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NMEPIAHYH

MePIyPAPOUPE TN OXECIOKI OVATIOPACTOCT TNG €VOIAUEDNC YAWOodg Tou LLVM, yvwot wg
LLVM IR. H vAoroinon pog TIopAyel OXEOEIC OTIO €va TIPOYPAUMO 10000V O€ eVAIAPEDN
poper LLVM. KaBe oxéon amobnkedetal oav Ttivakag Baong dedopEVwY OE eva TIEPIBAAAOV
epyaoiag Datalog. AvarmapiotoOhe T0 cUOTNUO TOTIWV KOBWC Kal T0 GUVOAO EVIOAWV TNC
yAwooa¢ Tou LLVM. Ymootnpidoupe €Tiong TOLC  TIEPIOPIOPOUEC NG YAWOOOC
TIPOCdIoPIfOVTAC TOLG UE XPrOoN TNE TIPOYPOUUATIOTIKNC YAwaooag Datalog.

OEMATIKH NEPIOXH: MeTayAwTIOTEG, MAWOCOEC MNPOoypaAUPOTIONOL

AEZEIZX KAEIAIA: oXeol0Kr) avamopaoToon, €VOIGUECT QVATIOPACTOON, OLUOTNHO TUTIWV,

oUVOAO evioAwv, LLVM, Datalog



ABSTRACT

We describe the relational representation of the LLVM intermediate language, known as the
LLVM IR. Our implementation produces the relation contents of an input program in the LLVM
intermediate form. Each relation is stored as a database table into a Datalog workspace. We
represent both the type system and the instruction set of the LLVM language. We also support

the restrictions of the language specifying the corresponding constraints using the Datalog
programming language.

SUBJECT AREA: Compilers, Programming Languages

KEYWORDS: relational representation, intermediate representation, type system,

instruction set, LLVM, Datalog
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Relational Representation of the LLVM Intermediate Language

1. Introduction

LLVM was introduced in 2000 at the University of lllinois as a research project by Chris
Lattner and Vikram Adve and it was originally developed to provide compilation techniques for
both static and dynamic programming languages. LLVM has now become an umbrella project
comprising a collection of reusable toolchain technologies (e.g., compilers, optimizers, etc) all
written in C++. A variety of programming languages (e.g., Python, Ruby, Scala) nowadays use
LLVM as their front end compiler.

The LLVM intermediate language, known as the LLVM IR, consists one of the strongest
points of the LLVM compiler system. It is a low-level language with strictly defined semantics
supporting a language-independent type system and instruction set. The type system consists
of primitive types (e.g., integer, floating point, etc) and derived types (e.g., function, pointer,
structure, etc). The instruction set consists of several different categories of instructions (e.g.,
terminator, binary, conversion, memory, etc) depending on their use (e.g., control flow,
computations, memory management, etc).

We describe how we represent the LLVM IR as relations, stored as database tables. Our
implementation produces the relation contents of an input program in LLVM intermediate
form. This constitutes the pre-processing step for a points-to (or pointer) analysis. After this
step, new relations can be derived from the existing ones using the Datalog programming
language. Relations, equivalently predicates, are the main Datalog data type. The relations
that are produced from our implementation are called EDB (extensional database) as they
represent facts that are explicitly entered into the database. The derived relations are called
IDB (intentional database).

A Datalog program is a set of clauses. There are three kinds of clauses: facts, constraints and
rules. Constraints are used to indicate the restrictions that facts must specify. Rules are used
to derive new facts. IDB relations are computed with rules. We declare entity types to
represent the LLVM IR components (e.g., instructions, functions, types, etc). We use Datalog
to represent the type system, the instruction set as well as the restrictions specified by the
LLVM language.

In chapter 2 we describe the LLVM IR syntax, the type system and its components and the
several instructions as well as their use. In chapter 3 we describe in more detail the modeling
of the LLVM IR. We see several examples of the type system and the instruction set
representation as well as examples of constraints.

E.Psallida 15



Relational Representation of the LLVM Intermediate Language
1.1 Motivation

Such a relational representation enables a host of program analyses over LLVM programs.
Static program analysis in Datalog is an important recent trend [8, 9]. The declarativeness of
Datalog and its ability to define recursive relations makes it ideal for specifying complex
program analysis algorithms and, as a consequence, Datalog has been extensively used for
both low level [1, 2, 5] and for high level [6, 7] analyses.

Points-to (or pointer) analysis [3, 4] is one of the most fundamental static program analyses. It
computes a static approximation of all the data that a pointer variable or expression can
reference during program run-time. In order to do points-to analysis, we need to have
reachability information. This means that we have to know the truly possible variable
assignment actions. In Datalog we can easily specify a mutually recursive definition of a
reachability and points-to analysis.

E.Psallida 16



Relational Representation of the LLVM Intermediate Language

2. The LLVM Compiler Infrastructure

2.1 Description

LLVM is an open source umbrella project, introduced in 2000 as a research project by Chris
Lattner and Vikram Adve at the University of lllinois. It comprises a collection of reusable
libraries and toolchain components (e.g., compilers, debuggers, optimizers, etc) written in
C++. The name "LLVM" used to stand for “Low Level Virtual Machine”, but today (since it
became meaningless) is just a brand for the project. The 2012 ACM Software System Award
is given to Vikram Adve, Evan Cheng and Chris Lattner for LLVM.

One of the tools that LLVM is known for is the clang compiler, a C, C++, Objective C and
Objective C++ front-end for the LLVM compiler. Clang converts the source into the LLVM
intermediate representation code.

The initial goal of LLVM was to provide a modern, SSA-based compilation strategy which
would support static as well as dynamic compilation of arbitrary languages, but its main use
nowadays is to implement a wide variety of programming languages (e.g., Java, .NET,
Python, Ruby, Haskell). LLVM was also used to create a lot of new products, such as the
OpenCL GPU programming language and runtime.

2.2 Overview of the LLVM IR

The LLVM assembly language [10] is one of the strongest points of the LLVM compiler
system. It is a low-level language, with strictly defined semantics, known as the LLVM
intermediate representation (LLVM IR). It supports a language-independent type system and
instruction set, which constitute the most important features of the IR.

2.2.1 Type System

LLVM has a strong type system that allows a number of optimizations to be performed directly
on the IR. The type system consists of primitive types and derived types.

