode engineering). While just about any programmer can write a
method that logs its return value, the techniques listed above can require steep
learning curves or suffer from poor integration with the base language. More im-
portantly, these techniques do not offer any modular safety guarantee: There is no
guarantee that a piece of code would always be well-typed regardless of its uses in
specific compositions.

In this article we discuss a general approach called morphing for writing such
structurally abstract code, while maintaining modular safety guarantees. We
demonstrate the power of morphing through MorphJ—a reference language that
demonstrates what we consider the desired expressiveness and safety features of an
advanced morphing language. MorphJ can express highly reusable object-oriented
components (i.e., generic classes) whose exact members (e.g., fields and methods)
are not known until the component is parameterized with concrete types. For in-
stance, the following MorphJ class implements the “logging” extension described
above:

1 class Logging<class X> extends X {

2 <R,Y*>[meth]for(public R meth (Y) : X.methods)

3 public R meth (Y a) {

4 R r = super.meth(a);

5 System.out.println("Returned: " + r);

6 return r;

7 }

8 }

MorphJ allows class Logging to be declared as a subclass of its type parameter,
X. The body of Logging is defined by static iteration (using the for statement, on
line 2) over all methods of X that match the pattern “public R meth(Y)”. Y, R, and
meth are pattern-matching variables. Y and R can match any non-void type, and
meth can match any identifier. Additionally, the * symbol following the declaration
of Y indicates that Y can match a vector of any number of types (including zero).
That is, the above pattern matches all public methods that return any non-void
type. The pattern-matching variables are also used in the declaration of Logging’s
methods: for each method of the type parameter X matched, Logging declares a
method with the same name and type signature. (This does not have to be the
case, as shown later.) Thus, the exact methods of class Logging are not determined
until it is composed, or type-instantiated, with a concrete type. For instance,
Logging<java.lang.Object> has methods equals, hashCode, and toString: these are
the only public, non-void-returning methods of java.lang.Object.

The above example illustrates the basic feature of MorphJ: code can be declared
by iterating over members of a class or interface matching a pattern. MorphJ also
allows even more expressive iteration conditions using nested patterns. For instance,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the following code iterates over the public, non-void-returning methods of X, such
that there is also some method in X with the same name, taking no argument :

<R,Y*>[meth]for ( public R meth(Y) : X.methods;

some R meth() : X.methods ) ...

The positive nested pattern, “some R meth() : X.methods”, places a positive ex-
istential condition on the outer, primary pattern. A negative existential condition
can be similarly imposed on the primary pattern by annotating the nested pattern
with the keyword no, instead of some, making it a negative nested pattern.

“Reflective” program pattern matching and transformation, as in the logging ex-
ample, are not new. Several pattern matching languages have been proposed in
prior literature (e.g., [Bachrach and Playford 2001; Baker and Hsieh 2002; Batory
et al. 1998; Visser 2004]) and most of them specify transformations based on some
intermediate program representation (e.g., abstract syntax trees) although the pat-
terns resemble regular program syntax. Nevertheless, MorphJ elevates reflective
transformation functionality to a disciplined language feature, and expresses it as
an extension of simple genericity. An important aspect of full-fledged language
support is modularity: MorphJ generic classes support separate type checking—a
generic class is type-checked independently of its type-instantiations, and errors are
detected if they can occur with any possible type parameter. For an example of
separate type checking, consider a “buggy” generic class:
class CallWithMax<class X> extends X {

<A>[m]for(public int m (A) : X.methods)

int m(A a1, A a2) {

if (a1.compareTo(a2) > 0)

return super.m(a1);

else

return super.m(a2);

}

}

The intent is that class CallWithMax<C>, for some C, imitates the interface of C for
all single-argument methods that return int, yet adds an extra formal parameter
to each method. The corresponding method of C is then called with the greater of
the two arguments passed to the method in CallWithMax<C>. It is easy to define,
use, and deploy such a generic transformation without realizing that it is not always
well-typed: not all types A will support the compareTo method. MorphJ detects such
errors when compiling the above code, independently of specific type-instantiations.
In this case, the fix is to strengthen the pattern with the constraint that A must be
a subtype of Comparable<A>:

<A extends Comparable<A>>[m]for(public int m (A) : X.methods)

Additionally, the above code has an even more insidious error. The generated
methods in CallWithMax<C> are not guaranteed to correctly override the methods
in its superclass, C. For instance, if C contains two methods, int foo(int) and
String foo(int,int), then the latter will be improperly overridden by the generated
method int foo(int,int) in CallWithMax<C> (which has the same argument types
but an incompatible return type). MorphJ statically catches this error. This is an
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instance of the complexity of MorphJ’s modular type checking when dealing with
unknown entities.

Separate type-checking is an invaluable property for generic code: It prevents
errors that only appear for some type parameters, which the author of the generic
class may not have predicted. Accordingly, it allows modular reasoning when de-
veloping morphed classes: the type system ensures that the class specifies all its
assumptions about the type parameters it will be used with. Effectively, morphing
adds static typing to reflective class generation and transformation. This is a sub-
stantial improvement that makes morphing an important new approach to software
development. The present article is intended as a comprehensive reference for mor-
phing, its techniques, its impact, and its potential. The article collects and expands
the earlier MorphJ publications [Huang et al. 2007b; Huang and Smaragdakis 2008],
offering an integrated view of morphing features, complete with applications and
with a formal treatment of the MorphJ type system.

In the remainder of the article, Section 2 introduces basic MorphJ language fea-
tures; Section 3 gives real-world examples in which basic MorphJ features increases
the modularity and reusability of software components; Section 4 introduces ad-
vanced MorphJ features such as nested patterns; Section 5 provide two real-world
examples using nested patterns. Section 6 gives a gentle and casual overview of
MorphJ’s type system, while Section 7 formalizes a core subset of MorphJ and
presents the type rules and a soundness proof. We briefly discuss the implementa-
tion of MorphJ in Section 8.2 and give a survey of related work in Section 9. We
conclude with our grand-scheme view of the evolution of programming languages
and the role of MorphJ and other related mechanisms (Section 10).

2. BASIC MORPHJ FEATURES

MorphJ adds to Java the ability to include reflective iteration blocks inside a class
or interface declaration. The purpose of a reflective iteration block is to statically
iterate over a certain subset of a type’s methods or fields, and produce a declaration
or statement for each element in the iterator. Static iteration means that no runtime
reflection exists in compiled MorphJ programs. All declarations or statements
within a reflective block are “generated” at compile-time.

A reflective iteration block (or reflective block) has similar syntax to the existing
for iterator construct in Java. There are two main components to a reflective
block: the iterator definition, and the code block for each iteration. The following
is a MorphJ class declaration with a very simple reflective block:
class C<T> {

for ( static int foo () : T.methods ) {|

public String foo () { return String.valueOf(T.foo()); }

|}

}

We overload the keyword for for static iteration. The iterator definition imme-
diately follows for, delimited by parentheses. The iterator definition consists of
just a pattern (we will later generalize this to allow more patterns) with the format
“signature pattern : reflection set”. The reflection set is defined by applying the
.methods or .fields keywords to a type, designating all methods or fields of that
ACM Journal Name, Vol. V, No. N, Month 20YY.
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type. The signature pattern is either a method or field signature, possibly with type
and name variables, used to filter out elements from the reflection set. We call the
set of elements of the reflection set that match the signature pattern the reflective
range (or just range) of the pattern or the iterator. In the example above, the re-
flective range contains only static methods of type T, with name foo, no argument,
and return type int.

The second component of a reflective block is delimited by {|...|}, and contains
either method or field declarations or a block of statements. The reflective block
is itself syntactically a declaration or block of statements, and can be used either
at the class members level (to define methods and fields) or inside the body of a
method (to define statements). We prevent reflective blocks from nesting. In case
of a single declaration (as in most examples in this article), the delimiters can be
dropped. The declarations or statements are “generated”, once for each element in
the reflective range of the block. In the example above, a method public String
foo() { ... } is declared for each element in the reflective range. Thus, if T has
a method foo matching the signature pattern static int foo(), a method public
String foo() exists for class C<T>, as well.

The reflective block in the previous example is rather boring. Its reflective range
contains at most one method, and we know statically the type and name of that
method. For more flexible patterns, we can introduce type and name variables
for pattern matching. Pattern matching type and name variables are defined right
before the for keyword. They are only visible within that reflective block, and can
be used as regular types and names. For example:

class C<T> {

T t;

C(T t) { this.t = t; }

<A>[m] for (int m (A) : T.methods )

int m (A a) { return t.m(a); }

}

The above signature pattern matches methods of any name that take one argu-
ment of any type and return int. The matching of multiple names and types is
done by introducing a type variable, A, and a name variable, m. Name variables
match any identifier and are introduced by enclosing them in [...]. The syntax
for introducing pattern matching type variables extends that for declaring type
parameters for generic Java classes: new type variables are enclosed in <...>. We
can give type variable A one or more bounds (e.g., <A extends Foo & Bar>), and
the bounds can contain A itself (e.g., <A extends Comparable<A>>). Multiple type
variables can be introduced, as well: <A extends Foo,B extends Bar>. In addition
to the Java generics syntax, we can annotate a type parameter with keywords class
or interface. For instance <interface A> declares a type parameter A that can only
match an interface type. (This extension also applies to non-pattern-matching type
parameters, in which case A can only be instantiated with an interface.) A semantic
difference between pattern matching type parameters and type parameters in Java
generics is that a pattern matching type parameter is not required to be a non-
primitive type. In fact, without any declared bounds or class/interface keyword,
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A can match any type that is not void—this includes primitive types such as int,
boolean, etc. To declare a type variable that only matches non-primitive types, one
can write <A extends Object>. Many of the above distinctions stem from low-level
(sometimes just concrete syntax) differences in Java. E.g., a void-returning method
does not need a return statement, or a class cannot extend an interface.

The type and name variables declared for the reflective block can be used as
regular types and names inside the block. In the example above, a method is
declared for each method in the reflective range, and each declaration has the same
name and argument types as the method that is the current element in the iteration.
The body of the method calls method m on a variable of type T—whatever the value
of m is for that iteration, this is the method being invoked.

Note that a pattern cannot iterate over methods or fields of a pattern-
matching type variable. One can only iterate over members of concrete types,
or class/interface level type variables.

Often, a user does not care (or know) how many arguments a method takes. It is
only important to be able to faithfully replicate argument types inside the reflective
block. We provide a special syntax for matching any number of types: a * suffix on
the pattern matching type variable definition. For instance, if a pattern matching
type variable is declared as <A*>, then String m (A) is a signature pattern that
matches any method returning String, no matter how many arguments it takes
(including zero arguments), and no matter what the argument types are. Even
though A* is technically a vector of types, it can only be used as a single entity
inside of the reflective block. MorphJ provides no facility for iterating over the
vector of types matching A. This relieves us from having to deal with issues of order
or length.

MorphJ also offers the ability to construct new names from a name variable, by
prefixing the variable with a constant. MorphJ provides the construct # for this
purpose. To prefix a name variable f with the static name get, the user writes get#f.
Note that the prefix cannot be another name variable—e.g., get is a literal prefix.
Creating names out of name variables can cause possible naming conflicts. In later
sections, we discuss in detail how the MorphJ type system ensures that the resulting
identifiers are unique. MorphJ also offers the ability to create a string out of a name
variable (i.e., to use the name of the method or field that the variable currently
matches as a string) via the syntax var.name. The example below demonstrates
these features:
class C<T> {

T t;

C(T t) { this.t = t; }

<R,A*>[m] for (public R m (A) : T.methods )

R delegate#m (A a) {

System.out.println("Calling method "+ m.name + " on " + t.toString());

return t.m(a);

}

}

The above example shows a simple proxy class that declares methods that mimic
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the (non-void-returning) public methods of its type parameter. Declared method
names are the original method names prefixed by the constant name delegate.
Declared methods call the corresponding original methods after logging the call.

In addition to the above features, MorphJ also allows matching arbitrary modi-
fiers (e.g., final, synchronized or transient), exception clauses, and Java annota-
tions. (Annotation matching is particularly important in practice, since Java an-
notations are the mainstream way for smooth syntactic extension of the language.)
MorphJ has a set of conventions to handle modifier, exception, and annotation
matching so that patterns are not burdened with unnecessary detail—e.g., for most
modifiers, a pattern that does not explicitly mention them matches regardless of
their presence, and absence of a modifier is designated by prefixing it with !. We
do not elaborate further on these aspects of the language, as they represent merely
engineering conveniences and are orthogonal to the main MorphJ insights: the
morphing language features, combined with a modular type-checking approach.

3. APPLICATIONS USING BASIC MORPHING FEATURES

Even with the basic features introduced in the previous section, MorphJ opens the
door for expressing a large number of useful idioms in a general, reusable way.
We next show three applications using MorphJ that demonstrate the power of its
structural abstraction mechanism.

3.1 Generic Synchronization Proxy

The Java Collections Framework (JCF) is the standard data structure library
of the Java language. JCF defines a number of synchronization proxy classes
for its main data structure interfaces. For instance, Figure 1(a) shows the def-
inition of SynchronizedCollection<E>, a synchronization proxy for the interface
Collection<E>. For each method of Collection<E>, SynchronizedCollection<E> de-
fines a method with the same signature. Within each method body, a mutex is first
acquired, and the call is delegated to the underlying Collection<E> object.

The definition of SynchronizedCollection<E> exhibits two levels of structural re-
dundancy. At the method level, every method shares the exact same structure,
with variations only in the method a call is delegated to, and the arguments used
in the delegation. Another level of redundancy exists at the class level. The code for
SynchronizedCollection<E> represents a fixed composition of the “synchronization”
behavior with the data structure Collection<E>. To synchronize a different data
type, a new class needs to be defined. For instance, Figure 1(b) is the definition
of SynchronizedList<E>, the fixed composition of “synchronization” with List<E>.
The definition of SynchronizedList<E> shares the exact same structural pattern as
SynchronizedCollection<E>: A method is declared for each method of List<E>, and
each method acquires a mutex before delegating the call.

JCF defines four more such synchronization proxies: SynchronizedSet,
SynchronizedSortedSet, SynchronizedRandomAccessList, SynchronizedMap, and
SynchronizedSortedMap. Using MorphJ, we can implement a highly generic class
Synchronized<X> (Figure 2) to replace all Synchronized* classes in JCF. The Mor-
phJ class can also be reused with many more data structures that may desire the
synchronization behavior.
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class SynchronizedCollection<E> implements Collection<E> {

Collection<E> c;

Object mutex;

... // constructors that initialize c and mutex

public int size() {

synchronized(mutex) { return c.size(); }

}

public boolean remove(E e) {

synchronized(mutex) { return c.remove(e); }

}

... // repeat for all methods in Collection.

}

(a) Synchronization proxy for Collection.

class SynchronizedList<E> implements List<E> {

List<E> l;

Object mutex;

... // constructors that initialize l and mutex

public int size() {

synchronized(mutex) { return l.size(); }

}

public int indexOf (E e) {

synchronized(mutex) { return l.indexOf(o); }

}

... // repeat for all methods in List.

}

(b) Synchronization proxy for List.

Fig. 1. Definition of synchronization proxies in JCF.

The MorphJ class Synchronized is a subtype of its type parameter, X. Addition-
ally, X is required to be an interface, not a class. The body of Synchronized contains
two reflective iteration blocks: lines 6-9, and lines 11-14. The block on lines 6-9
iterates over all non-void returning method of the type parameter X . For each
matching method in X, a method with the same name and type signature is de-
clared in Synchronized<X>. The body of the method synchronizes on a mutex first,
and then delegates the method call to the underlying X object. The reflective itera-
tion block on lines 11-14 declares similar methods for the void returning methods of
X. Thus, Synchronized<Collection<E>> is the functional equivalent of the hardcoded
proxy SynchronizedCollection<E> we saw in Figure 1.

The full version of the above MorphJ class1 consists of less than 26 lines of
code, replacing more than 314 lines of Sychronized* class definitions in the JCF.

1The full version of the MorphJ class declares constructors that allows the caller of a constructor
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1 public class Synchronized<interface X> implements X {

2 X me;

3 Object mutex;

4 // ... constructor declarations

5

6 <R,A*>[m] for (public R m (A) : X.methods)

7 R m (A args) {

8 synchronized (mutex) { return me.m(args); }

9 }

10

11 <A*>[m] for (public void m (A) : X.methods)

12 void m (A args) {

13 synchronized (mutex) { me.m(args); }

14 }

15 }

Fig. 2. A highly generic Synchronized<X> class in MorphJ

Compared to classes such as SynchronizedCollection<E>, Synchronized<X> is more
general: It can be composed with any interface needing the “synchronization” be-
havior. (A similar generic class can be defined to add the behavior to classes.)
Furthermore, Synchronized<X> is also immune to interface changes in the interface
of X. When a method is added to or deleted from X, or when a method signature
changes, the structure of Synchronized<X> automatically adapts.

3.2 Default Class

Consider a general “default implementation” class that adapts its contents to any
interface used as a type parameter. The class implements all methods in the inter-
face, with each method implementation returning a default value. Figure 3 shows
such a MorphJ generic class. (Note that the keyword throws in the pattern does
not prevent methods with no exceptions from being matched, since E is declared to
match a possibly-zero length vector of types.)

This functionality is particularly useful for testing purposes—e.g., in the context
of an application framework (where parts of the hierarchy will be implemented
only by the end user), in uses of the Strategy pattern [Gamma et al. 1995] with
“neutral” strategies, etc. For instance, the Java Swing framework (a standard Java
GUI library) defines classes with default no-action methods for all event listener
interfaces (such as MouseListener, MouseMotionListener). All such default no-action
classes can be replaced by employing the morphed class of Figure 3.

One can easily think of ways to enrich this example with more complex default
behavior, e.g., returning random values or calling constructor methods, instead of
using statically determined default values. The essence of the technique, however,
is in the iteration over existing methods and special handling of each case of re-
turn type. This is only possible because of morphing capabilities. In practice,
random testing systems (e.g., [Csallner and Smaragdakis 2004]) often implement

to set the mutex to either this, or an arbitrary object.
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class DefaultClass<interface I> implements I {

// For each method returning a non-primitive type,

// make it return null

<R extends Object,A*,E*>[m] for( R m (A) throws E : T.methods )

public R m ( A a ) throws E { return null; }

// For each method returning a primitive type,

// return a default value

<A*,E*>[m]for( int m (A) throws E : T.methods )

public int m (A a ) throws E { return 0; }

... // repeat the above for each primitive return type.

// For each method returning void, simply do nothing.

<A*,E*>[m] for ( void m (A) throws E : T.methods )

public void m (A a) throws E { }

}

Fig. 3. A generic MorphJ class providing default implementations for every method of its type

parameter interface.

very similar functionality using unsafe run-time reflection. Errors in the reflective
or code generating logic are thus not caught until they are triggered by the right
combination of inputs, unlike in the MorphJ case.

3.3 Sort-by

A common scenario in data structure libraries is that of supporting sorting accord-
ing to different fields of a type. Although one can use a generic sorting routine
that accepts a comparison function, the comparison function needs to be custom-
written for each field of a type of interest. Instead, a simpler solution is to morph
comparison functions based on the fields of a type.

Consider the implementation of an ArrayList in Figure 4, modeled after the
ArrayList class in the Java Collections Framework. ArrayList<E> supports a
method sortBy#f for every field f of type E. The power of the above code does
not have to do with comparing elements of a certain type (this can be done with
existing Java generics facilities), but with calling the comparison code on the ex-
act fields that need it. For instance, a crucial part that is not expressible with
conventional techniques is the code e1.f.compareTo(e2.f) (line 11), for any field f.