Primitive Types

The primitive types are the basic building components of the LLVM system consisting of the
following types:

e integer

» floating point
+ label

« void

« metadata

E.Psallida 17



Relational Representation of the LLVM Intermediate Language
e X86mmx

The integer type has the syntax iN, where N specifies its bit width.

Table 1: Examples of integer types

i1 a single-bit integer (the boolean type in C and C++)
i32 a 32-bit integer
i64 a 64-bit integer

The floating point type includes the subtypes:

e half 16-bit floating point value

o float 32-bit floating point value

e double 64-bit floating point value

o fpl28 128-bit floating point value

* x86_fp80 80-bit floating point value

* ppc_fpl28 128-bit floating point value (two 64-bits)

The x86mmx type represents a value held in an MMX register on an x86 machine. Its only
allowed uses are in parameters and return values as well as in load, store and bitcast
instructions.

Derived Types

Derived types are a powerful feature in LLVM. They allow the representation of other useful
types using as element type other primitive or derived types. Derived types consist of the
following types:

e array
» function
e pointer

 structure
« opaque structures
« vector

E.Psallida 18



Relational Representation of the LLVM Intermediate Language

Array Type

The array type has the following syntax.

Table 2: Array type syntax

[<# elements> x <element_type>]

The next table shows some examples of the array type.

Table 3: Examples of array types

[5 xi32] Array of 5 32-bit integer values.
[10 x [2 x float]] A multidimensional array, 10x2 of float values.
[2 x { i8, double }] Array of 2 elements of structure type containing one 8-bit

integer and a double value.

Function Type

The function type represents a function signature and has the following syntax.

Table 4: Function type syntax

<returntype> (<argument list>)

The next table shows some examples of the function type.

Table 5: Examples of function types

i32 (float, i32) * Pointer to a function that takes a float and an i32 value, returning an
i32.
{i32, 132} (i32%, ...) A vararg function that takes at least one pointer to i32,

returning a structure that contains two i32 values.

Pointer Type

The pointer type specifies locations and refers to objects in memory. It may have an optional
address space attribute. It has the following syntax.

E.Psallida 19



Relational Representation of the LLVM Intermediate Language

Table 6: Pointer type syntax

<type> *

The next table shows some examples of the pointer type.

Table 7: Examples of pointer types

[2 x half] * Pointer to array of 2 half values.

float addrspace(3) * Pointer to a float value that resides in address space #3.

i32 (float, i32) * Pointer to a function that takes a float and an i32, returning an
i32.

Structure Type

The structure type is a group of data members together in memory. A structure can either be
"literal" or "identified". An identified structure type has the following syntax.

Table 8: Identified structure type syntax

%T = type { <type list> } %T is the name of the structure type.

A literal structure has the following syntax.

Table 9: Literal structure type syntax

{ <type list> }

The next table shows some examples of the structure type.

Table 10: Examples of structure types

%struct.S = type {i32, i8*} An identified structure type, where the first element is
an i32 and the second a pointer to an i8.

{i8, i8} A literal structure of 2 i8 values.

{i32, float (i32*)} A literal structure where the first element is an i32 and

the second a function taking a pointer to an i32 value,
returning a float.

E.Psallida 20



Relational Representation of the LLVM Intermediate Language

Opaque Structure Types

Opaque structure types represent named structures with no body specified.
They have the following syntax.

Table 11: Opaque structure type syntax

%T = type opaque

Vector Type

The vector type is used when multiple data are processed simultaneously by a single

instruction (SIMD). It has the following syntax.

Table 12: Vector type syntax

< <# elements> x <element_type> >
The next table shows some examples of the vector type.

Table 13: Examples of vector types

<2 Xi64* > Vector of 2 pointers to i64.
< 5 x float > Vector of 5 float values.
<10 xi32 > Vector of 10 i32 values.

Instructions produce values that can have any type other than void and function types.

2.2.2 Instruction Set

The entire LLVM instruction set consists of 56 instructions that are classified in the following

categories:

* Binary operations

» Bitwise binary operations

* Terminator instructions

* Memory Access and Addressing Operations
* Vector Operations

» Aggregate Operations

» Conversion Operations

* Other Operations

Most of the instructions, including binary, bitwise binary and conversion operations, are

E.Psallida
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Relational Representation of the LLVM Intermediate Language

three-address instructions. They take one or two operands and produce a single result. An
operand can be a variable or a constant value. LLVM supports a Static Single Assignment
form (SSA), which means that each variable (a typed register) is assigned exactly once. For
that reason LLVM provides an infinite set of typed virtual registers that hold the produced
values of the instructions.

Binary Operations

Binary operators are responsible for most of the computations in a program. They take two
operands of the same type and produce a value that has the same type as its operands. The
type of the resulting value can be integer, floating point or vector type in the case of multiple
data. Binary operators have the following syntax.

Table 14: Binary operation syntax

<result value> = opcode_name <type> <operand 1>, <operand 2>

The opcode_name must be one of the following instructions:

add
sub
mul
udiv
sdiv
urem
srem
fadd
. fsub
10. fmul
11. fdiv
12. frem

©ooNO A ®WDRE

The type <type> in the instructions 1 — 7 must be integer or vector of integer values and in the
instructions 8 — 12 floating point or vector of floating point values.

Bitwise Binary Operators

Bitwise binary operators perform several forms of bit-twiddling in a program. Like binary
operators, they take two operands of the same type and produce a value that has the same
type as its operands. The type of the resulting value can be integer or vector of integer
values. Bitwise binary operators have the following syntax.
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Table 15: Bitwise binary operator syntax

<result value> = opcode_name <type> <operand 1>, <operand 2>

The opcode _name must be one of the following instructions:

e shl

e |Ishr
e ashr
e and
e or

e XoOr

The 'shl' instruction returns the first operand shifted to the left a specified number of bits.

The 'Ishr' instruction (logical shift right) returns the first operand shifted to the right a specified
number of bits, and filled with zero.

The 'ashr' instruction (arithmetic shift right) returns the first operand shifted to the right a
specified number of bits, with sign extension.

The 'and' instruction returns the bitwise logical and of its two operands.
The 'or" instruction returns the bitwise logical inclusive or of its two operands.
The "xor' instruction returns the bitwise logical exclusive or of its two operands.

Terminator Instructions

Every basic block must end with a terminator instruction in order to be well-formed.
Terminator instructions cause control flow and they indicate which block should be executed
after the current is finished. Terminator instructions consist of the following instructions:

e ret

e br

e switch

e indirectbr

* resume

e unreachable
e invoke

The 'ret' instruction returns control flow from a function back to the caller.
It has two forms.
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Table 16: 'ret' instruction first form

ret void

Table 17: 'ret' instruction second form

ret <type> <value>

The first form has no return value. It returns from a function that has a void return type. The
other form takes a single operand, a typed value, and returns from a function that has a
non-void return type.

The 'br' instruction transfers control flow to a different basic block in the current function.

It has two forms.

Table 18: 'br' instruction first form

br il <condition>, label <true>, label <false>

Table 19: 'br' instruction second form

br label <destination>

The first form is a conditional br instruction and if the <condition> is evaluated to be true
control flows to label <true>, otherwise to label <false>. The other form is an unconditional br
instruction and control flows to its single label <destination>.

The 'switch' instruction can transfer control flow to one of several different destinations.
It has the following syntax.

Table 20: 'switch' instruction syntax

switch <integer_type> <value>, label <default_destination> [ <integer type>
<constant_value>, label <destination> ... ]

It takes three arguments, a typed value, a label that indicates the default destination and a
table of pairs of constants and labels.

The ‘indirectbr' instruction has the following syntax.

Table 21: 'indirectbr' instruction syntax

indirectbr <type>* <address>, [ label <destinationl>, label <destination2>, ... ]

It causes control flow to the label that is specified by the <address> argument, which is
always of pointer type.

The 'resume’ instruction has the following syntax.
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Table 22: 'resume’ instruction syntax

resume <type> <value>

It takes a single argument and has no successors (there are no basic blocks to be executed
after the current one is finished).

The 'unreachable’ instruction takes no arguments and indicates that a certain part of the code
cannot be reached.

The ‘invoke' instruction is the only terminator instruction that produces a value.

It has the following syntax.

Table 23: 'invoke' instruction syntax

<result value> = invoke <pointer_type> <function_value>(<function arguments>)
to label <normal> unwind label <exception>

The ‘'invoke' instruction represents high-level exceptions directly in LLVM. It transfers control
flow to a function specified by the <function_value> argument. The ‘invoke' instruction can be
direct, providing a pointer to a function name, or indirect, providing a function pointer variable.
It is also possible for control flow to be transferred to either the <normal> or the <exception>
label. The 'normal’ label is reached when the called function executes a ‘ret' instruction. The
‘exception’ label is reached when a callee returns via the ‘'resume’ instruction or some other
exception handling mechanism.

Memory Access and Addressing Operations

The following instructions are responsible for the memory management in LLVM:

* alloca
* Joad
e store

e atomic instructions
* getelementptr

The 'alloca’ instruction is used to allocate memory on the stack frame of the current function.
After the function's execution the allocated memory is automatically released.
It has the following syntax.

Table 24: 'alloca’ instruction syntax

<result value> = alloca <allocated_type> [, <type> <num_elements>] [, align
<alignment>]

It allocates space equal to sizeof (<allocated_type>) * <num_elements>. If <num_elements>
is omitted, it defaults to one. The type of the resulting value is a pointer to the
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<allocated_type> argument. The 'alloca’ instruction has also an optional alignment, which is a
constant value.

The 'load' instruction reads from memory and it has the following basic syntax.

Table 25: 'load' instruction basic syntax

<result value> = load <type>* <ptr_value>

It takes a single operand that specifies the location of memory from which to load.

The 'store’ instruction writes to memory and it doesn't produce any value. It has the following
basic syntax.

Table 26: 'store' instruction basic syntax

store <type> <value>, <type>* <pointer_value>

The <value> operand indicates the value that will be stored and the <pointer_value> operand
the memory location to store it. The type of the second operand must be a pointer to the type
of the first operand.

If 'load" and 'store' are marked as atomic, they take some extra arguments as shown below in
the atomic instructions.

Atomic Instructions

This category includes the following instructions:

e atomic load

e atomic store

e fence

e atomiccmpxchg
e atomicrmw

Atomic instructions provide guarantees in the case of threads and signals. They take an
‘ordering' and an optional 'singlethread' argument. The ordering parameter (e.g., unordered,
monotonic, acquire, etc) indicates the synchronization with other atomic instructions. If an
atomic instruction is marked as singlethread, it only synchronizes with other operations
running in the same thread (for example, in signal handlers).

The ‘'atomiccmpxchg' instruction (atomic-compare-and-exchange) modifies the memory
atomically. It loads a value in memory and compares it to a given value. If they are equal, a
new value is stored into the memory. 'atomiccmpxchg' has the following syntax.
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Table 27: 'atomiccmpxchg' instruction syntax

<result value> = atomiccmpxchg <type>* <ptr_value>, <ty> <compare_value>, <ty>
<new_value> [singlethread] <ordering>

The <ptr_value> specifies the memory address from which to load. If the value at the address
specified by the <ptr_value> and the <compare_value> are equal, then the <new_value> is
stored into the memory.

The 'atomicrmw' instruction (atomic-read-modify-write) modifies the memory atomically. It
takes an operation argument, an address whose value to modify and an argument to the
operation. 'atomicrmw' has the following syntax.

Table 28: ‘atomicrmw' instruction syntax

atomicrmw <operation> <type>* <ptr>, <type> <value> [singlethread] <ordering>

The <operation> argument is a keyword that defines the operation that will be performed
(e.g., add, sub, xchg, and, or, max, etc). The <ptr> operand specifies the memory location
that will be modified according to the operation and the <value> operand is the operation's
argument.

The 'getelementptr' instruction makes address computations only and, unlike load and store
instructions, it dereferences nothing. It has the following syntax.

Table 29: 'getelementptr' intruction syntax

<result value> = getelementptr <type>* <ptr_value> {, <integer type> <idx>}*

The operand <ptr_value> is always a value of a pointer type and is the base for the
computations. Subsequent types can be arrays, vectors, and structs. (Note that subsequent
types being indexed into can never be pointers, since that would require loading the pointer
before continuing the calculation.) The rest of the arguments indicate which of the elements of
the object are indexed. It returns a pointer to the specified element. In the case where the first
operand is a vector of pointers the 'getelementptr' instruction has the following syntax.