The above examples illustrate the power of MorphJ’s morphing features: a
generic class or interface can be shaped by the properties of the members of the
type it is composed with. The morphing approach is similar to reflection, yet all
reasoning is performed statically, there is syntax support for easily creating new
fields and methods, and type safety is statically guaranteed.

Even more examples from the static reflection or generic aspects literature [Dra-
heim et al. 2005; Fähndrich et al. 2006; Huang et al. 2005; Kiczales et al. 2001] can
be viewed as instances of morphing and can be expressed in MorphJ. For instance,
the CTR work [Fähndrich et al. 2006] allows the user to express a “transform”
ACM Journal Name, Vol. V, No. N, Month 20YY.
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1 public class ArrayList<E> extends AbstractList<E>

2 implements List<E>,RandomAccess,Cloneable,java.io.Serializable {

3 ...// ArrayList fields and methods.

4

5 // For each Comparable field of E, declare a sortBy method

6 <F extends Comparable<F>>[f]for(public F f : E.fields)

7 public void sortBy#f () {

8 Collections.sort(this,

9 new Comparator<E> () {

10 public int compare(E e1, E e2) {

11 return e1.f.compareTo(e2.f);

12 }

13 });

14 }

15 }

Fig. 4. An ArrayList implementation providing sorting methods by each comparable field of its

element type.

that iterates over methods of a class that have a @UnitTestEntry annotation and
generate code to call all such methods while logging the unit test results. The same
example can be expressed in MorphJ, with some advantages over CTR: MorphJ
is better integrated in the language, using generic classes instead of a “transform”
concept; MorphJ is a more expressive language, e.g., allowing matching methods
with an arbitrary number and types of arguments; MorphJ offers stronger guaran-
tees of modular type safety, as its type system detects the possibility of conflicting
definitions (CTR only concentrates on preventing references to undefined entities),
and we offer a proof of type soundness (Section 7).

4. ADVANCED MORPHING WITH NESTED PATTERNS

Though we have shown a number of applications of reflective declaration of methods
using simple patterns, there are many morphing tasks that require the mechanism
of nested patterns in order to be expressed type-safely. A nested pattern has the
same syntactic form as the single (primary) patterns we have seen so far, but is
preceded by the keywords “some” (for a positive nested pattern) or “no” (for a
negative nested pattern). Like primary patterns, nested patterns can only reflect
over concrete types, or type variables of the generic class. A nested pattern places a
condition (nested condition) on each element matched by the primary pattern. An
element must be matched by the primary pattern and satisfy all nested conditions
to be a part of a reflective block’s range. We next illustrate the need for and uses
of nested patterns.

4.1 Negative Nested Pattern

A negative nested pattern exerts a condition that is only satisfied if there is nothing
in the range of the pattern.

To see the necessity for negative nested patterns, consider the pesky problem of
defining “getter” methods for fields in a class. Currently, programmers deal with
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this by repeating the same boiler-plate code for each field. This seems to be a
task perfectly suited for pattern-based reflective declaration. However, we cannot
implement this in a type-safe way using the basic pattern-based feature of MorphJ.
Consider the following attempt:
class AddGetter<class X> extends X {

<F>[f] for ( F f : X.fields )

F get#f () { return super.f; }

}

AddGetter<X> defines a method get#f() for each field f in type variable X. get#f
denotes an identifier that begins with the string “get”, followed by the identifier
matched by f.2 However, AddGetter<X> is not modularly type safe—we cannot
guarantee that, no matter what X is instantiated with, AddGetter<X> is always well-
typed. Suppose we have class C:
class C {

Meal lunch; ... // other methods.

boolean getlunch() { return isNoon() ? true : false; }

}

With a type-instantiation AddGetter<C>, a client would rely on the existence of
method getlunch and would be able to call it, expecting to receive a Meal object.
Nevertheless, method “Meal getlunch()” in AddGetter<C> would incorrectly override
method “boolean getlunch()” in its superclass, C. For this reason, the definition of
AddGetter<X> does not pass MorphJ’s type-checking.

This is an error of under-specified requirements. The definition of AddGetter<X>
should clearly specify that it can only declare method get#f for those fields f for
which a conflictingly defined get#f does not already exist in X. What we need is
to place a negative existential condition on each field matched by the pattern: for
all fields f of X such that method get#f() does not already exist in X, declare the
method get#f().

Negative nested patterns give us precisely the ability to specify such negative
existential conditions. The following is a modularly type safe implementation of
AddGetter<X>:

1 class AddGetter<X> extends X {

2 <F>[f]for( F f : X.fields ; no get#f() : X.methods )

3 F get#f() { return super.f; }

4 }

The nested pattern condition on line 2 is only satisfied by those fields f of X
for which there is no method get#f() in X. (The missing return type in the nested
pattern is a MorphJ shorthand for matching both void and non-void return types.)
Observe that this AddGetter<X> class will not introduce ill-typed code for any X.

2This MorphJ class only defines getter methods for non-private fields: the semantics of pattern
“F f” without modifier specification is that it matches all non-private fields. This is a reasonable

default since a morphed class can at most be in a subtype relationship with its type parameter—

i.e., MorphJ currently only supports class extension by inheritance. Such example code applies to
cases when a getter method is required in order to follow external conventions (e.g., conventions

for Enterprise Java Beans).
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Potentially conflicting method declarations are prevented by the negative nested
pattern. A field f for which a method get#f() already exists in X does not satisfy
the nested condition, and thus is not in the range of the reflective block.

4.2 Positive Nested Pattern

A positive nested pattern exerts a condition that is only satisfied if there is some
(i.e., at least one) element in the range of the pattern.

To see when positive nested patterns may be useful, consider how one would
define a class Pair<X,Y>, which is a container for objects x and y of types X and Y,
respectively. For every non-void method that X and Y have in common (i.e., same
method name and argument types), Pair<X,Y> should declare a method with the
same name and argument types, but a return type that is another Pair, constructed
from the return types of that method in X and Y.

In order to express this type of functionality, we need a positive existential con-
dition: for all methods in X, such that another method with the same name and
argument types exists in Y, declare a method that invokes both and returns a Pair
of their values.

With a positive nested pattern, we can define the Pair<X,Y> class as shown in
Figure 5. Methods of Pair<X,Y> are defined using the reflective block on lines 5-10.
The primary pattern on line 6 matches all non-void and non-primitive methods of
X. For each such method, the positive nested condition on line 7 is only satisfied
if a method with the same name and argument types also exists in Y. Thus, the
primary and nested patterns in this class find precisely all methods that X and Y
share in name and argument types. For each such method, Pair<X,Y> declares a
method with the same name and argument types, and a body that invokes the
corresponding method of X and Y. The return type is another Pair, constructed
from the return values of the invocations. Following the same pattern, the class
can be enhanced to also handle methods returning primitive types or void.

1 public class Pair<X,Y> {

2 X x; Y y;

3 public Pair(X x, Y y) { this.x = x; this.y = y; }

4

5 <RX extends Object, RY extends Object, A*>[m]

6 for( public RX m(A) : X.methods ;

7 some public RY m(A) : Y.methods )

8 public Pair<RX,RY> m(A args) {

9 return new Pair<RX,RY>(x.m(args), y.m(args));

10 }

11 }

Fig. 5. A Pair container class using positive nested patterns.
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4.3 More Features: if, errorif

Nested patterns enable other powerful language features. The reflective declara-
tions we have seen so far have been iteration-based: a piece of code is declared
for each element in the range. MorphJ also supports condition-based reflective
declarations and statements. (Section 4.4 explains precisely how nested patterns
enable condition-based reflective declarations.) An example (from an application
discussed in detail in Section 5) illustrates the usage of pure conditions in reflective
declarations:
<R> if ( no public R restore() : X.methods )

public void restore() { ... }

The above reflective declaration block consists of a statically exerted condition,
specified by the pattern following the if keyword. If the pattern condition is sat-
isfied, the code following the condition is declared. Thus, method void restore()
is only declared if a method restore(), with any non-void return type, does not
already exist in X.

Another useful feature is introduced by the errorif keyword. errorif acts as a
type-assertion, allowing the programmer to express facts that he/she knows to be
true about a type parameter. For instance, the programmer can express a mixin
class that is only applicable to non-conflicting classes:

class SizeMixin<X> extends X {

<F> errorif ( some F size : X.fields )

int size = 0;

}

In this case, the programmer wants to assert that, if the parameter type C already
contains a field named size, this is not an error in the definition of SizeMixin but
in the instantiation SizeMixin<C>. Thus, the errorif construct serves as a typical
type-cast: it is both an assumption that the type system can use (i.e., when checking
SizeMixin<X> it can be assumed that X has no size field) and at the same time a
type obligation for a later type-checking stage. Unlike, however, traditional type-
casts that turn a static type check into a run-time type check, an errorif turns a
modular type check into a non-modular (type-instantiation time), but still static,
type check. Most of the negative nested pattern examples we present in this article
(e.g., in Section 4.1 but also later in Section 5) can be restated with an errorif, to
cause the negative condition to result in an error, instead of problematic conflicts
being skipped.

4.4 Semantics of Nested Patterns

Similarly to primary patterns, a nested pattern introduces an iteration. However,
nested patterns are only used to return a true/false decision. For instance, in
class Pair<X,Y>, the nested pattern iterates over all the methods in Y matching the
pattern, but the iteration only serves to verify whether a matching method exists,
not to produce different code for each matching method. Furthermore, multiple
nested patterns are all nested at the same level, forming a conjunction of their
conditions.

Nested patterns may use pattern variables that are not bound by any primary
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pattern. However, there are restrictions as to how variables bound only by nested
patterns can be used in code introduced by the reflective block (i.e., the reflective
declaration). Pattern variables bound by only negative nested patterns cannot be
used in the reflective declaration at all. For instance, the pattern “no public R
restore()”, above, binds type variable R. Since R only appears in a negative nested
pattern, it cannot be used in the declaration of restore(). Intuitively, a variable
in a negative nested pattern is never bound to any concrete type or identifier—
no match can exist for the negative nested condition to be satisfied. Clearly, an
unbound variable cannot be used in declarations.

Pattern variables that are bound by positive nested patterns, however, can be
used in the reflective declaration, if we can determine that exactly one element can
be matched by the nested pattern. This is the case only if all uniquely identifying
parts of the nested pattern use either constants, or pattern variables bound by
the primary pattern. The uniquely identifying parts of a method pattern are the
method’s name and argument types, and the uniquely identifying part of a field
pattern is the field’s name. For example, in Pair<X,Y>, the positive nested pattern
“some RY m(A) : Y.methods” uses m and A in its uniquely identifying parts. Both
pattern variables are bound by the primary pattern. Thus, we can use RY in the
reflective declaration, even though it only appears in the nested pattern.

It may not be immediately obvious how if and errorif relate to nested patterns.
However, the type system machinery that enables if and errorif is precisely that of
nested patterns. The patterns used as if and errorif conditions are regular nested
patterns (with some and no) with the same semantics and conditions (e.g., limita-
tions on when bound variables can appear in a reflective declaration). Indeed, even
our actual implementation of the static if statement translates it intermediately
into a static for loop with a special “unit” value for the primary pattern condition.

We do not allow the nesting of primary patterns—i.e., it is not legal to have
nested static for loops. However, if and errorif declarations and statements can
be freely nested within the scopes of one another, or within the scope of a static
for loop.

5. APPLICATIONS USING NESTED PATTERNS

We next show two real world applications, re-implemented concisely and safely with
nested patterns.

5.1 DSTM2

DSTM2 [Herlihy et al. 2006] is a Java library implementing object-based software
transactional memory. It provides a number of “transactional factories” that take as
input a sequential class, and generate a transactional class. Each factory supports a
different transactional policy. The strength of DSTM2 is in its flexibility. Users can
mix and match policies for objects, or define new “factories” implementing their
own transactional policies.

In order to automatically generate transactional classes, DSTM2 factory classes
use a combination of Java reflection, bytecode engineering with BCEL [Apache
Software Foundation ], and anonymous class definitions. For instance, for any input
Java class, DSTM2 uses the Java reflection API to retrieve all fields annotated with
@atomic, and generates appropriate “getter” and “setter” methods for these fields
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by injecting the bytecode representation of these methods into the input class file.
The information needed for the generation of these methods is purely static and
structural. The authors of DSTM2 had to employ low-level run-time techniques
only because the Java language does not offer enough support for compile-time
transformation of classes. MorphJ, however, is a good fit for this task.

In our re-implementation of DSTM2’s factories and supporting classes, 1,484
(non-commented, non-blank) lines of Java code are replaced with 576 lines of Mor-
phJ code. For example, we replaced DSTM2’s factory.shadow.Adaptor<X> and
factory.shadow.RecoverableFactory<X> with the MorphJ class Recoverable<X> in
Figure 6.

For each field of X, Recoverable<X> creates a shadow field, as well as getter and
setter methods that acquire a lock from a transactional manager first, perform the
read or write, and then resolve conflicts before returning. Furthermore, it creates
backup() and restore() methods to backup and restore fields to and from their
shadow fields.

The advantage of the MorphJ implementation is two-fold. First, Recoverable<X>
is guaranteed to never declare conflicting declarations. For example, shadow#f is
only declared if this field does not already exist in X, and backup() is only declared
if such a method does not already exist in X. Implementations using reflection and
bytecode engineering enjoy no such guarantees, and must instead rely on thorough
testing to discover potential bugs.

Additionally, class Recoverable<X> is easier to write and understand. For exam-
ple, the code for generating a backup() method in DSTM2’s RecoverableFactory<X>
is illustrated in Figure 7. We invite the reader to compare the backup() method
declaration in Figure 6 (lines 28-32) to the code in Figure 7.

5.2 Default Implementations for Interface Methods

Consider again the “default implementation” of interface methods discussed in Sec-
tion 3.2. What if we want a more advanced version that will not provide do-nothing
implementations for all methods of an interface, but only for those that are not
already implemented in a class? There have been mechanisms proposed [Huang
and Smaragdakis 2006; Mohnen 2002] that specifically target this problem through
the use of new keywords (or Java annotations). Such mechanisms either have no
guarantee for the well-typedness of generated code [Huang and Smaragdakis 2006],
or require extensions to the Java type system [Mohnen 2002]. In contrast, we can
replace these language extensions with a MorphJ generic class that is guaranteed
to always produce well-typed code. This turns out to be a surprisingly interesting
example, requiring careful reasoning about nested patterns in order to type-check
modularly. Figure 8 shows a slightly simplified version of the MorphJ solution
to this problem. (For conciseness, we elide the declarations dealing with void- or
primitive-type-returning methods, which roughly double the code.)

Class DefaultImplementation<X,I> copies all methods of type X that either cor-
rectly implement methods in interface I, or are guaranteed to not conflict with
methods in I. For methods in I that have no counterpart in X, a default implemen-
tation is provided. Methods in X that conflict with methods in I (same argument
types, different return types) are ignored. The code for DefaultImplementation<X,I>
demonstrates the power of nested patterns, both in terms of expressiveness, and in
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1 @atomic public class Recoverable<class X> extends X {

2 // for each atomic field of X, declare a shadow field.

3 <F>[f]for(@atomic F f: X.fields; no shadow#f: X.fields)

4 F shadow#f;

5

6 // for each field of X, declare a getter.

7 <F>[f]for(@atomic F f: X.fields; no get#f(): X.methods)

8 public F get#f () {

9 Transaction me = Thread.getTransaction();

10 Transaction other = null;

11 while (true) {

12 synchronized (this) {

13 other = openRead(me);

14 if (other == null) { return f; }

15 }

16 ... // code resolving conflict between me and other.

17 }

18 }

19 // for each field of X, declare a setter

20 <F>[f]for(@atomic F f : X.fields; no set#f(F) : X.methods)

21 public void set#f ( F val ) {

22 ... // code to open transaction.

23 f = val;

24 ... // code resolving conflict.

25 }

26

27 // create backup method

28 <R>if ( no R backup() : X.methods )

29 public void backup() {

30 <F>[f] for (@atomic F f : X.fields)

31 shadow#f = f;

32 }

33 // create recover method

34 <R>if ( no R recover() : X.methods )

35 public void recover() {

36 // restore field values from shadow fields.

37 <F>[f] for ( @atomic F f : X.fields )

38 f = shadow#f;

39 }

40 }

Fig. 6. A recoverable transactional class in MorphJ.
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public class RecoverableFactory<X> extends BaseFactory<X> {

...

public void createBackup() {

InstructionList il = new InstructionList();

MethodGen method =

new MethodGen(ACC_PUBLIC, Type.VOID, Type.NO_ARGS,

new String[] { }, "backup", className, il, _cp);

for (Property p : properties) {

InstructionHandle ih_0 =

il.append(_factory.createLoad(Type.OBJECT, 0));

il.append(_factory.createLoad(Type.OBJECT, 0));

il.append(_factory.createFieldAccess(className, p.name,

p.type, Constants.GETFIELD));

il.append(_factory.createFieldAccess(className, p.name + "$",

p.type, Constants.PUTFIELD));

}

InstructionHandle ih_24 = il.append(_factory.createReturn(Type.VOID));

method.setMaxStack();

method.setMaxLocals();

_cg.addMethod(method.getMethod());

il.dispose();

}

}

Fig. 7. DSTM2 code for creating a method backup().

terms of type safety. The application naturally calls for different handling of meth-
ods in a type, based on the existence of methods in another type. Furthermore,
these declarations are guaranteed to be unique, and their uniqueness is crucially
based on nested patterns.

6. TYPE-CHECKING MORPHJ: A CASUAL DISCUSSION

Higher variability always introduces complexity in type systems. For instance, poly-
morphic types require more sophisticated type systems than monomorphic types,
because polymorphic types can reference type “variables”, whose exact values are
unknown at the definition site of the polymorphic code. In MorphJ, in addition to
type variables, there are also name variables—declarations and references can use
names reflectively retrieved from type variables. Thus, the exact values of these
names are not known when writing a generic class. Yet, the author of the generic
class needs to have some confidence that his/her code will work correctly with any
parameterization in its intended domain. The job of MorphJ’s type system is to
ensure that generic code does not introduce static errors, for any type parameter
that satisfies the author’s stated assumptions.

There are two main challenges in type-checking a MorphJ program: 1) how do
we determine that declarations made with name variables are unique, i.e., there
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class DefaultImplementation<X,interface I> implements I {

X x;

DefaultImplementation(X x) { this.x = x; }

// for all methods in I, if the same method does

// not appear in X, provide default implementation.

<R extends Object,A*>[m]for( R m (A) : I.methods ;

no R m (A) : X.methods )

R m (A a) { return null; }

// for all methods in X that *do* correctly override

// methods in I, we need to copy them.

<R,A*>[m]for( R m (A) : I.methods ;

some R m (A) : X.methods )

R m (A a) { return x.m(a); }

// for all methods in X, such that there is no method

// in I with the same name and arguments, copy method.

<R,A*>[m]for( R m (A) : X.methods;

no m (A) : I.methods)

R m (A a) { return x.m(a); }

}

Fig. 8. A MorphJ generic class providing default implementations of methods in any interface I.

are no naming conflicts, when we do not know the exact identifiers these name
variables could represent, and 2) how do we determine that references always refer
to declared members and are well-typed, when we know neither the exact names of
the members referenced, or the exact names of the members declared. The key idea
is to reason at the level of a set of syntactic elements, instead of a single element.
We define the generation range of a reflective declaration (or reference) as the set
of declarations (resp. references) it produces. (A regular, non-reflective declaration
or reference has a one-element generation range.) We shorten the term “generation
range” to just range, just as we did with the “reflective range”, when it is clear
from context whether we refer to the elements matched by a pattern or to the
elements generated by a reflective block. Determining the lack of conflicts between
two declarations then reduces to determining whether their ranges are disjoint.
Determining whether a reference is valid reduces to determining containment : Are
all entities in the reference range contained, i.e., have corresponding entities, within
the declaration range?

In this section, we present informally, through examples the main problems and
insights for checking declaration uniqueness and reference validity in MorphJ pro-
grams. We focus on declarations and references made by reflecting over type vari-
ables: Reflecting over non-variable types is simply syntactic sugar for manually
inlining the declarations. We further focus on the rules for type-checking methods—
rules for fields are a trivial adaptation of those for methods.
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6.1 Uniqueness of Declarations

We use range disjointness to check whether declarations are unique. In the case
of method declarations, uniqueness means two methods within the same class (in-
cluding inherited methods) cannot have the same name and argument types.

6.1.1 Internally Well-defined Range. A simple property to establish is the
uniqueness of declarations introduced by the same reflective iteration block.

Simple case. Consider a simple MorphJ class:
class CopyMethods<X> {

<R,A*>[m] for( R m (A) : X.methods ; nestedConditions )

R m (A a) { ... }

}

CopyMethods<X>’s methods are declared within one reflective block, which iterates
over all the methods of type parameter X. For each method returning a non-void
type that also satisfies nestedConditions, a method with the same signature is
declared for CopyMethods<X>.

How do we guarantee that, given any X, CopyMethods<X> has unique method dec-
larations (i.e., each method is uniquely identified by its 〈name, argument types〉
tuple)? Observe that X can only be instantiated with another well-formed type,
and all well-formed types have unique method declarations. Thus, if a type merely
copies the method signatures of another well-formed type, as CopyMethods<X> does,
it is guaranteed to have unique method signatures, as well. The same principle
also applies to reflective field declarations. Nested conditions only serve to re-
move more methods from the reflective range. Thus, regardless of the specific
nestedConditions, the above declaration is always legal.

It is important that reflective declarations copy all the uniquely identifying parts
of a method or field. For example, the uniquely identifying parts of a method are its
name together with its argument types. Thus, a reflective method declaration that
only copies either name or argument types would not be well-typed. For example:
class CopyMethodsWrong<X> {

<R,A*>[m] for( R m (A) : X.methods )

R m () { ... }

}

The reflective declaration in CopyMethodsWrong<X> only copies the return type
and the name of the methods of a well-formed type. This would cause an error if
instantiated with a type with an overloaded method:
class Overloaded {

int bar (int a);

int bar (String s);

}

CopyMethodsWrong<Overloaded> would have two methods, both named bar, taking
no arguments.

There is no way to express nested conditions that would filter out methods defined
using overloaded method names. Such a nested condition would need to explicitly
state that there are no methods in X with the same name, but different arguments
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than the methods matched by the primary pattern. MorphJ explicitly does not
allow such inequality conditions.

Beyond Copy and Paste. Morphing of classes and interfaces is not restricted to
copying the members of other types. Matched type and name variables can be used
freely in reflective declarations and statements. For example:
class ChangeArgType<X> {

<R,A extends Object>[m] for ( R m (A) : X.methods ; nestedConditions )

R m ( List<A> a ) { /* do for all elements */ ... }

}

In ChangeArgType<X>, for each method of X that takes one non-primitive type
argument A and returns a non-void type R, a method with the same name and
return type is declared. However, instead of taking the same argument type, this
method takes a List instantiated with the original argument type. Even though
ChangeArgType<X> does not copy X’s method signatures exactly, we can still guaran-
tee that all methods of ChangeArgType<X> have unique signatures, no matter what X
is. The key is that a reflective declaration can manipulate the uniquely identifying
parts of a method, (i.e., name and argument types), by using them in type (or
name) compositions, as long as these parts remain in the uniquely identifying parts
of the new declaration. The following is an example of an illegal manipulation of
types:
class IllegalChange<X> {

<R,A>[m] for ( R m (A) : X.methods ; nestedConditions )

A m ( R a ) { ... }

}

In the above example, the uniquely identifying part of X’s method is no longer
the uniquely identifying part of IllegalChange<X>’s method: the argument types of
X’s method is no longer part of the argument types of IllegalChange<X>’s method.
Using class Overloaded defined above, IllegalChange<Overloaded> will cause an er-
ror in the generated code. Again, no nested conditions can prevent this type of
declaration conflict.

6.1.2 Uniqueness Across Ranges. When there are multiple reflective blocks in
the same type declaration, we need to guarantee that the declarations in one block
do not conflict with the declarations in another block. For two reflective method
declarations, their uniqueness means that the generation ranges of their 〈name,
argument types〉 tuples cannot overlap. This can be determined by a two-way
unification of the two declarations. In a two-way unification, pattern variables
from both reflective blocks are unification variables.

Let us start with a simple example. Consider the following class:
1 class DisjointDecs<X> {

2 <R>[m] for(R m (int) : X.methods; nestedConditions1 )

3 R m (int i) { ... }

4

5 <S>[n] for(S n (int) : X.methods; nestedConditions2 )

6 S n (int i, String s) { ... }

7 }
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It is easy to see that the declarations on lines 3 and 6 cannot overlap for any X.
There is no unification to make the two signatures have the same 〈name, argument
types〉 tuple, because there is simply no way to unify {int} with {int,String}.

The absence of a possible unification is the most straightforward way to prove that
two reflective ranges do not overlap. However, even when two method signatures
do unify, if we can prove that conditions causing the overlap are infeasible, then
the declarations are still unique. An overlap is infeasible if the unification mapping
producing the overlap, when applied to the primary and nested patterns, produces
mutually exclusive conditions. Note that a non-empty primary pattern constitutes
a positive condition that states that some element exists in this range.

Consider the following class:
1 class StillUnique<X> {

2 <A1>[m]for( String m (A1) : X.methods ; nestedConditions1 )

3 void m (A1 a) { ... }

4

5 <A2>[n]for( int n (A2) : X.methods ; nestedConditions2 )

6 void n (A2 a) { ... }

7 }

The declared signatures on lines 3 and 6 unify with the mapping {m7→n, A17→A2}.
Applying this mapping to the primary patterns on lines 2 and 5, we get “String n
(A2) : X.methods”, and “int n (A2) : X.methods”. Methods matched by these
patterns can cause conflicting declarations. However, having at least one method in
both of these ranges means that there need to be two methods in X with the same
name and argument types, but different return types. This directly contradicts the
fact that X is a well-formed type. Thus, this unification mapping produces mutually
exclusive conditions between the two primary pattern conditions, and there are no
elements that would make the mapping possible. These declarations are thus still
disjoint.

To generalize the rules for range disjointness, we first define conditions under
which two pattern conditions are mutually exclusive. Let 〈Pn,Tn〉 denote the range
of pattern Pn matching over the methods of type Tn, let + prefix a positive pattern
condition, and − prefix a negative condition. There are two conditions for mutual
exclusivity:

• +〈Pn,Tn〉 and +〈P ′
n,Sn〉 are mutually exclusive if Tn is a subtype of Sn or vice

versa, and any unifying method name and argument types for Pn, P ′
n have incom-

patible3 return types.
• +〈Pn,Tn〉 and −〈P ′

n,Sn〉 are mutually exclusive if 〈P ′
n,Sn〉 contains 〈Pn,Tn〉.

We discuss range containment in detail in Section 6.2. Intuitively, 〈P ′
n,Sn〉 con-

tains 〈Pn,Tn〉 if all members in the range of 〈Pn,Tn〉 are in the range of 〈P ′
n,Sn〉.

Naturally, having something in a larger range conflicts with having nothing in a
smaller range.

3The rule refers to “incompatible” instead of just “different” types because, in case Tn is a proper

subtype of Sn, it can contain an overriding method with a different but covariant return type,
which would result in a conflicting declaration. We try to be precise in our statements and

examples but mostly ignore such tedious corner cases in our informal discussion.
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Given two method signatures whose uniquely identifying parts do unify (which
suggests a conflict is possible), we first apply the unification mapping to their en-
closing primary and nested patterns. Next, we determine whether the two primary
pattern conditions are mutually exclusive using the rules above. If the primary
pattern conditions are not mutually exclusive, that is, the patterns unify, we apply
the unification mapping to all patterns again. We then determine whether any
pair of conditions are mutually exclusive. If there is at least one pair of mutually
exclusive conditions, the two method generation ranges must be disjoint.

We saw the first rule’s use in our StillUnique<X> example. The second rule is
what establishes that ranges are disjoint because the negative nested pattern of one
contains the primary pattern of the other. Consider the following example:

1 public class UnionOfStatic<X,Y> {

2 <A*>[m] for( static void m (A) : X.methods; nestedConditions)

3 public static void m(A args) { X.m(args); }

4

5 <B*>[n] for( static void n (B) : Y.methods ;

6 no static void n (int, B) : X.methods )

7 public static int n(int count, B args) {

8 for (int i = 0; i < count; i++) Y.n(args);

9 return count;

10 }

11 }

The two method declarations on lines 3 and 7 have signatures that can be unified
with the mapping { A7→{int,B}, m 7→n}. Applying this substitution to the primary
pattern on line 2 yields “static void n(int,B) : X.methods”. The range of meth-
ods matched by this pattern is contained in the range of methods matched by the
nested pattern on line 6. That is, the conflict would fall under the range of the neg-
ative nested pattern “no static void n(int,B) : X.methods”. Thus, the conflict is
not possible and the two method declarations are unique for all X and Y.

Reflective and Regular Methods Together. Declaration conflicts can also occur
when a class has both regular and reflectively declared members. For example, in
the following class declaration, we cannot guarantee that the methods declared in
the reflective block do not conflict with method int foo().
class Foo<X> {

int foo () { ... }

<R,A*>[m]for ( R m (A) : X.methods ; nestedConditions )

R m (A a) { ... }

}

Just as in the case of multiple iterators, the main issue is establishing the disjoint-
ness of declaration ranges, with the regular methods acting as a constant declaration
range. In this case, a simple way is to use a nested condition to ensure that there
is no method named foo in X: no foo(S) : X.methods, where S is declared as pat-
tern type variable S*. This nested condition is mutually exclusive with the primary
pattern condition—when unified with the regular method signature int foo(), no
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method in the range of the substituted primary pattern can possibly satisfy the
nested condition, and thus no method will be declared at all through this reflective
block.

Using Static Prefixes. In general, we can guarantee the uniqueness of declarations
across reflective blocks by proving either type signature or name uniqueness. A
general way to establish the uniqueness of declarations is by using unique static
prefixes on names. (For static prefixes to be uniquely identifying, they must not
be prefixes of each other.) For instance, the following class is guaranteed to always
produce unique method declarations:

class Manipulation<X> {

<R>[m] for ( R m (List<X>) : X.methods )

R list#m (List<X> a) { ... }

<R>[m] for ( R m (X) : X.methods )

R nolist#m (List<X> a) { ... }

}

Proper Method Overriding and Mixins. Proper overriding means that a subtype
should not declare a method with the same name and arguments as a method in a
supertype, but a non-covariant return type. Ensuring proper method overriding is
a special case of declaration range disjointness: if two methods’ 〈name, argument
types〉 tuples are not unique, they are still well-typed declarations if we can establish
that the overriding method’s return type is a subtype of the overriden return type.

One case that deserves some discussion is that of a type variable used as a su-
pertype. (In case the type is a class, it is implicitly assumed to be non-final.) This
is sometimes called a mixin pattern [Bracha and Cook 1990; Smaragdakis and Ba-
tory 1998]. Since the supertype could potentially be any type, we have no way of
knowing its declarations. For instance, the following class is unsafe and will trigger
a type error, as there is no guarantee that the superclass does not already contain
an incompatible method foo.

class C<class T> extends T {

int foo () { ... }

}

Static prefixes are similarly insufficient to guarantee that subtype methods do not
conflict with supertype methods. As a result, there are two legal ways to declare
(non-empty) mixins in MorphJ.

First, the subclass may contain no members other than reflective iterators over
its supertype that declare overriding versions for (some subset of) the supertype’s
methods. For instance, the following is a legal MorphJ class:

class C<class T> extends T {

<R,A>[m] for (R m (A) : T.methods)

R m (A a) { ... }

}

The class correctly overrides some of its superclass’s methods (those accepting
and returning one argument).
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Alternatively, the subclass may use proper nested conditions to eliminate possi-
bilities of illegal overriding. For instance:
class C<class T> extends T {

if ( no foo () : T.methods )

int foo () { ... }

}

6.2 Validity of References

Another challenge of modular type checking for a morphing language is to ensure
the validity of references. We use the term “validity” to refer to the property that
a referenced entity has a definition, and its use is well-typed.

6.2.1 Reference within the Same Range. Let us take another look at the class
Logging<X> from Section 1:

1 class Logging<class X> extends X {

2 <R,Y*>[meth]for(public R meth (Y) : X.methods)

3 public R meth (Y a) {

4 R r = super.meth(a);

5 System.out.println("Returned: " + r);

6 return r;

7 }

8 }

How do we know that the method invocation “super.meth(a)” (line 4) is valid?
Notice that the generation range of meth (i.e., all the identifiers it could expand
to) is exactly the names of methods matched by the primary pattern on line 2: all
non-void methods of X. This range is certainly contained by the set of all methods
declared for X. Thus, we know method meth exists, no matter what X is. Further-
more, how do we know we are invoking meth with the right arguments? The type
of a is Y: exactly the argument type m of X is expecting.

6.2.2 Reference Across Ranges. Things get a bit more complex when a name
variable bound in one reflective block references a method declared in a different
reflective block. Consider the following class, which logs the arguments of methods
accepting strings, before calling Logging to log the return value.

1 class LogStringArg<class Y> {

2 Logging<Y> loggedY;

3

4 <T>[n] for ( public T n(String) : Y.methods )

5 public T n (String s) {

6 System.out.println("arg: " + s);

7 return loggedY.n(s);

8 }

9 }

How do we know that loggedY.n(s) (line 7) is a valid reference, when the meth-
ods of loggedY are defined in a different class and a different reflective block? The
key is to determine that the range of n is contained by the range of method names
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in Logging<Y>. This is to say that the generation range of n’s enclosing reflective
block should be contained by the generation range of Logging<Y>’s declaration re-
flective block. In general, this containment check has two components (beyond
the regular matching of names and signatures): the reflection set of the containing
range (i.e., the type it is defined over) should be richer than (i.e., a subtype of) the
reflection set of the contained range, and the pattern of the containing range should
be more general than that of the contained range. Observe that the declaration
block of Logging<Y> is defined over methods of Y (after substituting Y for X), as
is the reflective block enclosing n. Secondly, the pattern for the declaration block
of Logging<Y> is more general than the pattern for the reflective block enclosing
n: the former matches all non-void methods, and the latter matches all non-void
methods taking exactly one String argument. Thus, any method that is matched
by the reference reflective block’s pattern is matched by the declaration reflective
block’s pattern, regardless of what Y is. Consequently, there is always a method n
in Logging<Y>.

Whether a pattern is more general than another can be systematically deter-
mined by finding a one-way unification from the more general pattern to the more
restricted one. In a one-way unification, only pattern variables declared for the
more general pattern are used as unification variables. All other pattern variables
are considered constants. In this example, we can unify “public R m(A)” to “public
T n(String)” using the mapping {R7→T, m7→n, A 7→{String}}.

We also use this unification mapping in determining whether n is invoked with
the right argument types. We apply the mapping to the method declaration in
Logging<Y>, and get the declared signature “public T n(String)”. Since s has the
type String, the invocation is clearly correct. Furthermore, we can check that the
result of the invocation is of type T, which is precisely the expected return type of
the method enclosing “loggedY.n(s)”.

For a case with nested patterns, consider the following class:

1 class VoidPair<X,Y> {

2 X x; Y y; ...// constructor to initialize x and y.

3

4 <A*>[m]for ( public void m(A) : X.methods ;

5 some public void m(A) : Y.methods )

6 public void m (A a) { x.m(a); y.m(a); }

7 }

VoidPair<X,Y> declares a method for every void method that X and Y share in
name and argument types, and invokes that method on x and y. Using the reference
rules described previously, we know that x.m(a) is a valid reference. Furthermore,
because the pattern variables used in the positive nested pattern on line 5 are all
bound by the primary pattern, we know that if the nested condition is satisfied,
there is exactly one element in the range of the nested pattern, so the call y.m(a)
is unambiguous. Since the types also match, y.m(a) is a valid reference, as well.

We can abstract away from these examples and consider the general case of a
reference made in one reflective block, to declarations made in another reflective
block, when both blocks have nested patterns. Let Rd and Rr denote the ranges
for the reflective blocks of the declaration and the reference, respectively. There
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are two sufficient conditions to determine that Rr is contained in Rd. First, the
primary range of Rr (i.e., the range of the primary pattern defining Rr) must be
contained in the primary range of Rd, using the same check as before (one-way
unification of the patterns that define the ranges). Second, for all methods that are
in the primary range of Rr (and thus also in the primary range of Rd), if the method
satisfies the nested conditions of Rr, it should also satisfy the nested conditions of
Rd. That is to say, the nested conditions of Rr should be stronger, and imply the
nested conditions of Rd.

Determining that one nested condition implies another can be reduced to another
single range containment (i.e., one-way pattern unification) check. More precisely,
using the same notation as before (recall that Tr and Td are the types on whose
methods the ranges iterate), we have two ways of determining that one nested
condition implies another:

• +〈Nr,Tr〉 implies +〈Nd,Td〉 if 〈Nd,Td〉 contains 〈Nr,Tr〉 (i.e., Td is a subtype of
Tr and the one-way unification of patterns succeeds).

• −〈Nr,Tr〉 implies −〈Nd,Td〉 if 〈Nr,Tr〉 contains 〈Nd,Td〉.

Intuitively, +〈Nr,Tr〉 is satisfied if there is at least one element in 〈Nr,Tr〉. Then
there is certainly at least one element in a larger range, as well. Thus, +〈Nd,Td〉
should be satisfied. Similar reasoning applies for the implication between two neg-
ative conditions.

To be more concrete, consider the following class:
8 class CallVoidsWithString<T,S> {

9 VoidPair<T,S> voidPair;

10 ... // constructor to initialize voidPair

11 [n]for ( public void n(String) : T.methods ;

12 some public void n(String) : S.methods )

13 public void n (String s) { voidPair.n(s); }

14 }

For every void method taking one String argument that T and S have in common,
CallVoidsWithString<T,S> declares a method with the same signature, and invokes
a method with the same name on voidPair, of type VoidPair<T,S>. This reference
is valid if the range of the reflective block on lines 11-12 is contained by the range
of the declaration reflective block (lines 4-5 in the definition of VoidPair).

The range of the primary pattern on line 11 is contained by the range of the
declaration’s primary pattern (line 4), by the one-way unification mapping {m7→n,
A7→{String}}.

To check whether the nested pattern on line 5 contains the nested pattern on
line 12, note that we first apply the unification mappings obtained from unifying
the primary patterns—we only want to determine this containment relationship for
those methods that belong in the range of both primary patterns. In our example,
after applying the unification mapping to the positive nested pattern on line 5 (and
also substituting S for Y), we have “public void n(String) : S.methods”. This
clearly contains “public void n(String) : S.methods” on line 12.