Table 30: 'getelementptr' instruction syntax

<result value> = getelementptr <vector> <ptr value>, <vector index type><idx>

Agagregate Operations

Arrays and structures are considered aggregate types. The aggregate operations include the
following instructions:

* extractvalue
* insertvalue
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The 'extractvalue' instruction has the following syntax.

Table 31: 'extractvalue' instruction syntax

<result_value> = extractvalue <aggregate_type> <value>, <index>{, <index>}*

The <result_value> holds the extracted value of the aggregate from the position specified by
the indices. All the indices must be constant values.

The 'insertvalue' instruction has the following syntax.

Table 32: 'insertvalue' instruction syntax

<result value> = insertvalue <aggregate type> <value>, <type> <element>,
<idx> {, <idx>}*

It inserts an element in the aggregate at the position specified by the constant indices <idx>.
The <result_value> holds an aggregate with type <aggregate type>. Its value is the same as
<value> except that the value at the position specified by the indices is that of <element>.

Vector Operations

Vector operations include the following instructions:

* extractelement
* insertelement
» shufflevector

The 'extractelement’ instruction has the following syntax.

Table 33: 'extractelement’ instruction syntax

<result value> = extractelement < n x <type> > <value>, i32 <position>

It extracts an element from a <value> of vector type at a specified position. The
<result_value> holds the extracted element with type <type>.

The 'insertelement’ instruction has the following syntax.

Table 34: 'insertelement’ instruction syntax

<result value> = insertelement < n x <type> > <value>, <ty> <element>, i32
<position>
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It inserts an element into a vector at a specified position. The <result value> holds the

changed vector which is of the same type as the <value> operand.

The 'shufflevector' instruction has the following syntax.

Table 35: 'shufflevector' instruction syntax

<result value> = shufflevector < n x <type> > <vectorl>, < n x <type> >
<vector2>,<m x i32> <shuffle_mask>

It takes two vector operands of the same type and makes a permutation of their elements.
The <result_value> is a vector whose length is the same as the <shuffle_mask> and whose
element type is the same as the element type of the first two operands. The <shuffle_mask>

argument must be a vector of constant values.

Conversion Operations

Conversion operations have the following syntax.

Table 36: Conversion operator syntax

<result value> = opcode_name <type> <value> to <type2>

Conversion operations take a single operand and a type. They perform several bit

conversions on the operand <value> and return a value with type <type2>.

The opcode _name must be one of the following instructions:

e trunc

* zext

* sext

e fptrunc
+ fpext

o fptoui

o fptosi

e uitofp

* sitofp

e ptrtoint
e inttoptr
» Dbitcast

The 'trunc' instruction truncates the high order bits in <value> and converts the remaining to
<type2>. Both types must be integers or vectors with the same number of integer values.
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The 'zext' instruction fills the high order bits of the <value> with zero until it reaches the size
of <type2>. Both types must be integers or vectors with the same number of integer values.
The 'sext' instruction copies the highest order bit of the <value> until it reaches the bit size of
<type2>. Both types must be integers or vectors with the same number of integer values.

The 'fptrunc’ instruction truncates a <value> from a larger floating point type to a smaller
floating point type.

The 'fpext’ instruction extends the <value> from a smaller floating point type to a larger
floating point type.

The 'fptoui’ instruction converts the floating point <value> into the nearest (rounding towards
zero) unsigned integer value.

The 'fptosi' instruction converts the floating point <value> into the nearest (rounding towards
zero) signed integer value.

The 'uitofp’ instruction interprets the <value> as an unsigned integer and converts it to the
corresponding floating point value.

The 'sitofp’ instruction interprets the <value> as a signed integer and converts it to the
corresponding floating point value.

The 'ptrtoint’ instruction converts the pointer or a vector of pointers <value> to the integer or
vector of integers <type2>. If the <value> is smaller than <type2>, then a zero extension is
done, otherwise a truncation is done. If they have the same size, then nothing is done other
than a type change.

The ‘inttoptr' instruction converts an integer <value> to a pointer type, <type2>. If the <value>
is smaller than <type2>, then a zero extension is done, otherwise a truncation is done. If they
have the same size, then nothing is done other than a type change.

The ‘bitcast’ instruction converts the <value> to type <type2> without changing any bits.

Other Operations

This category includes the following instructions:

e icmp

o fcmp

* select

e phi

« call

e va_arg

» landingpad
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The 'icmp' instruction compares two operands and returns a value that has boolean (i1) or of
vector of boolean values type. It has the following syntax.

Table 37: 'icmp' instruction syntax

<result value> = icmp <condition> <type> <operandl>, <operand2>

The <condition> argument is a keyword that indicates the kind of comparison that will be
performed (e.g., eq, ne, ugt, uge, ult, etc). The <type> must be integer, or pointer, or integer
vector type.

The ‘fcmp' instruction is used like the ‘icmp' instruction. The only difference is that the <type>
must be floating point or vector of floating point values type.

The 'select' instruction has the following syntax.

Table 38: 'fcmp' instruction syntax

<result value> = select sel_type <condition>, <type> <valuel>, <type><value2>

It selects <valuel> or <value2> according to the <condition> argument. If the <condition>
operand is evaluated to 1, the first operand is returned, otherwise the second. The operands
<valuel> and <value2> must have identical types.

The 'phi' instruction corresponds to the SSA @ - node. It has the following syntax.

Table 39: 'phi’ instruction syntax

<result value> = phi <type> [ <value0>, <label0> ], ...

The first argument <type> defines the type of the incoming values. The second argument is a
list of pairs of values and labels and each pair corresponds to one of the predecessor blocks
of the current basic block. The phi instruction returns one of the incoming values depending
on which basic block control flow came from. Phi instructions must appear at the beginning of
a basic block and there must be no non-phi instructions between a phi and the start of a
block.

The 'call' instruction is used to perform a function call. Its basic syntax is the following.

Table 40: 'call' instruction syntax

<result_value> = call <type> [<function_type>*] <function_value>(<function
arguments>)
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The argument <function_value> contains a pointer to the function being invoked. The
argument <type> corresponds to the call instruction's type and is also the function's return
type. The argument <function_type>* is a pointer to the function's signature type. Extra
arguments may be defined (e.g., calling convention, parameter attributes, function attributes,
etc) that provide information to the optimizer.

The 'va_arg' instruction implements the va_arg macro in C. It has the following syntax.

Table 41: 'va_arg' instruction syntax

<result_value> = va_arg <va_list*> <arg_list>, <argument_type>

It loads an argument from the list <arg_list> that has <arg_type> type. The <arg_list> points
then to the next argument.

The 'landingpad' instruction is used to represent exception handling in LLVM. It specifies the

basic block where the exception lands and corresponds to the 'catch' code found in a
try/catch sequence. The 'landingpad' instruction has two forms:

Table 42: 'landingpad' instruction first form

<result_value> = landingpad <result_type> personality <type> <pers_func>
<clause>+

Table 43: 'landingpad' instruction second form

<result value> = landingpad <result_type> personality <type> <pers_func>
cleanup <clause>*

The <result_value> has the the type <result_type>. The <pers_func> argument refers to the
personality function that is used for this try/catch sequence. The personallity function (e.g.
___gxx_personality_v0 in C++) defines an exception handling behavior and receives the
context of the exception, an exception structure containing the exception object type and
value, and a reference to the exception table for the current function.

The 'landingpad' instruction must have either the cleanup flag or at least one <clause>

argument. There are two types of clauses, the catch and the filter clause. They have the
following syntax.

Table 44: Catch close syntax

<clause> := catch <type> <value>
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Table 45: Filter close syntax

<clause> := filter <array constant type> <array value>

The argument of the filter clause must have an array type of constant values.

Intrinsic Functions

LLVM supports several intrinsic functions that constitute an extension mechanism for the
LLVM IR. Their name must always start with the prefix “llvm.” Intrinsic functions cannot have a
body specified so they appear as function declarations in the LLVM code. They can only be
used in a call or invoke instruction.

LLVM Identifiers

LLVM provides local and global identifiers. Local identifiers comprise register names and
named types (e.g., structures) and global identifiers comprise functions and global variables.
Local identifiers must start with the prefix character '%' and global ones with '@'".

The next table shows some examples of LLVM identifiers.

Table 46: LLVM identifiers

%X, @main Named values with their prefix.

%0, @10 Unnamed (unsigned numeric) values with
their prefix.

Module

The Module is a translation unit of an input program and constitutes the top level structure in
the LLVM IR. It contains global variables and functions.

Global Variable

Global variables are accessed through pointers, as they define memory locations. A global
variable has several arguments and attributes (e.g., address space, linkage type, visibility
style, alignment, etc), which define the variable.

Function

A function, like global variables, is accessed by a pointer to its memory location.
The basic syntax of a function definition is the following.
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Table 47: Function definition basic syntax

define <return_type> @<function_name> ( [argument_list] ) { ... }

A function definition contains a list of basic blocks and each block contains a sequence of
LLVM instructions, ending in exactly one terminator instruction. A function (definition and
declaration) might have several attributes (e.g., parameter attributes, linkage type, calling
convention, alignment, etc), which define the function.

Basic Block

Each basic block starts with a label, contains a list of instructions and must end with a
‘terminator’ instruction (e.g., ret, indirectbr, switch, etc). The first block in a function is always
executed immediately on entrance to the function and cannot have any predecessor basic
blocks. For that reason the first block can never have 'phi instructions.

Constants

Constants constitute one more kind for LLVM identifiers. LLVM supports several types of
constants (e.g., boolean, integer, array, vector, etc) both of primitive and derived types.
Constants with void or x86mmx type are not specified.

The next table shows some examples of constants.

Table 48: Examples of constants

true, false boolean constants of il type

4,15 integer constants

null a constant of pointer type
[i32,1,i322,i32 3] a constant array of type [3 x i32]

{ i8* null, i32 2, float 3.0 } a constant structure of type {i8%, i32, float }
Constant Expressions

Constant expressions are used as constants involving other constants. They perform the
following LLVM operations on constants:

* binary operations

» bitwise operations

e conversion operations
» getelementptr

s icmp
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« fcmp

* select

e aggregate operations
e vector operations

The restrictions on operands are the same as those with the corresponding instructions.

E.Psallida

35



Relational Representation of the LLVM Intermediate Language

3. Relational Representation of the LLVM IR

In this chapter we describe how we represent the LLVM intermediate form of programs as
relations, typically stored as database tables. Our implementation takes a program in LLVM
IR format as input and produces the relation contents (EDB predicates). This constitutes the
pre-processing step for a pointer analysis. After this step, new relations (IDB predicates) can
be derived from the existing ones using the Datalog language. The declarativeness of Datalog
and its ability to define recursive relations makes it ideal for specifying complex program
analysis algorithms.

3.1 Background

Datalog is a declarative programming language originally introduced in the database domain.
Syntactically it is a subset of Prolog but it does not permit functions. It appeared in the
mid-1970's and the term “Datalog”, which suggests “data combined with logic”, was originally
coined by David Maier. It is based on first-order logic and provides support for deductive
inferences, including recursive rules. A Datalog program is a set of clauses. A clause
comprises a head and/or a body, both of which contain atoms. An atom consists of a
predicate name followed by a list of arguments, each of which corresponds to one of the
predicate's roles. In logic, predicates are either properties that may be held by individual
values or relationships that may apply to multiple values. There are three kinds of clauses:
facts, constraints and rules. Unlike Prolog, Datalog programs are guaranteed to terminate.

EDB and IDB Predicates

Relations are the main Datalog data type. Each relation is a predicate stored as a database
table. The facts of a predicate correspond to table rows and each row comprises a tuple of
data elements. All rows in a given table must have the same number of data elements.
Hence, a column in a table consists of all of the data elements occupying the corresponding
position in the facts of the predicate. Moreover, all of the elements of a column must be of the
same type.

The predicates that are produced from our implementation are called EDB (extensional
database) as they hold the facts that are explicitly entered into the database. Further
information can be computed with /DB predicates. IDB (intentional database) predicates are
computed with rules. A rule is used to derive new facts from existing ones. It consists of two
parts separated by a left arrow. The left part of the arrow is the head and the right the body of
the rule. The rule specifies that if the body is true then the head will also be true and a new
fact can then be derived.