These two conditions guarantee us that reference voidPair.n(s) is always a valid
one. It is easy to check that this is indeed the case.
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The above approach generalizes to an arbitrary number of nested conditions:
Each nested condition in the declaration range must be implied by at least one
nested condition in the reference range. A range with no nested patterns is equiva-
lent to a range with a positive nested pattern that contains everything, or a nega-
tive nested pattern that is contained by everything. The case where there are only
nested patterns (i.e., if and errorif statements) can be reduced to a range with
a special primary pattern value that contains only itself and is contained only by
itself.

7. FORMALIZATION

We formalize the main features of MorphJ and prove type soundness through a
formalism, FMJ, based on FGJ [Igarashi et al. 2001], with differences (other than
the simple addition of our extra environment, Λ) highlighted in grey . Figures in
which all rules are new to FMJ (Figures 12,14,15) are not highlighted at all, for
better readability.

7.1 Syntax

The syntax of FMJ is presented in Figure 9. We adopt many of the notational
conventions of FGJ: C,D denote constant class names; X,Y,Z denote type variables;
N,P,Q,R denote non-variable types (which may be constructed from type variables);
S,T,U,V,W denote types; f denotes field names; m denotes non-variable method names;
x,y denote argument names. Notations new to FMJ are: η denotes a variable
method name; n denotes either variable or non-variable names; o denotes a nested
condition operator (either + or -, for the keywords some or no, respectively).

T ::= X | N

N ::= C<T>

CL ::= class C<X/N>/ N {T f; M}
| class C<X/N>/ T {T f; M }

M ::= T m (T x) {↑e;}
M ::= <Y/P>for(Mp;oMn) U η (U x) {↑e;}
o ::= + | -

M ::= V η (V):X.methods

e ::= x | e.f | e. n (e) | new C<T>(e)

n ::= m | η

Fig. 9. FMJ: Syntax

We use the shorthand T for a sequence of types T0,T1,...,Tn, and x for a
sequence of unique variables x0,x1,...,xn. We use : for sequence concatenation,
e.g., S:T is a sequence that begins with S, followed by T. We use • to denote an
empty sequence. We use ∈ to mean “is a member of a sequence” (in addition to set
membership). We use . . . for values of no particular significance to a rule. / and ↑
are shorthands for the keywords extends and return, respectively. Note that all
classes must declare a superclass, which can be Object.

FMJ formalizes some core MorphJ features that are representative of our ap-
proach. One simplification is that we allow a single nested pattern and it cannot
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use any pattern type or name variables not bound by its primary pattern. We also
do not formalize reflecting over a statically known type, or using a constant name in
reflective patterns. These are decidedly less interesting cases from a typing perspec-
tive. The zero or more length type vectors T* are also not formalized. These type
vectors are a mere matching convenience. Thus, safety issues regarding their use
are covered by non-vector types. We do not formalize reflectively declared fields—
their type checking is a strict adaptation of the techniques for checking methods.
Lastly, static name prefixes, casting expressions and polymorphic methods are not
formalized.

FGJ does not support method overloading, and FMJ inherits this restriction.
Thus, a method name alone uniquely identifies a method definition. Furthermore,
since we allow no fresh name variables in nested patterns, there can be only one
name variable in a pattern, and we use the keyword η for name variables, instead of
allowing arbitrary identifiers. A reflective definition must also use this same name
(since static prefixes are not allowed and constant names would be illegal due to
conflicts). This results in a small simplification over the informal rules, but leaves
their essence intact.

A program in FMJ is an (e,CT ) pair, where e is an FMJ expression, and CT is
the class table. We place some conditions on CT : Every class declaration class
C... has an entry in CT ; Object is not in CT . The subtyping relation derived
from CT must be acyclic, and the sequence of ancestors of every instantiation type
is finite. (The last two properties can be checked with the algorithm of [Allen et al.
2003] in the presence of mixins.)

7.2 Typing Judgments

The main typing rules of FMJ are presented in Figure 10 and 11, with auxiliary def-
initions presented in Figures 12 and 13. We recommend reading our text description
and referring to the rules as needed in the flow of the text.

There are three environments used in our typing judgments:

—∆: Type environment. Maps type variables to their upper bounds.

—Γ: Variable environment. Maps variables (e.g., x) to their types.

—Λ: Reflective iteration environment. Λ has the form 〈Rp ,oRn〉, where Rp is the
primary pattern, and oRn the nested pattern. Recall that o can be + or -.
—Rp has the form (T1, <Y/P>U→U0). T1 is the reflective type, over whose methods

Rp iterates. Y are pattern type variables, bounded by P, and U→U0 the method
pattern.

—Rn has a similar form: (T2, V→V0). However, note the lack of pattern type
variables, due to the (formalism-only) simplification that the nested pattern
not use pattern type variables not already bound in the primary pattern.

There is no nesting of reflective loops. Thus, Λ contains at most one 〈Rp ,oRn〉
tuple.

We define two functions (Figure 12) to help us construct the reflective environ-
ment as well as the two ranges corresponding to the primary and nested pattern:

—reflectiveEnv(M) constructs the Λ corresponding to the reflective declaration M.
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Expression typing:

∆;Λ;Γ`x ∈ Γ(x) (T-VAR)

∆;Λ;Γ`e0∈T0 ∆`fields(bound∆(T0))=T f
∆;Λ;Γ`e0.fi∈Ti (T-FIELD)

∆;Λ;Γ`e0∈T0 ∆;Λ;Γ`e∈S
∆; Λ `mtype(n, T0) =T→T ∆`S<:T

∆;Λ;Γ`e0.n(e)∈T (T-INVK)

∆ `C<T> ok ∆`fields(C<T>)=U f
∆;Λ;Γ`e∈S ∆ `S<:U
∆;Λ;Γ`new C<T>(e)∈C<T> (T-NEW)

Method typing:

∆=X<:N Γ=x7→T,this7→C<X> Λ=∅
∆ `T,T0 ok ∆;Λ;Γ`e0 ∈S0 ∆ `S0<:T0

CT (C)=class C<X/N>/N {...}
∆; Λ `override(m, N, T→T0)

T0 m (T x) { ↑e0; } OK IN C<X/N> (T-METH-S)

∆=X<:N,Y<:P Γ=x7→T,this7→C<X>
∆ `P,T,T0,N ok ∆ `Mp ,Mf ok

Rp=range(Mp ,<Y/P>) Rn=range(Mf ,•) Λ=〈Rp ,oRn〉
∆;Λ;Γ`e∈S0 ∆ `S0<:T0 CT (C)=class C<X/N>/T {...}

∆; Λ `override(η, T, T→T0)
<Y/P>for(Mp;oMf) T0 η (T x) {↑e;} OK IN C<X/N> (T-METH-R)

Class typing:

∆=X<:N ∆ `N,N,T ok M OK IN C<X/N>
class C<X/N>/N { T f; M} OK (T-CLASS-S)

∆=X<:N ∆ `N,T,T ok

for all Mi∈M, Mi OK IN C<X/N>
for all Mi,Mj∈M, Λi=reflectiveEnv(Mi) Λj=reflectiveEnv(Mj)

∆`disjoint(Λi, Λj)
class C<X/N>/T { T f; M} OK (T-CLASS-R)

Fig. 10. FMJ: Typing Rules
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Well-formed types:

∆ `Object ok (WF-OBJECT)

X∈dom(∆)
∆`X ok (WF-VAR)

CT (C)=class C<X/N>/ T { ... }
∆ `T ok ∆ `T<:[T/X]N

∆ `C<T> ok (WF-CLASS)

Well-formed Patterns:

M=U0 η (U) :T.methods ∆ `U0,U,T ok
∆ `M ok (WF-PAT)

Fig. 11. FMJ: Well-formed types and patterns

—range(M,<Y/Q>) constructs the R corresponding to the pattern M, where Y are
the pattern type variables, and bounded by Q.

We use the 7→ symbol for mappings in the environments. For example,
∆=X7→C<T> means that ∆(X)=C<T>. Every type variable must be bounded by
a non-variable type. The function bound∆(T) returns the upper bound of type T in
∆. bound∆(N)=N, if N is not a type variable. And bound∆(X)=bound∆(S), where
∆(X)=S.

In order to keep our type rules manageable, we make two simplifying assumptions.
To avoid burdening our rules with renamings, we assume that pattern type variables
have globally unique names (i.e., are distinct from pattern type variables in other
reflective environments, as well as from non-pattern type variables). We also assume
that all pattern type variables introduced by a reflective block are bound (i.e., used)
in the corresponding primary pattern. Checking this property is easy and purely
syntactic.

The core of this type system is in determining reflective range containment and
disjointness. Thus, we begin our discussion with a detailed explanation of the rules
for containment and disjointness.

7.2.1 Containment and Disjointness. The range of a reflective environment,
〈Rp ,oRn〉, comprises methods in the primary range Rp , that also satisfy the nested
pattern oRn . The nested pattern +Rn (or -Rn) is satisfied if there is at least one
method (or no method, resp.) in the range of Rn . We call ranges of Rp and Rn

single ranges. In this section, we explain the rules for determining the following
three relations:

—∆;[W/Y]`ΛvΛΛ′. Range of Λ is contained within the range of Λ′, under the
assumptions of type environment ∆ and the unifying type substitutions of [W/Y].

—∆;[W/Y]`R1vRR2. Single range R1 is contained within single range R2, under
the assumptions of ∆ and the unifying type substitutions of [W/Y].

—∆`disjoint(Λ, Λ′). The range of Λ and Λ′ are disjoint under the assumptions of
∆.
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Range Construction Functions:

M=U0 η (U) : X.methods

range(M,<Y/P>) =(X, <Y/P>U→U0)

M=<Y/P>for (Mp ;oMf) U0 η (U x) {↑e;}
Rp=range(Mp ,<Y/P>) Rn=range(Mf ,•) Λ=〈Rp ,Rn〉

reflectiveEnv(M) =Λ

Specializing reflective environment:

Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)
∆;Λ`mtype(m, Ti)=U′→U′ R′

p=(Ti, U′→U′)
R′

n=(Tj , V′→V′0) ∆;Λ`mtype(m, Tj)=V′→V′0
o=- implies ∆;[W/Y]`R′

pvRRp [W/Y](V:V)=(V′0:V
′)

∆;Λ`specialize(m, Λd)=〈R′
p ,+R′

n〉
(SP-+)

Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)
∆;Λ`mtype(m, Ti)=U′→U′ R′

p=(Ti, U′→U′) ∆;[W/Y]`R′
pvRRp R′

n=[W/Y]Rn{
∆; Λ ` mtype(m, Tj) is undefined or
∆; Λ ` mtype(m, Tj) = V

′ → V′0 [W/Y](V : V) 6= (V′0 : V′) o = −
∆;Λ`specialize(m, Λd)=〈R′

p ,-R′
n〉

(SP--)

Subtype range validity:

∆ `validRange(∅, T) (VR-NOREFL)

Rp=(X, ...)
∆ `validRange(〈Rp ,-Rn〉,X) (VR-VAR)

CT (C)=class C<X/N>/S { ... M}
∆ `validRange(Λ, [T/X]S)

for all Mi∈M Mi=<Y/P>for(Mp ;oMf)...

Λ′=reflectiveEnv(Mi)
∆;[W/Y]`ΛvΛΛ′ or ∆`disjoint(Λ′, Λ)

∆ `validRange(Λ, C<T>) (VR-CLASS)

Fig. 12. FMJ: Auxiliary definitions.

Single range containment. In determining the containment between two reflec-
tive environments, we must first see how containment is determined between two
single ranges. Rule SB-R (Figure 14) defines the two conditions for single range
containment. First, the reflective type of the larger range, R2, should be a subtype
of R1’s reflective type. It is only meaningful to talk about containment if the reflec-
tion set of R2 (i.e., all methods of the reflective type of R2, regardless of whether
they can be matched by the pattern) can be mapped onto the reflection set of R1.
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Method type lookup:
Λ=〈Rp ,oRn〉 Rp=(X, <Y/P>U→U0)

∆; Λ `mtype(η, X)=U→U0 (MT-VAR-R1)

Λ=〈Rp ,+Rn〉 Rn=(X, U→U0)
∆; Λ `mtype(η, X)=U→U0 (MT-VAR-R2)

Λ=〈Rp ,oRn〉 Rp=(T, <Y/P>V→V0)
∆; Λ `mtype(n, bound∆(X))=U→U0

∆; Λ `mtype(n, X)=U→U0 (MT-VAR-S)

CT (C)=class C<X/N>/N {... M}
U0 m (U x) {↑e;}∈M

∆; Λ `mtype(m, C<T>)=[T/X](U→U0) (MT-CLASS-S)

CT (C)=class C<X/N>/N {... M} m �∈ M
∆; Λ `mtype(m, C<T>)=mtype(m, [T/X]N) (MT-SUPER-S)

CT (C)=class C<X/N>/T {... M}
Mi=<Y/P>for(Mp;oMf) S0 η (S x) {↑e;}

Mi∈ M Λd=[T/X](reflectiveEnv(Mi)){
∆; Λ ` specialize(m, Λd) = Λr if n = m
Λr = Λ if n = η

∆;[W/Y]`ΛrvΛΛd

∆; Λ `mtype(n, C<T>)=[T/X][W/Y](S→S0) (MT-CLASS-R)

CT (C)=class C<X/N>/T {... M}
for all Mi∈M Λd=[T/X](reflectiveEnv(Mi)){

∆; Λ ` specialize(m, Λd) = Λr if n = m
Λr = Λ if n = η

implies ∆`disjoint(Λr, Λd)

∆; Λ `mtype(n, C<T>)=mtype(m, [T/X]T) (MT-SUPER-R)

Field lookup:

∆`fields(Object) = • (FD-OBJ)

CT (C)=class C<X/N>/ T {S f; ...}
∆`fields(bound∆([T/X]T))=D g

∆`fields(C<T>)=D g,[T/X]S f (FD-CLASS)

Valid method overriding:

∆ `validRange(Λ, T)
∆; Λ `mtype(n, T)=V→V0 implies (V=U and V0=U0 )

∆; Λ `override(n, T , U→U0)

Fig. 13. FMJ: Method type lookup, overriding and field lookup.
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Reflective range containment:

Λ=〈Rp ,oRn〉 Λ′=〈R′
p ,o′R′

n〉 R′
p=(T′p, <Y/P>V→V0)

∆;[W/Y]`RpvRR′
p

{
∆; • ` Rn vR [W/Y]R′

n if o = o′ = +
∆; • ` [W/Y]R′

n vR Rn if o = o′ = −
∆;[W/Y]`ΛvΛΛ′ (SB-Λ)

Single range containment:

R1=(T1, <X/Q>U→U0) R2=(T2, <Y/P>V→V0) ∆`P,Q OK
∆ `T2<:T1 ∆′=∆,X<:Q,Y<:P ∆′;[W/Y]`unify(U0:U, V0:V)

∆;[W/Y]`R1vRR2 (SB-R)

Reflective range disjointness:

Λ=〈Rp ,oRn〉 Λ′=〈R′
p ,o′R′

n〉
∆`+Rp⊗+R′

p or ∆`+Rp⊗o′R′
n or ∆`+R′

p⊗oRn

or ∆`oRn⊗o′R′
n or ∆`o′Rn⊗oR′

n

∆`disjoint(Λ, Λ′) (DS-Λ)

Mutually exclusion of range conditions:

R1=(T, <Y/P>U→U0) R2=(S, <X/Q>V→V0)
∆ `T<:S or S<:T ∆′=∆,Y<:P,X<:Q Z=X:Y

for all W, ∆′;[W/Z]`unify(U, V) implies [W/Z]U0 6=[W/Z]V0
∆`+R1 ⊗ +R2 (ME-1)

R1=(T, <Y/P>U→U0) R2=(S, <X/Q>V→V0)
∆′=∆,Y/P,X/Q ∆′;[W/X]`R1vRR2

∆`+R1 ⊗ -R2 (ME-2)

Fig. 14. FMJ: Containment and disjointness rules

We determine this relation using subtyping: A subtype’s methods can be mapped
onto its supertype’s methods. Secondly, R2’s pattern should be more general than
R1’s pattern. This means that a one-way unification exists from the pattern of R2

to the pattern of R1, where only the pattern type variables in R2 are considered
variables in the unification process. [W/Y] are the substitutions that satisfy such
one-way unification: ∆′;[W/Y]`unify(U0:U, V0:V).

Rule UNI (Figure 15) describes a standard unification condition with a twist:
unifying substitutions (for pattern type variables) must respect the subtyping
bounds of the type variables. For example, the substitution [Y/Object], where
∆`Y<:Number, does not unify Y and Object, because the bound of Y is tighter than
Object. Depending on whether the unification variables Z appear in T, S, or both,
the ability to unify T and S may mean all types matched by S can be matched by
T (one-way unification), vice versa, or that there is some intersection in the types
matched by T and S (two-way unification).

Figure 15 also lists a number of rules defining when type T is a valid substitution
for S: ∆`T≺:ZS. This is to say that T and S can match at least some of the same
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types, using Z as pattern type variables. The most complex case in the pattern
matching rules is PM-PVARS, which defines when there is an intersection in the
types matched by two different pattern type variables, Zi and Zj . Recall that if Zi is
bounded by type Ti, it can match any subtype of Ti; similarly, Zj bounded by type
Tj can match any subtype of Tj . Technically, for there to be an intersection in the
types Zi and Zj can match, there must be a type that is a subtype of both Ti and
Tj . Since we are modeling a core subset of Java without multiple inheritance (of
interfaces), this type must be a subtype of either Ti or Tj . This is to say, either Zi
has a greater upper bound than Zj and is capable of matching every type matched
by Zj , or vice versa. PM-PVARS describes this either-or condition by taking one
of the type variables up to its bound, and invoking the pattern matching rules on
that bound and the remaining type variable.

PM-VAR says that for a pattern matching type variable Z to match a type T,
the upper bound of Z must be able to match the upper bound of T. If the bounds
are the exact same types (PM-REFL), we are done. If they are types constructed
from the same generic type, we recursively invoke the pattern matching rules on
their respective type parameters (PM-CL). If T’s declared upper bound is a strict
subtype of the upper bound of Z, rule PM-CL-S traces up the declared superclass
of T’s upper bound, until either PM-REFL or PM-CL can be invoked, or the class
Object is reached and no more recursion can occur.

Reflective (nested) range containment. SB-Λ (Figure 14) defines the conditions
for the range of reflective environment Λ=〈Rp ,oRn〉 to be contained within the
range of Λ′=〈R′

p ,o′R′
n〉. These conditions reflect precisely the informal rules we

presented in the previous section. First, regardless of nested patterns, the primary
range of Λ should at least be contained within the primary range of Λ′. Second,
for every method in Rp that satisfies the nested pattern oRn , the corresponding
method in R′

p should satisfy the nested pattern o′R′
n . There are a couple of ways to

guarantee oRn implies o′R′
n . If +Rn is true, and Rn is contained within R′

n , then
+R′

n is also true (i.e., if there is at least one method in Rn , then there is at least one
method in a larger range, R′

n). This condition is expressed by ∆;•`RnvR[W/Y]R′
n ,

if o=o′=+. We apply the unifying type substitutions for the primary ranges to
the nested range R′

n : In order to properly compare the ranges of Rn and R′
n , we

need to restrict R′
n to what it can be for the methods that are matched by both

Rp and R′
p . Note that we are using an empty sequence of type substitutions (•) in

determining that Rn is contained within [W/Y]R′
n . This is because nested patterns

do not have pattern type variables of their own, and pattern type variables from
the primary pattern are treated as constants in the nested patterns. Similarly, if
-Rn is true, and Rn contains R′

n , -R′
n is also true.

Reflective range disjointness. Disjointness of reflective ranges is defined by rule
DS-Λ (Figure 14). DS-Λ says that for two reflective ranges to be disjoint, we must
be able to find one pair of mutually exclusive (⊗) pattern conditions—this includes
the implicit (+) conditions stated by the primary patterns. There are two rules for
pattern condition mutual exclusion: ME-1 and ME-2, defined in Figure 14.

ME-1 says that two + pattern conditions are mutually exclusive if the patterns
reflect over types with an inheritance relationship, and the patterns’ argument types
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unify, whereas their return types do not. This means the two patterns are matching
over methods of the same argument types, but different return types. For both of
these pattern conditions to be simultaneously satisfied, there need to be at least
two methods with the same argument types and different return types, declared by
the same class or a subclass. This violates the correct method overriding rule of
well-formed types. Since these patterns only reflect over well-formed types, these
conditions can never be both satisfied.

ME-2 says that +R1 and -R2 are mutually exclusive, if R1 is contained within
R2. If there is no method in the larger range, then certainly there cannot be at
least one method in a smaller range. And vice versa. Thus, the two conditions can
never be both satisfied.

These rules reflect very closely the informal rules we presented previously, modulo
the small differences in the formalism mentioned in Section 7.1: We do not need
to distinguish between generated/declared patterns and primary patterns in the
formalism, as the uniqueness of entities in the primary pattern implies (through
name uniqueness, since there is no overloading) the uniqueness of declared entities.

Additionally, DS-Λ makes two overly conservative (and sound) simplifications
over our implementation. First, it is possible for the + condition stated by a
primary pattern to be mutually exclusive from the nested condition of its own
nested pattern. This results in a reflective declaration that can never be expanded,
and thus, a range that is disjoint from every other range. We do not check for this
in our formalism. Secondly, when two pattern conditions are shown to be mutually
exclusive, a one- or two-way unification exists between either the argument types
(ME-1), or the argument and return types (ME-2, via SB-R). This unification
represents the methods that lie in the intersection of the two ranges defined by the
patterns. In practice, we only need to check whether these methods can in fact
exist, by checking whether this particular mapping causes any of the remaining
patterns to be mutually exclusive. However, in this formalism, we do not apply
this unification, and thus check for general mutual exclusion.

7.2.2 Valid Method Invocation. The rest of the typing rules add the machinery
to standard FGJ type checking to express checks using range containment and
disjointness. For instance, to determine valid method invocation is to determine
that the reflective environment of the invocation is contained within the reflective
environment of the declaration. T-INVK (Figure 10) specifies conditions for a well-
typed method invocation. It relies on ∆; Λ `mtype(n, T) (Figure 13) to handle the
complexities in determining the type of method n in T, where n can either be a
constant or variable name. We highlight the interesting mtype rules.

MT-VAR-R1 and MT-VAR-R2 say that the type of a method with a variable
name η in a type X, where X is either the reflective type for the primary pattern or
the reflective type of a positive nested pattern, is exactly the type specified by the
primary (or nested, respectively) pattern. Otherwise, when looking up a method
on a type variable we need to perform the lookup in the type variable’s bound
(MT-VAR-S).

Reflectively declared methods can also be looked up in a type variable’s bound,
just as in FGJ (MT-VAR-S). Otherwise, if T is a type variable, then we must look
for the method type in its bound
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Type Unification:

[U/Z]T=[U/Z]S for all Zi∈Z, ∆`Ui≺:ZZi
∆;[U/Z]`unify(T, S) (UNI)

Pattern matching rules:

∆`T≺:ZT (PM-REFL)

∆`T≺:ZS

∆`C<T>≺:ZC<S> (PM-CL)

CT (C)=class C<X/N>/T {...} ∆`[T/X]T≺:ZD<S>

∆`C<T>≺:ZD<S> (PM-CL-S)

Z∈Z T 6∈Z bound∆ (T)=C<T> ∆`C<T>≺:Z[C<T>/Z]bound∆ (Z)

∆`T≺:ZZ (PM-VAR)

Zi∈Z Zj∈Z


∆ ` [Zi/Zj ]bound∆ (Zj) ≺:Z Zi or
∆ ` [Zj/Zi]bound∆ (Zi) ≺:Z Zj

∆`Zi≺:ZZj (PM-PVARS)

Fig. 15. FMJ: Unification and pattern matching functions.

MT-CLASS-R lists conditions for retrieving the type of n in C<T>, where C<X>
has reflectively declared methods. If n is a name variable, this is simply checking
that the range of reference, which is the current reflective environment, is con-
tained within the declaration reflective environment. When n is a constant name
m, however, we need to check whether m is within the range of method names in
the declaration reflective range. We do so by specializing the declaration reflective
environment using m. Specializing a range based on a constant name is just a way
to package the information for uniform use by our containment and disjointness
checks (which apply to entire ranges with patterns and not single methods). The
main property of specialize(m, Λd)=Λr (Figure 12) is that m is the name of a method
in the declaration range, Λd, (i.e., a declared method), if and only if the specialized
range, Λr, is contained by Λd. For instance,SP-+ states that, if Λd=〈Rp,+Rn〉, and
m exists in the types reflected over by both Rp and Rn (Ti and Tj , respectively),
then the specialized range has a primary pattern constructed from the actual types
of m in Ti, and a positive nested pattern constructed from the types of m in Tj . It
is then clear from SB-Λ that the specialized range is contained by Λd if and only if
the types of m in Ti and Tj can be matched by the patterns prescribed by Λd—i.e.,
m indeed exists in the reflective range Λd. If Λd has a negative nested pattern,
e.g., Λd=〈Rp,-Rn〉, there are two ways for m to satisfy the negative nested pattern.
First, m can simply be undefined in Tj . Secondly, even if m is defined in Tj , if its type
in Tj cannot be matched by Rn , it could still be in the range of Λd. SP--states that
if either of these cases are true, we construct a negative nested pattern by simply
applying the unifying substitutions of the primary ranges to -Rn. The resulting
specialized range is guaranteed to be contained by Λd (by inspection of SB-Λ).

The result of mtype is the declared types, with the substitutions of [T/X], and
the type substitutions for unifying the declaration range and the reference range,
[W/Y].
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Subtyping rules:

∆ `T<:T (S-REFL)

∆ `X <: ∆(X) (S-VAR)

∆ `S<:T ∆ `T<:U

∆ ` S<:U (S-TRANS)

CT (C)=class C<X/N>/ T {...}

∆ `C<T> <: [T/X]T (S-CLASS)

Fig. 16. FMJ: Subtyping rules.

7.2.3 Uniqueness of Definitions. T-METH-R (Figure 10) ensures that methods
declared within one reflective block do not conflict with methods in the super-
class (i.e., we have proper overriding). The condition is enforced using override
(Figure 13). override(n, T, U→U0) determines whether method n, defined in some
subclass of T with type signature U→U0, properly overrides method n in T. If method
n exists in T, it must have the exact same argument and return types as n in the
subclass. (We made a simplification over FGJ: FGJ allows a covariant return type
for overriding methods, whereas we disallow it to simplify the pattern matching
rules in Figure 15.) Additionally, the reflective range of n in the subclass must
be either completely contained within one of T’s reflective ranges, or disjoint from
all the reflective ranges of T (and, transitively, T’s superclasses). This condition is
enforced using ∆`validRange(Λ, T) (Figure 12).

T-CLASS-R ensures that the reflective blocks within a well-typed class have no
declarations that conflict with each other, by requiring ranges of reflective blocks
in a class to be disjoint pairwise. Since each block has unique names within itself,
the pairwise disjointenss guarantees names across all blocks are unique, as well.

7.3 Soundness

We prove the soundness of FMJ by proving Subject Reduction and Progress for an
expression e. Figure 17 defines the operational semantics of FMJ, and Figure 18
defines the method body lookup rules necessary for the operational semantics. Note
that method body lookup rules are only defined for lookups under a constant name
m. A name variable is only meaningful under a reflective environment Λ. But
reduction rules, and thus method body lookup, are done under empty environments,
where Λ=∅. Thus it is not meaningful to define method body lookup for name
variable η.

Next, we show the main theorems, important supporting lemmas, and their proof
sketches. It should not surprise the reader that the highlighted lemmas are generally
those supporting method lookup or invocation, which are the most complex parts of
our language and formalism, and also the parts that deviate most from the original
FGJ. Detailed proofs can be found in Appendix A.

Theorem 1 [Subject Reduction]. If ∆; Λ; Γ `e∈T, and e → e′, then ∆;Λ; Γ `e′∈S
and ∆ `S<:T for some S.
Proof Sketch: We prove by structural induction on the reduction rules in
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Reduction Rules:

∅`fields(C<T>)=U f
new C<T>(e).fi −→ei (R-FIELD)

mbody(m, C<T>)=(x,e0)
new C<T>(e).m(d)−→[d/x, new C<T>(e)/this]e0 (R-INVK)

e0 −→ e′0
e0.f −→ e′0.f (RC-FIELD)

e0 −→ e′0
e0.m(e) −→ e′0.m(e) (RC-INV-RECV)

ei −→ e′i
e0.m(...,ei,...) −→ e0.m(...,e

′
i,...) (RC-INV-ARG)

ei −→ e′i
new C<T>(...,ei,...)−→new C<T>(...,e′i,...) (RC-NEW-ARG)

Fig. 17. FMJ: Reduction Rules

Method body lookup:

CT (C)=class C<X/N>/N {... M} U0 m (U x) {↑e;}∈M
mbody(m, C<T>)=[T/X](x,e) (MB-CLASS-S)

CT (C)=class C<X/N>/T {... M}
Mi∈M Mi=<Y/P>for(Mp;oMf) S0 η (S x) {↑e;}

∆=X<:N,Y<:P Λd=[T/X](reflectiveEnv(Mi))
∆;∅`specialize(m, Λd)=Λr ∆;[W/Y]`ΛrvΛΛd

mbody(m, C<T>)=[T/X][W/Y](x,[m/η]e) (MB-CLASS-R)

CT (C)=class C<X/N>/N {... M} m �∈ M
mbody(m, C<T>)=mbody(m, [T/X]N) (MB-SUPER-S)

CT (C)=class C<X/N>/T {... M}
for all Mi∈M Mi=<Y/P>for(Mp;oMf) S0 η (S x) {↑e;}

∆=X<:N,Y<:P Λd=[T/X](reflectiveEnv(Mi))
∆;∅`specialize(m, Λd)=Λr

implies ∆`disjoint(Λr, Λd)

mbody(m, C<T>)=mbody(m, [T/X]T) (MB-SUPER-R)

Fig. 18. FMJ: Method body lookup rules.
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Figure 17. The most interesting case is R-INVK, where e=new C<T>(e).m(d),
e′=[d/x,new C<T>/this]e0.

It is easy to see from R-INVK, T-NEW, and T-INVK that,
mbody(m, C<T>)=(x,e0) ∆`new C<T>(e)∈C<T> ∆`C<T> ok
∆;Λ`mtype(m, C<T>)=T′→T ∆;Γ;Λ`d∈S ∆`S<:T′

The conclusion follows from the following: 1) the expression e0, obtained via mbody,
is of type S′ where ∆`S′<:T: that is, the body of the method is a subtype of its de-
fined return type (Lemma 1); 2) the expression after term substitution, e′=[d/x,new
C<T>/this]e0, is of type S where ∆`S<:S′ (Lemma 4).

Lemma 1: If ∆;Λ`mtype(m, C<T>)=S→S, mbody(m, C<T>)=(x,e0), and
∆`C<T> ok , then there exists a type S′ such that ∆`S′<:S, ∆`S′ ok ,
∆;Λ;x7→S,this7→C<T>`e0∈S′.
Proof Sketch: We prove by induction on the rules of mbody (Figure 18). Case
MB-CLASS-S does not involve any reflectively declared methods, and thus has a
similar proof to that used in FGJ proofs. Cases MB-SUPER-S and MB-SUPER-R
can be easily proven through the induction hypothesis. The most interesting case,
thus, is MB-CLASS-R, where method body is retrieved from a reflectively declared
method Mi. The corresponding mtype is retrieved using rule MT-CLASS-R.

First, notice that there is a bit of ambiguity in MT-CLASS-R (as well as MB-
CLASS-R), where Mi is defined to be one of M. We first prove using Lemma 2
that there is indeed only one such Mi that satisfies the other conditions for the rule
to hold.

It is obvious from the correspondence between MT-CLASS-R and MB-CLASS-R,
then,

Λd=[T/X](reflectiveEnv(Mi)) ∆;Λ`specialize(m, Λd)=Λr ∆;[W/Y]`ΛrvΛΛd

∆;Λ`mtype(m, C<T>)=[T/X][W/Y](S′′→S′′) mbody(m, C<T>)=[T/X][W/Y](x,[m/η]e)
Through T-METH-R, we have:
∆′′=X<:N,Y<:P Λ′′=reflectiveEnv(Mi) Γ′′=x 7→S′′,this7→C<X>
∆′′;Λ′′;Γ′′`e∈V ∆′′`V<:S′′

Thus, to prove that ∆;Λ;x7→S,this7→C<T>`[T/X][W/Y][m/η]e∈[T/X][W/Y]S′′, we
need to show that 1) type substitutions [T/X], which are obtained through type-
instantiation of a generic class (e.g., instantiating C<X> with T) preserve expression
typing as well as subtyping (Lemma 8 and Lemma 6, respectively, which are sim-
ilarly used in other FGJ-based formalisms), 2) type substitutions [W/Y] and name
substitution [m/η], when [W/Y] and m are results of a specialize operation, also pre-
serves typing (Lemma 20).

Lemma 4 (Term Substitution Preserves Typing). If ∆;Λ;Γ,x 7→T`e∈T, η does
not appear in e, ∆;Λ;Γ`d∈S, ∆`S<:T, then ∆;Λ;Γ`[d/x]e∈T′, for some T′ where
∆;Λ;Γ`T′<:T.
Proof Sketch: We prove by induction on expression typing rules T-* (Figure 10).
The most interesting case is T-INVK, where e=e0.m(e). By induction hypothesis,

∆;Λ;Γ`e0∈T0 ∆;Λ;Γ`[d/x]e0∈T′0 ∆`T′0<:T0
We need to show that ∆;Λ`mtype(m, T0)=T→T implies ∆;Λ`mtype(m, T′0)=T→T.
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That is to say, the method m is defined for a superclass, then it is defined in the
subclass, as well, with the same type signature. Lemma 19, which is a standard
lemma for FGJ-based formalisms, proves this point. However, in our proofs of
Lemma 19, we needed to prove two additional, interesting lemmas regarding the
properties of range containment. Lemma 16 shows that type substitutions preserve
single range containment; Lemma 23 shows that single range containment is tran-
sitive. The preservation of reflective range (i.e., primary and nested) containment
and transitivity then follows easily from these lemmas regarding single ranges.

Lemma 16 (Substitution Preserves Single Range Containment): If
∆1,X<:N,∆2;[W/Y]`R1vRR2, ∆1`U<:[U/X]N, where ∆1`U ok, and none of X appears
in ∆1, none of X appears on Y, then ∆1,[U/X]∆2;[W′/Y]`R1vRR2, where W′=[U/X]W.
Lemma 23 (Single Range Containment is Transitive): If ∆;[W/Y]`R1vRR2, and
∆;[Q/Z]`R2vRR3, then ∆;[W/Y][Q/Z]`R1vRR3,
Proof Sketch: Both proofs follow from analysis of rule SB-R.

Theorem 2 [Progress]. Let e be a well-typed expression. 1. If e has new
C<T>(e).f as a subexpression, then ∅`fields(C<T>)=U f, and f = fi. 2. If e has
new C<T>(e).m(d) as a subexpression, then mbody(m, C<T>)=(x,e0) and |x| = |d|.
Proof Sketch: Proof follows from T-FIELD and T-INVK respectively, and from
the well-typedness of subexpressions.

Theorem 3 [Type Soundness]. If ∅; ∅; ∅`e∈T and e−→∗e′, then e′ is a value v
such that ∅; ∅; ∅`v∈S and ∅`S<:T for some type S.
Proof: Follows from Theorems 1 and 2.

8. DISCUSSION

We next discuss briefly some interesting issues concerning MorphJ and its type
checking.

8.1 Expressiveness, Completeness, and Decidability

MorphJ is a limited reflection language and certainly does not compare in expres-
siveness to powerful pattern matching and transformation languages (e.g., [Mens
et al. 2001; Visser 2004]). The goal of MorphJ is to facilitate a specific, important
kind of transformation with desirable properties, such as modular type-checking.
Furthermore, our type system is not complete: there are cases of range disjointness
or containment that are true (due to some logical combination of properties of Java
typing and the types at hand) yet our approach cannot prove. This is true of both
our formalism and our MorphJ implementation. (For instance, we have no rule to
infer that a positive nested pattern implies a negative one, although this can be
the case since our formalism allows no overloading.) Such corner cases are obscure,
however—our unification-based checks cover the generally interesting cases of con-
tainment and disjointness we could identify. Even with its focused scope, however,
the MorphJ type system flirts with undecidability, since it adds explicit iteration
at compile-time. Many of our restrictions (such as disallowing nesting of primary
patterns and preventing type variables bound in a filter pattern from appearing
in generated code) are aimed precisely at keeping the type-checking manageable.
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Still, subtyping and type recursion introduce potential undecidability. There could
be circularity in mixin definitions, in method definitions, in reflection sets, etc. For
instance, consider:
class C<X extends D<X>> {

<R>[m]for(R m() : X.methods) {|...|}

}

class D<X> extends C<D<X>> { ... }

The methods of C<X> are circularly defined: they reflect over the methods of X,
which include the methods of D<X>, which, in turn, include the methods of C<D<X>>.
Similarly, we could have (in the full MorphJ, although not in the formalism, since
the reflection set cannot be complex):

class C<X> {

<R>[m]for(R m() : D<X>.methods) {|...|}

}

class D<X> {

<R>[m]for(R m() : C<C<X>>.methods) {|...|}

}

In the above example, C<X>’s methods are defined by reflecting over D<X>’s meth-
ods, which in turn depend on C<C<X>>’s methods, and so on. We do not expect
that MorphJ’s expressiveness will depend crucially on type-recursion, so we just
reject cyclic type references conservatively. That is, our type checker keeps track of
classes with reflectively declared members, and maintains a stack of them during
every type reasoning action. If the same such class is encountered twice (even with
different arguments) the code entity being checked is conservatively rejected.

8.2 MorphJ Implementation

It should not be a surprise to readers that MorphJ cannot be implemented using
an erasure-based approach, as is adopted in the implementation of Java generics.
In an erasure-based implementation, all type-instantiations of a generic share the
same copy of bytecode. The type variables of a generic are “erased” to their upper
bounds in that shared bytecode. Appropriate casts are inserted at the use-sites of
type-instantiations. This particular approach works for Java generics because the
structure of a Java generic does not vary with its type-instantiations—a generic
always declares the same methods, fields, and superclasses regardless of its type
arguments. A MorphJ generic class, however, may declare different methods and
fields, as well as different supertypes, depending on its type arguments. Thus,
it is impossible for different type-instantiations of a MorphJ generic to share the
same copy of bytecode. MorphJ is thus implemented via expansion: Every type-
instantiation of a MorphJ generic is expanded to its own bytecode representation.