In our implementation we use LogiQL [11], which is a Datalog dialect by LogicBlox Inc. It
supports standard Datalog concepts, such as predicates and inference rules, as well as types
and constraints. We follow the convention of capitalizing the first letter of variable names,
while writing predicate names in lower case concatenating two different words with the *_'

E.Psallida 36



Relational Representation of the LLVM Intermediate Language
character.

Entity Tvpe and Refmode Declarations

Apart from the built-in types (e.g., string, int, etc) new types can be defined, called entity
types. Entity type declarations specify the kind of entities and their representation. A
declaration consists of two parts separated by a right arrow. The left part consists of a
predicate name giving the name of the entity type. For example, the next table shows how
the 'instruction’ entity type could be declared.

Table 49: The entity type 'instruction’

instruction(lnsn) -> .

In this example there is no information given about how instruction entities are represented.
The right part of the arrow consists only of a period, which signifies the end of the declaration.
Refmodes can be used in cases as this to identify the individual elements of the entity. A
refmode predicate constitutes the primary key that identifies the entity and it is declared at the
same time as the entity.

Table 50: Entity type declaration with refmode

instruction(Insn), instruction:id(Insn:ld) -> string(ld).

In the above example ‘instruction’ is an entity type and 'instruction:id' is a refmode predicate
for it. This declaration specifies that instructions are identified by their id and this id is
represented as a string.

Constraints

We can express restrictions on our data using constraints. A constraint has the same syntax
as a type declaration, two parts separated by a right arrow. The left part of the arrow indicates
the predicate being constrained and the right part indicates the restrictions that facts must
satisfy. Constraints are checked at runtime to ensure that they are in no way violated by the
input data. We will see several examples of constraints in the modeling of the LLVM IR,
below.

3.2 Representation of the LLVM Type System

We declare the entity 'type' with refmode as follows.

Table 51: The entity 'type’

type(Type), type:id(Type:ld) -> string(ld).

'type’ is an entity type and 'type:id' is a refmode predicate for it. This declaration specifies that
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types are identified by their id and this id is represented as a string.

As mentioned previously, the LLVM type system consists of primitive and derived types.
These two kind of types are declared as subtypes of 'type' as follows.

Table 52: Primitive type declaration

primitive_type(Type) -> type(Type).

Table 53: Derived type declaration

derived_type(Type) -> type(Type).

Both primitive and derived types are entities identified by their id 'Type'.

The next table shows how the primitive type hierarchy can be declared.

Table 54: The primitive type hierarchy

integer_type(Type) -> primitive_type(Type).
fp_type(Type) -> primitive_type(Type).

void_type[ ] = Type -> primitive_type(Type).
label type[ 1 = Type -> primitive_type(Type).

metadata_type[ ] = Type -> primitive_type(Type).

Integer and floating point types are considered primitives types. We also construct some
standard types, as they are used often in several of our declarations, as the next table shows.

Table 55: Standard primitive types

void_type[ ] = Type <- primitive_type(Type), type:id(Type:"void").
label _type[ ] = Type <- primitive_type(Type), type:id(Type:"label").

metadata_type[ ] = Type <- primitive_type(Type), type:id(Type:"metadata").

The 'void_type', 'label_type' and 'metadata_type' predicates are functional predicates.
Functional predicates have at most one value for a certain key. For instance, the 'void_type'
predicate that has an empty key can have only one value, which must be a primitive type and
have the string value “void”.
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The next table shows how the derived type hierarchy can be declared.

Table 56: The derived type hierarchy

function_type(Type) -> derived_type(Type).
vector_type(Type) -> derived type(Type).
pointer_type(Type) -> derived_type(Type).
aggregate_type(Type) -> derived_type(Type).
array_type(Type) -> aggregate_type(Type).

struct_type(Type) -> aggregate_type(Type).

Arrays and structures are considered aggregate types. We also declare a number of
functional predicates to represent the structure of derived types (e.g., component type,
number of elements, address space, etc). For example, the vector and the function type can
be represented as follows.

Vector type

The vector type requires a size (number of elements) and a component type. We declare the
following predicates describing the vector type.

Table 57: 'vector_type:size' and 'vector_type:component' predicates

vector_type:size[Type] = Size -> vector_type(Type), int[64](Size).

vector_type:component[Type] = Comp -> vector_type(Type), type(Comp).

In the 'vector_type:size' predicate the key Type is of type 'vector_type' and its value isArial
Size, which is a 64-bit integer. In the 'vector_type:component' predicate the key Type is of
type 'vector_type' and has a value Comp, which is of type 'type'.

For example, if we have the vector type < 5 x i32 > we get the following tables.

Table 58: The 'vector_type:size' table

vector type id size
<5xi32> 5
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Table 59: The 'vector_type:component' table

vector type id component type id
<5xi32> i32

Constraints

A vector type has some restrictions that it must satisfy and which can be expressed using
constraints. For example:

1. Avector type must have a size and a component type.

2. The size must be larger than O.

3. The component type can be any integer or floating point type,
or a pointer to these types.

The first restriction can be declared by the following two mandatory role constraints.

Table 60: Mandatory role constraints for the vector type

vector_type(Type) -> vector_type:component[Type] = .

vector_type(Type) -> vector_type:size[Type] = _.

The above constraints declare that the role of having a component type and a size is
mandatory for each vector type. We use the anonymous variable as we don't care what the
size or the component is, only that they must exist.

The second restriction can be expressed as follows.

Table 61: Constraint for the size of vector

vector _type:size[ ] = Size -> Size > 0.

In this constraint the anonymous variable is used as we don't care what the vector type is,
only that it must have size larger than 0.

The third restriction can be expressed as follows.

Table 62: Constraint for the component type of vector

vector_type:component[_] = Comp ->
integer_type(Comp);
fp_type(Comp);
pointer_type:integer(Comp);
pointer_type:fp(Comp).
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The 'pointer_type:integer' and pointer_type:fp' predicates are IDB predicates and have been
declared as follows.

Table 63: The 'pointer_type:integer' predicate

pointer_type:integer(Type) <-
pointer_type:component[Type] = Comp, integer_type(Comp).

The 'pointer_type:integer' predicate specifies that if 'Type' is of pointer type and has an integer
type as its component then 'Type' is a pointer to integer.

Table 64: The 'pointer_type:fp' predicate

pointer_type:fp(Type) <- pointer_type:component[Type] = Comp, fp_type(Comp).