Unlike the expansion-based approach taken by C++ templates, a MorphJ generic
is still separately compiled. After type-checking, a MorphJ generic is compiled to
an annotated bytecode file. The bytecode sequences corresponding to reflectively
declared code are annotated with information pertaining to the associated reflective
iterator: patterns, nested patterns, and pattern-matching variables. This copy of
bytecode is then used as a template for expansion. Upon type-instantiation, the
annotated bytecode sequences are expanded using information in the annotations.
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For instance, a block of bytecode for a reflectively declared method may be expanded
to bytecode for multiple methods, by replacing type and name variables in the
original with concrete types and identifiers. Alternatively, a block of bytecode
may be removed entirely if the range of its associated reflective iterator is empty.
Type-checking of the expanded bytecode is not necessary, since MorphJ’s source-
level type-checking guarantees that any type-instantiation of a generic is always
well-typed. The bytecode of a MorphJ generic class, assuming it has reflective
declarations, is not considered valid by the Java bytecode verifier. Its expanded
versions, however, are.

MorphJ is implemented using the JastAdd extensible compiler framework for
Java [Ekman and Hedin 2007], and ASM Java bytecode library [Bruenton et al. ].
MorphJ is available via http://code.google.com/p/morphing/.

9. RELATED WORK

The limitations stemming from rigidity in code structure have been the focus of
much previous research, starting as early as the design of Lisp macros in the 1960’s.
Morphing can be seen as the latest step in this line of research. We next discuss
morphing and MorphJ relative to past work.

9.1 Static Type Conditions vs. Morphing

Our recent work on statically safe type conditions [Huang et al. 2007a] has enough
relation to morphing features to warrant a detailed comparison. The cJ language
is an extension of Java with a static-if construct, allowing the configuration of
generic classes based on properties of their type parameters. For instance, cJ can
express a List<X> class that implements Serializable only when its type parameter
X implements Serializable. MorphJ adds a similar reflective “if”. In addition,
MorphJ adds a reflective “for”, as well as the ability to create declarations with
non-constant names. Thus, MorphJ is a more ambitious language with significantly
more complexity, which is reflected in the different design focus and implementation
decisions for cJ and MorphJ.

The cJ reflective “if” is based on subtyping conditions in a nominal subtyping
system, whereas the MorphJ reflective “if” is based on structural constraints, e.g.,
whether a type has a method or field matching a certain pattern. But more im-
portantly, the cJ “if” conditions are restricted to straightforward subtyping and
conjunctions of multiple subtyping conditions. MorphJ, however, allows the ex-
pression of negative conditions, using “if ( no PATTERN )” clauses. MorphJ uses
negative conditions extensively to ensure the absence of conflicting declarations.

cJ is designed with backward compatibility in mind, enabling an erasure-based
translation. cJ language constructs can be “erased”, producing regular Java code
in a one-to-one correspondence between cJ generic classes and Java generic classes.
Additionally, cJ interacts smoothly with advanced features in the Java type system,
such as variance [Torgersen et al. 2004; Igarashi and Viroli 2006] and polymorphic
methods. In contrast, MorphJ takes a more radical approach, favoring feature-
richness and integration of ideas over backward compatibility and implementation
integration. This difference is most evident in MorphJ’s implementation, which
employs an expansion-based translation.
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9.2 Comparison to Traditional Meta-programming Techniques

Meta-programming techniques offer the ability for programs to generate other pro-
grams, allowing the structure of generated programs to change based an arbitrary
conditions. Instances of such techniques are macro facilities such as Lisp macros,
reflection, meta-object protocols [Danforth and Forman 1994; Kiczales et al. 1991],
or pattern-based program generation and transformation [Bachrach and Playford
2001; Baker and Hsieh 2002; Visser 2004; Batory et al. 1998]. The goal of structural
abstraction is to promote meta-programming capabilities offered in these low-level
mechanisms to high-level language features, with support for full modular type-
safety. None of the above mechanisms offer such safety guarantees: A macro or
meta-class cannot be type-checked independently from their compositions, in a
way that guarantees it is well-typed for all its possible compositions.

An interesting special case of program generation is staging languages such as
MetaML [Taha and Sheard 1997] and MetaOCaml [Calcagno et al. 2003]. These
languages offer modular type safety: The generated code is guaranteed correct for
any input, if the generator type-checks. Nevertheless, MetaML and MetaOCaml
do not allow generating identifiers (e.g., names of variables) or types that are not
constant (as is supported in MorphJ). Generally, staging languages target program
specialization rather than full program generation: The program must remain valid
even when staging annotations are removed. Thus, staging programs do not ab-
stract over the structure of programs—they are quite explicit in the structure of the
generated program, in fact. It is interesting that even recent meta-programming
tools, such as Template Haskell [Sheard and Jones 2002] are explicitly not modu-
larly type safe—its authors acknowledge that they sacrifice the MetaML guarantees
for expressiveness.

9.3 Comparison to Efforts in Safe Program Generation/Transformation

Recent mechanisms such as Genoupe [Draheim et al. 2005], SafeGen [Huang et al.
2005], and compile-time reflection (CTR) [Fähndrich et al. 2006] attempt to add
safety guarantees to meta-programming, while maintaining expressiveness. Never-
theless, these approaches either fail to achieve full safety, or reject programs in a
way that is not transparent to the programmer. For instance, the Genoupe ap-
proach has been shown unsafe, as the reasoning depends on properties that can
change at runtime; SafeGen has no soundness proof and relies on the capabilities
of an automatic theorem prover—an unpredictable and unfriendly process from the
programmer’s perspective.

MorphJ’s closest relative is CTR [Fähndrich et al. 2006]. CTR is an extension
to C# that pioneered the use of patterns for reflective iteration and was one of the
first systems to aim for modular type safety. Nevertheless, its modular guarantees
concern only validity of references and not the absence of declaration conflicts. A
unique aspect of CTR (compared to MorphJ) is that it transforms classes in-place,
which enables some interesting applications. MorphJ, on the other hand, only
allows enhancement of classes through subtyping or delegation. MorphJ improves
over CTR, however, by adding more expressiveness through nested patterns, while
keeping or strengthening the typing guarantees. For instance, CTR does not allow
matching multiple method argument types, or existential conditions on iteration
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ranges.
In addition to lacking full type safety, neither of these mechanisms integrate

seamlessly with a programming language, as MorphJ does. All these approaches
require an concept outside the base language, such as a “generator” or a “trans-
form”. In MorphJ, the concept of code generation is incorporated with the concept
of generic classes. Additionally, these mechanisms use complex syntax for retrieving
reflective members, whereas MorphJ utilizes patterns very similar to method and
field signatures.

9.4 Comparison to AOP Tools

Morphing can be seen as an alternative for a central part of AOP functionality:
aspect advice of structural program features, such as method before-, after-, and
around-advice. Particularly, the logging example in Section 1 and the synchroniza-
tion example in Section 3 are frequent use cases for AOP languages. Compared to
major AOP languages, such as AspectJ [Kiczales et al. 2001], morphing has some
significant differences. These include the way functionality is added (AOP mech-
anisms modify the original class and have no concept of unmodified and modified
class as separate types in the same program); the way the matching is performed
(e.g., MorphJ allows matching using subtype-based semantic conditions, in con-
trast to AspectJ’s purely syntactic matching); and the way structural reflection
is controlled (morphing requires explicit parameterization so, for instance, order-
of-application issues are left to the programmer). The main difference, however,
is MorphJ’s guarantee of modular type safety. Generally, morphing tries to offer
structural reflection, in a way that is closely tied to the static type system, and
allows modular reasoning without reference to the morphed class’s instantiations.

9.5 Other Static Reflection

An extension of traits [Reppy and Turon 2007] offers pattern-based reflection by
allowing a trait to use name variables for declarations. However, [Reppy and Turon
2007] does not offer static iteration over the members of classes—a name-generic
trait must be mixed in once for each name instance.

There has been a line of work focused on providing statically type-safe generic
traversal of data structures [Lämmel and Jones 2003; Jansson and Jeuring 1997;
Gibbons 2007]. For instance, the “scrap your boilerplate” [Lämmel and Jones 2003]
line of work offers extensions of Haskell that allow code to abstract over the exact
structure of the data types it acts on, and to have the appropriate functions invoked
when their expected data types are encountered during traversals. Abstracting
over the structures of data types in functional languages is similar to abstracting
over the fields and methods of classes in object-oriented languages. [Weirich and
Huang 2004] offers such generic traversal capabilities for Java. However, whereas
[Lämmel and Jones 2003; Jansson and Jeuring 1997; Weirich and Huang 2004]
focus on offering structurally-generic traversal, MorphJ focuses on structurally-
generic declarations. Neither of [Lämmel and Jones 2003; Jansson and Jeuring
1997; Weirich and Huang 2004] allow more functions to be declared using the names
or types retrieved from a non-specific data type. Thus, these techniques fall short
of MorphJ (and static reflection work in general [Draheim et al. 2005; Fähndrich
et al. 2006; Huang et al. 2005]) in this respect. On the other hand, MorphJ is
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not well-suited for writing generic traversal code. Traversing data structures and
invoking methods on objects encountered is largely based on the dynamic types of
these objects. MorphJ’s reflective declarations are based purely on the static types
of fields and methods.

Another related line of work in the functional programming language community
is type-indexed types [Hinze et al. 2004; Chakravarty et al. 2005; Chakravarty
et al. 2005; Schrijvers et al. 2008]. Type-indexed types are generic data types
whose structure can be specialized by inducting over the structure of their type
parameters. For instance, a data type Map<T> can be defined to be some existing type
MapChar if T is instantiated with a base type Char. If T is instantiated with a data
type whose structure comprises the base type Char, and some other type S, (e.g.,
the structure of String can comprise a Char and another String) then Map<T> can be
defined by composing the resulting types of Map<Char> and Map<S>. How types are
composed can be defined generically for all possible types T, by pattern-matching on
the structure of T. Type-indexed types, however, do not allow the manipulation of
names associated with the structural components of type parameters. For instance,
if there are labels associated with components of String: {firstChar: Char, rest:

String}, one cannot define a type-indexed type that systematically uses those same
labels in the composed type. Manipulation of names and guaranteeing type safety
in the presence of name manipulation, on the other hand, is one of the defining
features of morphing.

10. DISCUSSION AND CONCLUSIONS

Morphing can form a sound foundation for a new paradigm of programming, where
code entities are no longer rigid and fixed but can shape their structure by inspect-
ing other code entities. This opens the door for rethinking many of the existing
mechanisms for code reuse and language interaction. A clear instance concerns
the possible impact of morphing on the fundamental “inheritance vs. delegation”
dilemma. We offer some ideas next, and intend to pursue this direction further in
future work.

The dominant mechanism for code reuse in most object-oriented languages is
inheritance: class A extends B, and thus A inherits (and reuses) all the code in B.
The criticisms of inheritance as a mechanism for reuse are well-documented in the
research literature [Cook et al. 1990; Ducasse et al. 2006]. Many OO languages
confuse inheritance and subtyping, also confusing the role of a class as a model for
object behavior and its role as an organizational unit of code. When A inherits code
from B, A is automatically treated as a subtype, or a refinement of the model, of B.
This may not be the desirable behavior—A may simply want to reuse some code.
Inheritance is also a coarse-grained way for code reuse: Oftentimes a subclass only
needs to reuse a small subset of its superclass’s methods, but is forced to inherit
all of them. Various alternative reuse mechanisms have been proposed, such as
mixins, traits, etc. [Ducasse et al. 2006; Cannon 1982; Bracha and Cook 1990].
These techniques either have trouble providing modular safety guarantees [Cannon
1982; Bracha and Cook 1990], or they have limitations with respect to encapsulating
and sharing state [Ducasse et al. 2006]. (An overall problem is that of evolution:
how do changes to a given class or mixin impact other parts of the class hierarchy?
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Modular type safety can be seen as a projection of this problem.)
An alternative model of code reuse is delegation [Lieberman 1986; Stein 1987].

Instead of inheriting code from class B, class A defines methods that model its
own behavior, and delegates method calls to the appropriate methods in B if the
behavior is shared. In the delegation approach, A is not treated as a subtype of B.
A can also reuse as much or as little of B’s code as it sees fit. The synchronization
proxies in Java Collections Framework described in Section 3 can be seen as code
reuse through delegation. However, as is also evident through the synchronization
proxies, delegation involves an enormous amount of boiler plate delegation method
declarations. Furthermore, if A needs to reuse code from multiple classes through
delegation, keeping track of state shared between different delegates is cumbersome
and error-prone. Additionally, there is some performance penalty involved in each
delegation.

Morphing presents a fresh perspective to the inheritance vs. delegation debate.
Using morphing, class A can easily share code with class B by defining its methods
(or fields) through reflective iteration over methods (or fields) of B. The body of
these methods may delegate calls to the methods of B, which emulates the clas-
sic delegation approach. Code reuse does not confuse itself with the concept of
modeling: Class A does not have to be a subtype of B to reuse code from B. Yet
boiler-plate code is replaced with one reflective iteration block.

Alternatively, syntax could be introduced to indicate to the compiler that the
code from B should actually be copied into the body of A, which more closely
emulates inheritance. State variables of B can be explicitly kept inside of A. The
overhead of delegation calls can also be removed, since the code of B is now inlined
in A, instead of being delegated to.

Furthermore, morphing allows code reuse at a granularity that is defined by the
programmer. Class A can choose to inherit all the methods in B, or only a certain
subset of methods in B by refining the patterns used in reflective iteration over
B. A may also choose to inherit methods of B, as well as methods from C, D, etc.,
using multiple reflective iteration blocks. This provides an emulation of “multiple
inheritance”. But, in the morphing approach, programmers have explicit control
over how methods from multiple classes are incorporated and interact. For instance,
programmers can explicitly state that methods with the same signature from B, C,
and D should first invoke the code of B, then D, then C (or any arbitrary order,
or even leave out invocation of code of C). Similarly, state variables from multiple
classes can be kept separate, or combined if they have the same name and type.
In fact, this new form of inheritance can be generally defined as a MorphJ generic
class A<X>, where A can inherit from any type X. We can similarly define generic
classes A<X,Y>, or A<X,Y,Z>, etc. for generic “multiple inheritance”.

Thus, morphing is capable of supporting a hybrid approach between inheritance
and delegation, where code reuse is kept a separate concept from modeling, gran-
ularity of code reuse can be explicitly controlled by the programmers, semantics
of shared code and state can be explicitly managed, and delegation costs can be
optimized away.

To conclude, morphing represents a significant trend in the evolution of program-
ming languages. Most major advances in programming languages are modularity or

ACM Journal Name, Vol. V, No. N, Month 20YY.



48 · S.S. Huang and Y. Smaragdakis

reusability enhancements. The first step was taken with procedural abstraction in
the 50s and 60s, which culminated in structured programming languages. Procedu-
ral abstraction captured algorithmic logic in a form that could be multiply reused
both in the same program and across programs, over different data objects. The
next major abstraction step was arguably type abstraction or polymorphism, which
allowed the same abstract logic to be applied to multiple types of data, although the
low-level code for each type would end up being substantially different. Morphing
may very well be the next big step in language evolution, where code can abstract
over the structure of other program elements. We expect that the inclusion of such
constructs in mainstream languages will be a topic of major importance for decades
to come.
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APPENDIX

A. FEATHERWEIGHT MORPHJ (FMJ): PROOF OF SOUNDNESS

Theorem 1 Subject Reduction. If ∆; Λ; Γ `e∈T and e → e′, then for some
S, ∆; Λ; Γ `e′∈S and ∆ `S<:T.

Proof. Prove by structural induction on the reduction rules.

Case R-FIELD: e=new C<T>(e).fi, e′=ei
By T-NEW,
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∆;Λ;Γ`new C<T>(e)∈C<T> ∆`fields(C<T>)=U f
∆;Λ;Γ`e∈S ∆`S<:U

By T-FIELD and definition of bound ,
bound∆(C<T>)=C<T> ∆;Λ;Γ`new C<T>(e).fi∈Ui

Let S be Si, T be Ui.
Case R-INVK: e=new C<T>(e).m(d), e′=[d/x,new C<T>/this]e0

By R-INVK, T-NEW, T-INVK
mbody(m, C<T>)=(x,e0) ∆`new C<T>(e)∈C<T> ∆`C<T> ok
∆;Λ`mtype(m, C<T>)=T′→T ∆;Γ;Λ`d∈S ∆`S<:T′

By Lemma 1, for some S, ∆`S<:T, ∆`S ok , ∆;Λ;x7→T′,this7→C<T>`e0∈S.
By Lemma 4, for some S′ where ∆;Λ;Γ`S′<:S ,

∆;Λ;Γ`[d/x,new C<T>/this]e0∈S′,
Case RC-FIELD: e=e0.f, e′=e′0.f

By T-FIELD,
∆;Λ;Γ`e0∈T0 ∆`fields(bound∆(T0))=T f ∆;Λ;Γ`e0.f∈Ti

By induction hypothesis,
∆;Λ;Γ`e′0∈S0 ∆`S0<:T0

By Lemma 11, ∆`fields(bound∆(S0))=S g, ∆;Λ;Γ`e′0.f∈Si, Si=Ti.
By S-REFL, ∆`Si<:Ti.
Let T be Ti, S be Si.

Case RC-INV-RECV: e=e0.m(e), e′=e′0.m(e)
By T-INVK,
∆;Λ;Γ`e0∈T0 ∆;Λ;Γ`e∈T′
∆;Λ`mtype(m, T0)=T→T ∆`T′<:T

By induction hypothesis, Lemma 19, and T-INVK,
∆;Λ;Γ`e′∈S0 ∆`S0<:T0
∆;Λ`mtype(m, S0)=T→T ∆;Λ;Γ`e′.m(e)∈T

Let S be T.
Case RC-INV-ARG: Easy by induction hypothesis and T-INVK.
Case RC-NEW-ARG: Easy by induction hypothesis and T-NEW.

Theorem 2 Progress. Let e be a well-typed expression. 1. If e has new
C<T>(e).f as a subexpression, then ∅`fields(C<T>)=U f, and f = fi. 2. If e has
new C<T>(e).m(d) as a subexpression, then mbody(m, C<T>)=(x,e0) and |x| = |d|.

Proof. 1. It follows easily from T-FIELD and the well-typedness of subexpres-
sions.

2. Also using well-typedness of subexpression and T-INVK, we have
∆;Λ`mtype(m, C<T>)=U→U0. It is then easy using the MB-* rules to show that
∆;Λ`mbody(m, C<T>)=(x,e0), since MB-* and MT-* rules have a one-to-one corre-
spondence for non-variable types C<T>.

Theorem 3 Type Soundness. If ∅; ∅; ∅`e∈T and e−→∗e′, then e′ is a value
v such that ∅; ∅; ∅`v∈S and ∅`S<:T for some type S.

Proof. Conclusion follows from Theorem 1 and Theorem 2
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Lemma 1. If ∆;Λ`mtype(m, C<T>)=S→S, mbody(m, C<T>)=(x,e0), where
∆`C<T> ok, then there exists a type S′ such that ∆`S′<:S, ∆`S′ ok, and
∆;Λ;x7→S,this7→C<T>`e0∈S′.