The 'pointer_type:fp' predicate specifies that if "Type' is of pointer type and has a floating type
as its component then 'Type' is a pointer to floating point.

Function type

A function type consists of a return type and a list of formal parameters. We declare the
following predicates describing the function type.

Table 65: Function type predicates

function_type:return[Type] = Ret -> function_type(Type), type(Ret).

function_type:params|[Type, Index] = Arg ->
function_type(Type), int[64](Index), type(Arg).

function_type:nparams[Type] = Total -> function_type(Type), int[64](Total).

The predicate 'function_type:return' defines that the return type of a function type is of type
'type'. The predicate 'function_type:params' defines both Type and Index variables as its key.
It indicates the type of an argument at the specified index for the function type Type. The
index is represented as a 64-bit integer. The predicate 'function_type:nparams' defines the
number of arguments of the function type Type'.

For instance, if we have the function type i32 (i32, i8*) we get the following tables.

Table 66: 'function_type:return' table

function type id return type id
i32 (i32, i8%*) i32
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Table 67: 'function:type:params’ table

function type id index parameter type id
i32 (i32, i8*) 0 i32
i32 (i32, i8*) 1 i8*

Table 68: 'function:type:nparams' table

function type id number of parameters
i32 (i32, i8%*) 2

Constraints
A function type must also satisfy the following constraint:

* The return type is any type other than label and metadata.

Table 69: Constraint for the return type of function type

function_type:return[_] = Ret -> Imetadata_type[ ] = Ret, !label type[] = Ret.

Function

The next table shows how we declare the entity 'function’ with refmode.

Table 70: The entity 'function’

function(Func), function:id(Func:Ref) -> string(Ref).

An LLVM function consists of a return type, a name, an argument list and a variety of optional
attributes. We mention here some of the predicates we have declared.

Table 71: Function predicates

1. function:name[Func] = Name -> function(Func), string(Name).
2. function:type[Func] = Type -> function(Func), function_type(Type).

3. function:param[Func, Index] = Param->
function(Func), int[64](Index), variable(Param).

4. function:nparams[Func] = Total -> function(Func), int[64](Total).

The first predicate holds the name of a function, which is a string value. The second holds the
function type, which constitutes the function's signature. The third predicate indicates the
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function formal parameters at a specified index. The last predicate holds the number of formal
parameters in the function.

Constraints
One of the constraints that must be satisfied is that the number of formal parameters must

match those declared in the function type. This can be declared by the following rule that
computes the number of parameters in a function from the corresponding function type.

Table 72: Constraint for the function

function:nparams[Func] = Total <-
function:type[Func] = Type, function_type:nparams[Type] = Total.

Instruction Operands

As mentioned previously, an instruction operand can be either a variable or a constant value
that has a type. We declare the variable and the immediate entity types with refmode, as
follows.

Table 73: Variable and immediate entities

variable(Var), variable:id(Var:Id) -> string(ld).

immediate(Imm), immediate:value(Imm:Id) -> string(ld).

Both variable and constant entities are represented as string values. We also declare two
functional predicates to hold their type.

Table 74: 'variable:type' and 'immediate:type' predicates

variable:type[Var] = Type -> variable(Var), type(Type).

immediate:type[Imm] = Type -> immediate(Imm), type(Type).

We declare the entity 'operand'.

Table 75: The entity 'operand’

operand(Operand) -> .

Operands cannot be constructed directly from primitive values. Instead they are used to unify
the concepts of variables and constants. For this reason we declare the 'operand' as a
constructor of the variable and constant entities.
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Table 76: The constructor for the entity 'variable'

operand:by variable[Var] = Operand -> variable(Var), operand(Operand).
lang:constructor(*operand:by variable).

Table 77: The constructor for the entity 'immediate’

operand:by immediate[Imm] = Operand -> immediate(Imm), operand(Operand).
lang:constructor(’ operand:by_immediate).

The operand's type can be computed by the following IDB predicates.

Table 78: The 'operand:type' from variable

operand:type[Operand] = Type <-
operand:by variable[Var] = Operand,
variable:type[Var] = Type.

Table 79: The 'operand:type' from immediate

operand:type[Operand] = Type <-
operand:by_immediate[Imm] = Operand,
immediate:type[Imm] = Type.

If the operand is constructed by a variable then its type is the variable's type. If it is
constructed by an immediate then it has the same type as the corresponding immediate.

We also declare the following IDB predicates that compute whether an operand is a variable
or an immediate value.

Table 80: The 'operand:as_variable' predicate

operand:as_variable[Operand] = Var <- operand:by_variable[Var] = Operand.

Table 81: The 'operand:as_immediate’ predicate

operand:as_immediate[Operand] = Imm <- operand:by_immediate[Imm] = Operand.
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3.3 Representation of the LLVM Instruction Set

The next table shows how we declare the entity ‘instruction’ with refmode.

Table 82: The entity 'instruction

instruction(Insn), instruction:id(Insn:ld) -> string(ld).

We represent all the useful information about the ‘instruction’ entity. For example:

1. Apart from instructions with void type, every instruction assigns its result to a variable.

Table 83: The 'instruction:to' predicate

instruction:to[Insn] = Var -> instruction(Insn), variable(Var).

We can also compute the resulting type of an instruction with the following IDB
predicate.

Table 84: The ‘'instruction:type' predicate

instruction:type[lnsn] = Type <-
instruction:to[lnsn] = Var,variable:type[Var] = Type.

2. The sequence of instructions in a file is specified by the following predicate that given
an instruction returns the next instruction (if it is not the last one).

Table 85: The 'instruction:next' predicate

instruction:next[Insn] = Next -> instruction(Insn), instruction(Next).
3. Every instruction has a function that contains it.

Table 86: The 'instruction:function' predicate

instruction:function[Insn] = Func -> instruction(lnsn), function(Func).

We declare then the several LLVM instructions as subtypes of the entity type 'instruction’ as
shown in the table below.
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Table 87: LLVM instructions

add_instruction(lnsn) -> instruction(lnsn).
bitcast_instruction(lnsn) -> instruction(lnsn).
load_instruction(Insn) -> instruction(Insn).

getelementptr_instruction(Insn) -> instruction(Insn).

Each instruction is identified by its id 'Insn'. The naming convention we follow for the predicate
names of the instructions, is the concatenation of the instruction's opcode name with the suffix

'_instruction'. We represent some of the LLVM instructions as follows.