Proof. By induction on the derivation of mbody(m, C<T>)=(x,e0):

Case MB-CLASS-S:
CT (C)=class C<X/N>/N {...M} U0 m (U x) {↑e;}∈M e0=[T/X]e

By MT-CLASS-S,
∆;Λ`mtype(m, C<T>)=[T/X](U→U0)

By WF-CLASS, ∆ `T<:[T/X]N
By T-METH-S,
X<:N;∅;x 7→S,this7→C<X>`e∈U′0 X<:N`U′0<:U0

By Lemma 8 and 5, ∆;Λ;[T/X](x 7→S,this7→C<X>)`[T/X]e∈[T/X]U′0
By Lemma 6 and 5, ∆`[T/X]U′0<:[T/X]U0.
Let S=[T/X]U, S=[T/X]U0, S′=[T/X]U′0.

Case MB-CLASS-R:
CT (C)=class C<X/N>/T { ... M}
<Y/P>for(Mp;oMf) S

′′ η (S′′ x) {↑e′0;}∈M
R′′

p=range(Mp ,<Y/P>) R′′
n=range(Mf ,•) Λ′′=〈R′′

p ,R′′
n〉

∆′′=X<:N;Y<:P Λd=[T/X](〈R′′
p ,R′′

n〉) ∆′′;∅`specialize(m, Λd)=Λr

∆′′;[W/Y]`ΛrvΛΛd e0=[T/X][W/Y][m/η]e′0
By MT-CLASS-R and Lemma 2 (thus there is only one method m),
∆;Λ`mtype(m, C<T>)=[T/X][W/Y](S′′→S′′)

By T-METH-R,
Γ′′=x7→S′′,this7→C<X> ∆′′;Λ′′;Γ′′`e′0∈T′′ ∆′′`T′′<:S′′ ∆′′`N OK

By WF-CLASS and Lemma 5, ∆,[T/X]∆′′`T<:[T/X]N
By Lemma 6 and Lemma 5, ∆,[T/X]∆′′`[T/X]T′′<:[T/X]S′′

By Lemma 8, ∆,[T/X]∆′′;[T/X]Λ′′;[T/X]Γ′′`[T/X]e′0∈[T/X]T0
By Lemma 20, and the obvious facts that [T/X][W/Y]∆′′=∅, [T/X][W/Y]Γ′′=Γ,

∆;Λ;Γ`[T/X][W/Y][m/η]e′0∈[T/X][W/Y]T0
By Lemma 7, ∆`[T/X][W/Y]T′′<:S′′

Let S=[T/X][W/Y]S′′, S=[T/X][W/Y]S′′, S′=[T/X][W/Y]T′′.
Case MB-SUPER-S, MB-SUPER-R: Follows from induction hypothesis.

Lemma 2. Suppose ∆`disjoint(Λ1, Λ2), where
Λ1=〈Rp1 ,oRn1〉 Rp1=(T1, <X/Q>U→U0) Rn1=(T′1, U

′→U′0)
Λ2=〈Rp2 ,o

′Rn2〉 Rp2=(T2, <Y/P>V′→V0) Rn2=(T′2, V
′→V′0)

Then for any Λ3, if ∆;[W/X]`Λ3vΛΛ1, then there does not exist W′such that
∆;[W′/Y]`Λ3vΛΛ2

Proof. We prove by contradiction. Let there by such W′ where ∆;[W′/Y]`Λ3vΛΛ2

Let Λ3=〈Rp3 ,o
′′Rn3〉, where

Rp3=(T3, <Z/N>S→S0) Rn3=(T′3, <Z/N>S→S′0)
By DS-Λ, one of the following mutually exclusive range conditions must hold:
∆`+Rp1⊗+Rp2 ∆`+Rp1⊗o′Rn2 ∆`+Rp2⊗oRn2 ∆`oRn1⊗o′Rn2

By SB-Λ and SB-R, ∆`P,Q,N OK
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∆;[W/X]`Rp3vRRp1 ∆,X<:Q,Z<:N;[W/X]`unify(S0:S, U0:U)
∆;[W′/Y]`Rp3vRRp2 ∆,Y<:P,Z<:N;[W′/Y]`unify(S0:S, V0:V)

By UNI,
[W/X](S0:S)=[W/X](U0:U) for all Xi∈X, ∆,X<:Q,Z<:N`Wi≺:XXi
[W′/Y]S0:S=[W′/Y]V0:V for all Yi∈Y, ∆,Y<:P,Z<:N`W′i≺:YYi

Since neither X or Y appear in S0:S,
[W/X]S0:S=[W′/Y]S0:S=S0:S [W/X]U0:U=[W′/Y]V0:V

By Lemma 5,
for all Xi∈X, ∆,X<:P,Y<:Q`Wi≺:X:YXi
for all Yi∈Y, ∆,X<:P,Y<:Q`W′i≺:X:YYi,

It follows that,
∆,X<:P,Y<:Q;[(W:W′)/(X:Y)]`unify(U0:U, V0:V)

It directly contradicts ∆`+Rp1⊗+Rp2 Thus, one of the other mutually exclusive
range conditions must hold.

By SB-Λ,
∆;[W/X]`Λ3vΛΛ1 implies o=o′′=+ or o=o′′=-

∆;[W′/Y]`Λ3vΛΛ2 implies o′=o′′=+ or o′=o′′=-

Thus, there can only be two options for ∆;[W/X]`Λ3vΛΛ1 and ∆;[W′/Y]`Λ3vΛΛ2:
o=o′=o′′=+ or o=o′=o′′=-

We now analyze these two cases:

Case o=o′=o′′=+

By SB-Λ and SB-R,
∆;[W/X]`Rn3vRRn1 ∆,X<:Q,Z<:N;[W/X]`unify(S′0:S

′, U′0:U
′)

∆;[W′/Y]`Rp3vRRp2 ∆,Y<:P,Z<:N;[W′/Y]`unify(S′0:S
′, V′0:V

′)
By UNI,
[W/X](S′0:S

′)=[W/X](U′0:U
′) for all Xi∈X, ∆,X<:Q,Z<:N`Wi≺:XXi

[W′/Y]S′0:S
′=[W′/Y]V′0:V

′ for all Yi∈Y, ∆,Y<:P,Z<:N`W′i≺:YYi
Since neither X or Y appear in S′0:S

′,
[W/X]S′0:S

′=[W′/Y]S′0:S
′=S′0:S

′ [W/X]U′0:U
′=[W′/Y]V′0:V

′

By Lemma 5,
for all Xi∈X, ∆,X<:P,Y<:Q`Wi≺:X:YXi
for all Yi∈Y, ∆,X<:P,Y<:Q`W′i≺:X:YYi,

It follows that
∆,X<:P,Y<:Q;[(W:W′)/(X:Y)]`unify(U′0:U

′, V′0:V
′)

This directly contradicts ∆`+Rn1⊗+Rn2

Thus, it must be true that ∆`+Rp1⊗+Rn2 , or ∆`+Rp2⊗+Rn1 .
Assume that ∆`+Rp1⊗+Rn2 . By ∆;[W′/Y]`Rn3vRRn2 , and Lemma 3,
∆`+Rp1⊗+Rn3 , which makes ∆`disjoint(Λ1, Λ3). This contradicts the as-
sumption.
∆`+Rp2⊗+Rn1 results in a similar contradiction.

Case o=o′=o′′=-

By Lemma 3 and ∆;[W′/Y]`Rn2vRRn3 , ∆`+Rp1⊗-Rn3 , which makes
∆`disjoint(Λ1, Λ3). This contradicts the assumption.
Similar contradiction results from ∆`+Rp2⊗-Rn1 .
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Lemma 3. 1) Suppose ∆`+R1⊗+R2, ∆;[W/Y]`R3vRR2, where R3 has no pat-
tern type variables, then ∆`+R1⊗+R3.

2) Suppose ∆`+R1⊗-R2, ∆;[W/Y]`R2vRR3, where R3 has no pattern type vari-
ables, then ∆`+R1⊗-R3.

Proof. Let R1=(T1, <X/Q>V→V), R2=(T2, <Y/P>U→U) , R3=(T3, S→S)
1) We prove by contradiction. Suppose ∆�̀+R1⊗+R3

That means for some W′, ∆,X<:Q;[W′/Z]`unify(V:V, S:S)
By definition of SB-R, ∆;[W′/X]`R3vRR1

By UNI, and the fact that neither X or Y appear in S:S,
[W′/X]( S:S)=[W/Y]( S:S) [W′/X](V:V)=[W/Y](U:U)

Since X do not appear in U:U, and Y do not appear in V:V,
[W′/X][W/Y](V:V)=[W/X][W/Y](U:U)

Thus, W:W′ contradicts the condition in ME-1 for ∆`+R1⊗+R2.
2) Proof follows from Lemma 23 and ME-2.

Lemma 4 Term Substitution Preserves Typing. If ∆;Λ;Γ,x7→T`e∈T, η
does not appear in e, ∆;Λ;Γ`d∈S, ∆`S<:T, then ∆;Λ;Γ`[d/x]e∈T′, for some T′

where ∆;Λ;Γ`T′<:T.

Proof. By induction on the derivation of ∆;Λ;Γ,x7→T`e∈T.

Case T-VAR: e=xi
[d/x]x=di ∆;Λ;Γ`di∈Si

Let T′=Si
Case T-FIELD: e=e0.fi

By induction hypothesis and T-FIELD,
∆;Λ;Γ`[d/x]e0∈T0 ∆;Λ;Γ`T0<:T

Conclusion follows from Lemma 11.

Case T-INVK: e=e0.n(e)
By premesis of the lemma, n=m
By T-INVK:
∆;Λ;Γ,x7→T`e0∈T0 ∆;Λ;Γ,x7→T`e∈S
∆;Λ`mtype(m, T0)=T→T ∆`S<:T

By induction hypothesis,
∆;Λ;Γ`[d/x]e0∈T′0 ∆;Λ;Γ`[d/x]e∈T′
∆`T′0<:T0 ∆`T′<:T

By Lemma 19, ∆;Λ`mtype(m, T′0)=T→T
By T-INVK, ∆;Λ`[d/x](e0.m(e))∈T

Case T-NEW: e=new C<T>(e)
∆`C<T> ok ∆`fields(C<T>)=U f
∆;Λ;Γ`e∈S ∆`S<:U

By induction hypothesis, ∆;Λ;Γ`[d/x]e∈S′, for some S′where ∆`S′<:S.
By S-TRANS, ∆`S′<:U.
By Lemma 11 and T-NEW, ∆;Λ;Γ`[d/x](new C<T>(e))∈C<T>
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Lemma 5 Weakening. Suppose ∆,X<:N`N ok, none of X appears in ∆, and
∆`U ok.

(1 ) If ∆`S<:T, then ∆,X<:N`S<:T.
(2 ) If ∆`S ok, then ∆,X<:N`S ok.
(3 ) If ∆;Λ;Γ`e∈T, then ∆;Λ;Γ,x∈U`e∈T and ∆,X<:N;Λ;Γ`e∈T.
(4 ) If ∆;∅;Γ`e∈T, then ∆;Λ;Γ`e∈T.
(5 ) If ∆`T≺:ZS, then ∆,X<:N`T≺:Z S.

Proof. (1) Follows by induction on the derivation of subtyping.
(2) Follows by induction on well-formed types rules.
(3) Follows by induction on expression typing rules.
(4) Follows by induction on expression typing rules.
(5) Follows by pattern matching rules.

Lemma 6 Type Substitution Preserves Subtyping.
If ∆1,X<:N,∆2`S<:T, and ∆1`U<:[U/X]N with ∆1`U ok and none of X appearing
in ∆1, then
∆1,[U/X]∆2`[U/X]S<:[U/X]T.

Proof. By induction on the derivation of ∆1,X<:N,∆2`S<:T

Case S-REFL: Trivial
Case S-VAR:

If X 6∈X, then it is trivial.
If X∈X, bound∆(Xi)=Ni.
[U/X]Xi=Ui [U/X]bound∆(Xi)=[U/X]Ni.

By assumption and Lemma 5, ∆1,[U/X]∆2`Ui<:[U/X]Ni.
Case S-TRANS: By induction hypothesis.
Case S-CLASS: Trivial.

Lemma 7 Pattern-matching Type Substitution Preserves Subtyping.
If ∆`S<:T, ∆;[W/Y]`ΛvΛΛ′, ∆`Y<:P, ∆`W ok, and Y do not appear in Λ, then
∆`[W/Y]S<:[W/Y]T.

Proof. By induction on the derivation of subtyping relation:

Case S-REFL: Trivial.
Case S-VAR:

If X 6∈Y, conclusion is thus trivial.
If X∈Y, let X=Yi. [W/Y]X=Wi. By Lemma 22, ∆`Wi<:[W/Y]Pi.

Case S-TRANS: By induction hypothesis and S-TRANS.
Case S-CLASS: Easy by S-CLASS.
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Lemma 8 Type Substitution Preserves Typing. If ∆1,X<:N,∆2;Λ;Γ`e∈T
and ∆1`U<:[U/X]N where e is fully grounded, ∆1`U ok, and none of X appears
in ∆1 and Λ,
then ∆1,[U/X]∆2;Λ;[U/X]Γ`[U/X]e∈[U/X]T.

Proof. By induction on the derivation of ∆1,X<:N,∆2;Λ;Γ`e∈T
Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[U/X]∆2

Case T-VAR: Trivial
Case T-FIELD: ∆o;Λ;Γ`e0.fi∈Ti

∆o;Λ;Γ`e0∈T0 ∆`fields(bound∆o(T0))=T f
By induction hypothesis, ∆n;Λ;[U/X]Γ`[U/X]e0∈[U/X]T0
By Lemma 10, ∆n`bound∆n([U/X]T0)<:[U/X](bound∆o(T0))
By Lemma 11,

∆n`fields(bound∆n
([U/X]T0))=S g,

fj=gj , Sj=[U/X]Tj for j ≤ #(f).
By T-FIELD, ∆n;Λ;[U/X]Γ`e0.fi∈[U/X]Ti.

Case T-INVK: ∆o`e0.n(e)∈T
∆o;Λ;Γ`e0∈T0 ∆o;Λ;Γ`e∈S
∆o;Λ`mtype(n, T0)=T→T ∆o`S<:T

By induction hypothesis,
∆n;Λ;[U/X]Γ`[U/X]e0∈[U/X]T0 ∆n;Λ;[U/X]Γ`[U/X]e∈[U/X]S

By Lemma 6, ∆n`[U/X]S<:[U/X]T
By Lemma 13, and that e is fully grounded, and thus n must be m and not η,

∆n`mtype(n, [U/X]T0)=[U/X](T→T)
By T-INVK, ∆n;Λ;[U/X]Γ`[U/X](e0.n(e))∈[U/X]T

Case T-NEW: ∆o`new C<T>(e)∈C<T>
∆o`C<T> ok ∆o`fields(C<T>)=S f
∆o;Λ;Γ`e∈S′ ∆o`S′<:S

By Lemma 9, ∆n`C<[U/X]T> ok
By definition of fields:
CT (C)=class C<Y/N>/S {D g ...} ∆n`fields(bound∆o

([T/Y]S))=D′ g′

S f=[T/Y](D g, D′ g′)
Since X cannot appear in S, by the definition of bound,
bound∆o

([T/Y]S)=bound∆n
([T/Y]S)=[T/Y]S

By Lemma 12, ∆n`fields([T/Y]S)=D′ g′

It follows that, ∆n`fields([U/X]C<T>)=[U/X]S f.
By Lemma 8 and 6,
∆n;Λ;[U/X]Γ`[U/X]e∈[U/X]S′ ∆n`[U/X]S′<:[U/X]S

The conclusion follows from T-NEW.

Lemma 9. If ∆1,X<:N,∆2`T ok, and ∆1`U<:[U/X]N with ∆1`U ok, none of X
appearing in ∆1, then ∆1,[U/X]∆2`[U/X]T ok.

Proof. By induction on the derivation of ∆1,X<:N,∆2`T ok

Case WF-OBJECT: Trivial.
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Case WF-VAR: If X not in X, then it’s trivial. Otherwise, X=Xi, [U/X]Xi=Ui, by
assumption, ∆1`Ui ok . And by Lemma 5, conclusion follows.

Case WF-CLASS: By induction hypothesis and Lemma 6.

Lemma 10. Suppose ∆1,X<:N,∆2`Tok, and ∆1`U<:[U/X]N with ∆1`U ok, and
none of X appears in ∆1. Then,
∆1,[U/X]∆2`bound∆1,[U/X]∆2

([U/X]T)<:[U/X](bound∆1,X<:N,∆2
(T))

Proof. If T is a non-variable type, then the conclusion is trivial.
If T is a variable type, but T6∈X, then the conclusion is also trivial.
If T∈X,
bound∆1,[U/X]∆2

([U/X]T)=Ui [U/X](bound∆1,X<:N,∆2
(T))=[U/X]Ni

By assumption and Lemma 5, conclusion follows.

Lemma 11.
If ∆`S<:T, and ∆`fields(bound∆(T))=T f, then ∆`fields(bound∆(S))=S g, and
Si=Ti, and gi=fi for all i ≤ #(f).

Proof. By induction on the derivation of ∆`S<:T.

Case S-REFL: Trivial.
Case S-VAR: bound∆(S)=bound∆(T). Conclusion follows.
Case S-TRANS: By induction hypothesis.
Case S-CLASS: ∆`C<T><:[T/X]T

By FD-CLASS,
class C<X/N>/T {U f ...} ∆`fields(bound∆([T/X]T))=T f
∆`fields(C<T>)=T f, [T/X]U f

Conclusion is obvious.

Lemma 12. If ∆1,X<:N,∆2`fields(T)=S f ∆1`U<:[U/X]N, where ∆1`U ok, and
none of X appears in ∆1, then ∆1,[U/X]∆2`fields([U/T]T)=[U/X]S f,S′ f′, for some
S′ and f′.

Proof. We prove by case analysis on the definition of fields.

Case FD-OBJ: T=Object. Trivial.
Case FD-CLASS: T=C<T>

CT (C)=class C<Y/N>/S { S f; }
∆1,X<:U,∆2`fields(bound∆1,X<:U,∆2

([T/Y]S))=D g

By induction hypothesis, for some D′, g′,
∆1,[U/X]∆2`fields([U/X](bound∆1,X<:N,∆2

([T/Y]S)))=[U/X]D g, D′ g′.
By Lemma 10,

∆1,[U/X]∆2`bound∆1,[U/X]∆2
([U/X][T/Y]S)<:[U/X](bound∆1,X<:N,∆2

([T/Y]S))
Conclusion then follows from Lemma 11.
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Lemma 13. If ∆1,X<:N,∆2;Λ`mtype(m, T)=V→V0, ∆1`U<:[U/X]N, where ∆1`U
ok, and none of X appears in ∆1 or Λ, then ∆1,[U/X]∆2;Λ`mtype(m,
[U/X]T)=[U/X](V→V0).

Proof. By induction on the derivation of ∆;Λ`mtype(m, T)=V→V0.
Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[U/X]∆2

Case MT-VAR-S: ∆o;Λ`mtype(m, X)=V→V0
If X not in X, easy.
If X is in X, let [U/X]X=Ui

∆o;Λ`mtype(m, bound∆o(X))=V→V0
By induction hypothesis, ∆n;Λ`mtype(m, [U/X]bound∆o(X))=[U/X](V→V0)
By Lemma 10, ∆n`bound∆n

(Ui)<:[U/X](bound∆o
(X)).

By Lemma 19 ∆n;Λ`mtype(m, bound∆n
(Ui))=[U/X](V→V0)

By MT-VAR-S again, the conclusion follows.
Case MT-CLASS-S, MT-SUPER-S: Trivial through type substitutions.
Case MT-CLASS-R:

∆o;Λ`specialize(m, Λd)=Λr ∆o;[W/Y]`ΛrvΛΛd

By Lemma 14,
∆n;Λ`specialize(m, Λd)=Λ′

r ∆n;[W′/Y]`Λ′
rvΛΛd

for some W′. Conclusion follows by MT-CLASS-R.
Case MT-SUPER-R:

CT (C)=class C<Y/N>/T {... M}

for all Mi∈M, Λd=reflectiveEnv(Mi)
∆o;Λ`specialize(m, Λd)=Λr ∆o`disjoint(Λr, Λd)

By Lemma 15,
∆n;Λ`specialize(m, Λd)=Λ′

r ∆n`disjoint(Λ′
r, Λd)

Conclusion follows from induction hypothesis.

Lemma 14. If
∆1,X<:N,∆2;Λ`specialize(m, Λd)=Λr, ∆1,X<:N,∆2;[W/Y]`ΛrvΛΛd, ∆1`T<:[T/X]N,
where ∆1`T ok, and none of X appears in ∆1 or Λ, then
∆1,[T/X]∆2;Λ`specialize(m, Λd)=Λ′

r, and ∆1,[T/X]∆2;[W′/Y]`Λ′
rvΛΛd, where

W′=[T/X]W.

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

By the definition of specialize,
Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)
∆o;Λ`mtype(m, Ti)=U′→U′ R′

p=(Ti, U′→U′)
By Lemma 13, ∆n;Λ`mtype(m, [T/X]Ti)=[T/X](U′→U′)
Let R′′

p=([T/X]Ti, [T/X]U′→U′)
By Lemma 16, ∆n;[W′/Y]`R′′

pvRRp , where W′=[T/X]W.

Case o=+, ∆o;Λ`mtype(m, Tj)=V′→V′0,
R′

n=(Tj , V′→V0)
By Lemma 13,
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∆n;Λ`mtype(m, [T/X]Tj)=[T/X](V′→V′)
Let R′′

n=([T/X]Tj , [T/X](V′→V′))
By Lemma 16, ∆n;[W′/Y]`R′′

nvRRn .
Case o=-,

R′
n=[W/Y]Rn .

Let R′′
n=[W′/Y]Rn , clearly, ∆n;[W′/Y]`RnvRR′′

n .
Since none of X appears in Λ, [T/X]Ti=Ti, [T/X]Tj=Tj .
Then let ∆n;Λ`specialize(m, Λd)=〈R′′

p ,R′′
n〉. By SB-Λ,

∆n;[W′/Y]`〈R′′
p ,R′′

n〉vΛΛd.

Lemma 15. If ∆1,X<:N,∆2;Λ`specialize(m, Λd)=Λr, ∆1,X<:N,∆2`disjoint(Λr,
Λd), ∆1`T<:[T/X]N, where ∆1`T ok, and none of X appears in ∆1 or Λ, then
∆1,[T/X]∆2;Λ`specialize(m, Λd)=Λ′

r, and ∆1,[T/X]∆2`disjoint(Λ′
p, Λd).

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

By the definition of specialize,
Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)
∆o;Λ`mtype(m, Ti)=U′→U′ R′

p=(Ti, U′→U′)
By Lemma 13,

∆n;Λ`mtype(m, [T/X]Ti)=[T/X](U′→U′)
Let R′′

p=([T/X]Ti, [T/X]U′→U′)

Case o=+, ∆o;Λ`mtype(m, Tj)=V′→V′0,
R′

n=(Tj , V′→V0)
By Lemma 13,

∆n;Λ`mtype(m, [T/X]Tj)=[T/X](V′→V′)
Let R′′

n=([T/X]Tj , [T/X](V′→V′))
Case o=-,

R′
n=[W/Y]Rn .

Let R′′
n=[W′/Y]Rn , clearly, ∆n;[W′/Y]`RnvRR′′

n .
Since none of X appears in Λ, [T/X]Ti=Ti, [T/X]Tj=Tj . The let
∆n;Λ`specialize(m, Λd)=〈R′′

p ,R′′
n〉.

The by Lemma 18 and DS-Λ, if there was originally a pair of mutually exclu-
sive range conditions in Λr, then there is a pair of mutually exclusive range
conditions in Λ′

r.

Lemma 16 Substitution Preserves Single Range Containment. If
∆1,X<:N,∆2;[W/Y]`R1vRR2, ∆1`U<:[U/X]N, where ∆1`U ok, and none of X appears
in ∆1, none of X appears on Y, then ∆1,[U/X]∆2;[W′/Y]`R1vRR2, where W′=[U/X]W.

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

By SB-R,
R1=(T1, <X/Q>U→U0) R2=(T2, V→V0)
∆o`T2<:T1 ∆′

o=∆o,X<:Q,Y<:P ∆′
o;[W/Y]`unify(U0:U, V0:V)

By Lemma 6, ∆n`[U/X]T2<:[U/X]T1
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By UNI, [W/Y]U0:U=[W/Y]V0:V, for all Yi∈Y,∆o`Wi≺:YYi
Clearly, [W′/Y]U0:U=[W′/Y]V0:V
By Lemma 17, ∆n`[U/X]Wi≺:YYi for all Wi.
It follows that ∆n;[W′/Y]`unify([W′/Y]U0:U, [W′/Y]V0:V)
Conclusion follows from SB-R.

Lemma 17 Substitution Preserves Pattern Type Pattern Match. If
∆1,X<:N,∆2`W≺:YY, where ∆1`U ok, and none of X appears in ∆1, none of X appears
on Y, then ∆1,[U/X]∆2`[U/X]W≺:YY.

Proof. We prove by induction on pattern matching rules PM-*.

Case PM-REFL: Trivial
Case PM-CL: By induction hypothesis.
Case PM-CL-S: By induction hypothesis.
Case PM-VAR: By inspection of definition

of bound, bound∆([U/X]W)=[U/X]bound∆(W). Conclusion follows by induction
hypothesis.

Case PM-PVARS: By induction hypothesis and inspection of definition of bound,
similar to above case.

Lemma 18 Substitution Preserves Range Mutual Exclusion. If
∆1,X<:N,∆2`oR1⊗o′R2, ∆1`U<:[U/X]N, where ∆1`U ok, and none of X appears in
∆1,R1, or R2, then ∆1,[U/X]∆2`oR1⊗o′R2.

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

We prove by case analysis of ME-1 and ME-2.

Case ME-1:
R1=(T, <Y/P>U→U0) R2=(S, <Z/Q>V→V0)
∆o`T<:S or S<:T ∆o

′=∆o,Y<:P,Z<:Q
For all W, ∆o

′;[W/(Y:Z)]`unify(U, V) implies [W/(Y:Z)]U0 6=[W/(Y:Z)]V0
Since X do not appear in R1 or R2, by Lemma 6, ∆n`T<:S or S<:T.
By definition of UNI and the PM-* rules,

for all W, ∆n
′;[W/(Y:Z)]`unify(U, V) implies [W/(Y:Z)]U0 6=[W/(Y:Z)]V0

Case ME-2:
R1=(T, <Y/P>U→U0) R2=(S, <Z/Q>V→V0)
∆o

′=∆o,Y<:P,Z<:Q ∆o
′;[W/(Y:Z)]`R1vRR2

By Lemma 16 and the fact that X do not appear in R1 or R2,
∆n,Y<:P,Z<:Q`R1vRR2.

Lemma 19. If ∆;Λ`mtype(m, T)=U→U0, ∆`S<:T, then ∆;Λ`mtype(m,
S)=U→U0.

Proof. By induction on the derivation of ∆`S<:T

Case S-REFL: Trivial.
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Case S-VAR: ∆`X<:∆(X)
MT-VAR-R1 and MT-VAR-R2 do not apply, since m6=η.
By definition, bound∆(X)=∆(X). Conclusion follows from MT-VAR-S.

Case S-TRANS: Easy by induction hypothesis.
Case S-CLASS: T=[T/X]T, S=C<T>

∆;Λ`mtype(m, C<T>)=V→V0 can oly be retrieved via MT-CLASS-* and MT-
SUPER-*.
If retrieved using MT-CLASS-R:
CT (C)=class C<X/N>/T { ... M }
Mi=¡Y/P¿for(Mp;oMf) S0 η (S x) {↑e;} Mi∈ M
Mp=U0 η (U) : Xi.methods Mf=U′0 η (U′) : Xj.methods

Rp=(Xi, Y/P(U→U0)) Rn=(Xj, U′→U′0)
Λ′=〈Rp ,oRn〉 Λd=[T/X]Λ′

∆;Λ`specialize(m, Λd)=Λr ∆;[W/Y]`ΛrvΛΛd

V=[T/X][W/Y]S V0=[T/X][W/Y]S0
By T-METH-R and the definition of override,
∆′=X<:N,Y<:P ∆′`N,P ok ∆′;Λ′`override(η, T, S→S0)
∆′;Λ′`mtype(η, T)=S→S0 ∆′`validRange(Λ′, T)

What we need to show now is that in all cases of MT-*,
∆′;Λ′`mtype(η, T)=S→S0 implies ∆;Λ`mtype(m, [T/X]T)=[T/X][W/Y](S→S0)

—MT-VAR-R1: ∆′;Λ′`mtype(η, Xi)=S→S0
By definition of specialize,
Λd=〈[T/X]Rp ,[T/X]Rn〉 [T/X]Rp=(Ti, Y/[T/X]P([T/X]U→[T/X]U0))
∆;Λ`mtype(m, Ti)=[T/X](V→V0)

Since Y do not appear in V0 or V, ∆;Λ`mtype(m, Ti)=[T/X][W/Y](V→V0).
By Λ;[W/Y]`ΛrvΛ[T/X]Λd, [W/Y](S0:S)=[W/Y][T/X](V0:V)

—MT-VAR-R2: Using similar technique to MT-VAR-R1. The information we
use from the definition of specialize is when o=+, and ∆;Λ`mtype(m, Tj) is
similarly defined.

—MT-VAR-S: By the fact that if X is not the reflective type of Rp , then Ti
is not the reflective type of [T/X]Rp , either. And conclusion follows from
induction hypothesis.

—MT-CLASS-R: ∆′;Λ′`mtype(η, D<Q>)=S→S0.
CT (D)=class D<Z/R>/R { ... M}
Mi∈M Mi=<Y′/P′>for S′0 η (S′ x) { ...}
Λd

′=[Q/Z](reflectiveEnv(Mi)) ∆′;[W′/Y′]`Λ′vΛΛd
′

S=[Q/Z][W′/Y′]S′ S0=[Q/Z][W′/Y′]S0′

By Lemma 16 and Lemma 5, ∆,[T/X]∆′;[T/X][W′/Y′]`[T/X]Λ′vΛ[T/X]Λ′
d

By Lemma 23, ∆,[T/X]∆′;[W′/Y′][W/Y]`ΛrvΛ[T/X]Λd
′

Since Y do not appear anywhere in Λr, or Λd
′, ∆;[W′/Y′][W/Y]`ΛrvΛ[T/X]Λd

′

It follows from MT-CLASS-R that ∆;Λ`mtype(m,
[T/X]D<Q>)=[T/X][W/Y](S→S0)

—MT-SUPER-R: By induction hypothesis.
—MT-CLASS-S and MT-SUPER-S: Do not apply.
If retrieved using MT-SUPER-S or MT-SUPER-R, then the conclusion is ob-
vious from these definitions.
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Lemma 20. If ∆;Λ`specialize(m, Λd)=Λr, ∆;[W/Y]`ΛrvΛΛd, and ∆;Λ;Γ`e∈T.
Then ∆;Λ;[W/Y]Γ`[W/Y][m/η]e∈[W/Y]T.

Proof. By induction on the derivation of ∆;Λ;Γ`e∈T

Case T-VAR: Trivial.
Case T-FIELD: ∆;Λ;Γ`e0.fi∈Ti.

∆;Λ;Γ`e0∈T0 ∆`fields(bound∆(T0))=T f
By induction hypothesis, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e0<:[W/Y]T0
By Lemma 11 and Lemma 5, ∆`fields([W/Y]T0)=[W/X]T f, S g.
By T-FIELD, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e0.fi∈[W/Y]Ti

Case T-INVK: ∆;Λ;Γ`e0.n(e)∈T
∆;Λ;Γ`e0∈T0 ∆;Λ`mtype(n, T0)=T→T ∆;Λ;Γ`e∈S ∆`S<:T

By induction hypothesis, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e∈[W/Y]S
By Lemma 7, ∆`[W/Y]S<:[W/Y]T.
Also by induction hypothesis, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e0∈[W/Y]T0
If n=m, or n=η, [m/η]n=m, by Lemma 21, ∆;Λ`mtype(m, [W/Y]T0)=[W/Y](T→T).
If n=m′, where m′ 6=m, Y do not appear in T or T, thus,

∆;Λ;[W/Y]Γ`mtype(m′, [W/Y]T)=[W/Y](T→T)
In either case, it follows from T-INVK that
∆;Λ;[W/Y]Γ`[W/Y][m/η](e0.n(e))∈[W/Y]T.

Case T-NEW: ∆;Λ;Γ`new C<T>(e)∈C<T>
∆`C<T> ok ∆`fields(C<T>)=U f ∆;Λ;Γ`e∈S ∆`S<:U

By induction hypothesis and Lemma 7,
∆;Λ;[W/Y]Γ`[W/Y][m/η]e∈[W/Y]S ∆`[W/Y]S<:[W/Y]U

By definition of fields and the fact that its definition does not involve any
pattern matching variables, ∆`fields([W/Y]C<T>)=[W/Y]U f
Conclusion follows from T-NEW.

Lemma 21. Suppose ∆;Λ`specialize(m, Λd)=Λr, ∆;[W/Y]`ΛrvΛΛd. If
∆;Λ`mtype(m, T)=S→S, then ∆;Λ`mtype(m, [W/Y]T)=[W/Y](S→S).

Proof. By induction on the derivation of ∆;Λ`mtype(m, T)=S→S:

Case MT-VAR-R1 and MT-VAR-R2 do not apply.
Case MT-VAR-S: T=X.

If X6∈Y, then [W/Y]X=X. It is also impossible from method typing rules for Y
to appear in the method definitions of bound∆(X), or its method types. The
conclusion follows naturally.
If X∈Y, [W/Y]X=Wi, ∆;Λ`mtype(m, bound∆(Yi))=S→S, ∆;Λ`mtype(m, Yi)=S→S.
It follows from induction hypothesis and bound∆(Yi)=Pi that,

∆;Λ`mtype(m, [W/Y]Pi)=[W/Y](S→S).
By Lemma 22, ∆`Wi<:[W/Y]Pi.
By Lemma 19, ∆;Λ`mtype(m, Wi)=[W/Y](S→S).

Case MT-CLASS-S, MT-SUPER-S: Eas following type substitution.
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Case MT-CLASS-R: Conclusion follows easily from the definition of specialize.
Case MT-SUPER-R: By induction hypothesis.

Lemma 22 Unification Mapping Preserves Type Variable Bounds. If
∆;[W/Y]`ΛvΛΛ′, and Y do not appear anywhere in Λ, Λ′=〈R′

p ,o′R′
n〉, where R′

p=(T,
<Y/P>U→U), then ∆`Wi<:[W/Y]Pi, for all Wi∈W.

Proof. Let Λ=〈Rp ,oRn〉, where Rp=(S, V→V), ∆′=∆,Y<:P.
By SB-R, ∆′;[W/Y]`unify(U:U, V:V).
By UNI, ∆′`Wi≺:YYi for all Wi∈W. We inspect the rules of PM-*:
Since Y cannot appear in W, the first rule that applies is PM-VAR:
bound∆′(Wi)=C<T> ∆′`C<T>≺:Y[C<T>/Yi]bound∆(Yi), where bound∆(Yi)=Pi

We next prove by derivation of ∆′`C<T>≺:Y[C<T>/Yi]Pi

Case PM-REFL: [C<T>/Yi]Pi=C<T>=bound∆′(Wi)
Since Y do not appear in ∆ and consequently, C<T>, ∆`Wi<:C<T>.

Case PM-CL: Let Pi=C<S>. Since Yi do not appear in S after substitution, for
T≺:YS, without loss of generality, we assume all other Y has been substituted,
then T=S. Then C<T>=C<S>, and by S-REFL, conclusion follows.

Case PM-CL-S: Follows from induction hypothesis.

Lemma 23 Single Range Containment is Transitive. If
∆;[W/Y]`R1vRR2, ∆;[Q/Z]`R2vRR3, then ∆;[W/Y][Q/Z]`R1vRR3,

Proof. By SB-R,
R1=(T1, <X/N>U→U0) R2=(T2, <Y/P>V→V0)
∆`T2<:T1 ∆,X<:N,Y<:P;[W/Y]`unify(U0:U, V0:V)
R3=(T3, <Z/O>V′→V′0)
∆`T3<:T2 ∆,Y<:P,Z<:O;[Q/Z]`unify(V0:V, V′0:V

′)
By S-TRANS, ∆`T3<:T1
By UNI,
[W/Y]U0:U=[W/Y]V0:V for all Yi∈Y, ∆,X<:N,Y<:P`Wi≺:YYi
[Q/Z]V0:V=[Q/Z]V′0:V

′ for all Zi∈Z, ∆,Y<:P,Z<:O`Qi≺:ZZi
By construction of R1 and R2, no Y appear in U0:U, no Z appear in V0:V.
Thus, U0:U=[W/Y]V0:V , V0:V=[Q/Z]V′0:V

′

Then U0:U=[W/Y][Q/Z]V′0:V
′

Since no Y appear in V′0:V
′, [W/Y][Q/Z]V′0:V

′=[([W/Y]Q)/Z]V′0:V
′

By inspecting PM-*, and by Lemma 5, it is clear that for all Zi∈Z,
∆,X<:N,Y<:P,Z<:O`[W/Y]Qi≺:ZZi. The conclusion follows.

Lemma 24 Method Type Lookup Terminates.
Method type lookup mtype(n, T) for all T with a finite chain of reflective depen-
dency either terminates with ∆;Λ`mtype(n, T)=U→U0, or ends with none of the
MT-* rules applicable.

Proof. The chain of reflective dependency is a sequence of types defined to be:
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refchain(Object) = Object
refchain(X) = X:refchain(bound∆(X))
refchain(C<T>) = C<T>:refchain(Ti):refchain([T/X]T)

where T=T0,...,Tn
The chain is constructed so that if a reoccurrence of the same type, in any form

of instantiation happens, the chain construction is terminated, and the chain is
deemed not finite. Since there is a finite number of classes, the chain construction
either terminates with a finite chain, or a reoccurrence as described above must
happen.

We define the measure function to be:
measure(mtype(n, T))=length(refchain(T)).
It is simple to see that with each recursive call, the measure must decrease:

Case MT-VAR-S:
measure(mtype(η, X))=length(refchain(X))
measure(mtype(η, bound∆(X)))=length(refchain(bound∆(X)))
Since length(refchain(X))=1+length(refchain())bound∆(X), clearly measure de-
creases.

Case MT-SUPER-S,
measure(mtype(m, C<T>))=length(refchain(C<T>))
measure(mtype(m, [T/X]N))=length(refchain([T/X]N))
refchain([T/X]N) is embedded in refchain(C<T>) by construction. Thus, the
measure decreases.

Case MT-CLASS-R:
mtype is recursively invoked through specialize on one of the type parameters
of C<T>. By construction, again, refchain(Ti) is embedded in refchain(C<T>).
Thus, again, measure decreases.

Case MT-SUPER-R: Similar to MT-CLASS-R and MT-SUPER-S.

Since the chains are finite, then the measure function cannot decrease infinitely.
Thus, the recursion must terminate.
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