Binary Operations

Binary and bitwise binary operators (add, sub, mul, and, or etc) require two operands of the
same type and produce a resulting value of the same type as well. For example, the 'add’

instruction can be represented as follows:

We declare the following predicates that hold the two operands of the 'add' instruction.

Table 88: The 'add_instruction:first_operand' predicate

add_instruction:first operand[insn] = Left ->
add_instruction(lnsn), operand(Left).

Table 89: The 'add_instruction:second_operand' predicate

add_instruction:second_operand[Insn] = Right ->
add_instruction(lnsn), operand(Right).

The 'add' instruction must also satisfy the following constraints:

1. Every 'add 'instruction must have two operands.

Table 90: Constraints for the 'add’ instruction

add_instruction(lnsn) -> add_instruction:first_ operand[Insn] = _

add_instruction(lnsn) -> add_instruction:second_operand[Insn] = _

2. The two operands must be integer or vector-of-integer. Both operands and the
resulting value must have identical types.
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Table 91: Constraint for the 'add' instruction type

add_instruction(lnsn), instruction:type[lnsn] = Type ->
integer_type(Type); vector_type:integer(Type).

The 'instruction:type' predicate holds the type of the resulting value, which must be integer or
vector of integer values type. We declare then that both operands must have the same type
as the type of the 'instruction:type' predicate.

Table 92: Constraints for the 'add' instruction and 'instruction' type

instruction:type[lnsn] = Type, add_instruction:first_operand[insn] = Left ->
operand:type[Left] = Type.

instruction:type[lnsn] = Type, add_instruction:second_operand[Insn] = Right ->
operand:type[Right] = Type.

Conversion Operations

Conversion operations (trunc, zext, sitofp, bitcast, etc) take a single operand and a type and
produce a resulting value of the same type as the type argument. For example, the 'trunc'
instruction can be represented as below.

Table 93: The 'trunc' instruction

trunc_instruction:from[Insn] = Value ->
trunc_instruction(lnsn), operand(Value).

trunc_instruction:to_type[lnsn] = Type ->
trunc_instruction(lnsn), type(Type).

The above predicates hold the operand and the type argument of the 'trunc' instruction. We
also compute the operand's type with the following rule:

Table 94: The 'trunc_instruction:from_type' predicate

trunc_instruction:from_type[lnsn] = Type <-
trunc_instruction:from[Insn] = Value,
operand:type[Value] = Type.

The 'trunc’ instruction must also satisfy a number of constraints:

1. Every 'trunc' instruction must have an operand and a type.

E.Psallida 47



Relational Representation of the LLVM Intermediate Language

Table 95: Constraints for the 'trunc' instruction

trunc_instruction(lnsn) -> trunc_instruction:from[Insn] = _.

trunc_instruction(lnsn) -> trunc_instruction:to_type[lnsn] = .

2. The operand, the type argument and the resulting value must be integers or vectors (of
the same number of integer values).

Table 96: Constraints for the 'trunc' instruction type

trunc_instruction:from_type[ ] = Type ->
integer_type(Type); vector_type:integer(Type).

trunc_instruction:to_type[ | = Type ->
integer_type(Type); vector_type:integer(Type).

trunc_instruction:to_type[lnsn] = Type ->
instruction:type[lnsn] = Type.

The first two predicates specify that the operand and the argument type are of integer or of
vector of integers type. The last predicate specifies that the instruction type (the resulting

value type) must be the same as the argument type.

Table 97: Constraint for the resulting value type of 'trunc’

trunc_instruction(lnsn),
trunc_instruction:from_type[lnsn] = From,
trunc_instruction:to_type[lnsn] = To

->
vector:compatible(From, To).

The 'vector:compatible' IDB predicate derives the fact that two vectors are compatible if they
have the same size.

Table 98: The 'vector:compatible' idb predicate

vector:compatible(Typel, Type2) <-
vector_type:size[Typel] = Size,
vector_type:size[Type2] = Size.

Terminator Instructions

Terminator instructions (ret, br, switch, invoke, etc) produce control flow and no values. The
only exception is the 'invoke' instruction. We show below how we represent the 'ret' and the

'invoke' instructions.
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The 'ret' instruction optionally accepts an operand, the return value. We declare the following

predicates that form the 'ret' instruction.

Table 99: The 'ret' instruction

ret_instruction:void(lnsn) -> ret_instruction(Insn).

ret_instruction:value[lnsn] = Value ->
ret_instruction(lnsn), operand(Value).

The 'ret' instruction specifies also whether a function is well formed. A function is ill formed:

1. ifitit has a non-void return type and contains a ‘ret* instruction with no
return value or

2. ifit has a return value with a type that does not match its type, or

3. ifit has a void return type and contains a ‘ret’ instruction with a return value.

We declare the following three rules to specify that a function is ill formed as shown in the
table below.

Table 100: Rules that specify if a function is well formed

1. function:illformed(Func) <-
void_type[ ] = Void,
function:type[Func] = Type,
function_type:return[Type] != Void,
ret_instruction:void(lnsn),
instruction:function[Insn] = Func.

2. function:illformed(Func) <-
void_type[ ] = Void,
function:type[Func] = Type,
function_type:return[Type] = Ret,
Ret = Void,
ret_instruction[Insn] = Value,
operand:type[Value] != Ret,
instruction:function[Insn] = Func.

3. function:illformed(Func) <-
void_type[ ] = Void,
function:type[Func] = Type,
function_type:return[Type] = Void,
ret_instruction(lnsn),
Iret_instruction:void(Insn),
instruction:function[Insn] = Func.
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The following rule can now derive the fact that a function is well formed if it is not ill formed
(i.e., none of the above three rules is true).

Table 101: The 'function:wellformed' idb predicate

function:wellformed(Func) <- function(Func), !function:illformed(Func).

The 'invoke' instruction takes an operand that specifies the function where control transfers.

Table 102: The 'invoke' instruction

invoke_instruction:function[insn] = Func ->
invoke_instruction(lnsn), operand(Func).

We specify two forms of the ‘'invoke' instruction, direct and indirect. In direct invocations the
function operand is an immediate value and in indirect invocations a variable. The operand's
type is the function's signature. We declare these two forms as subtypes of the 'invoke'
instruction as below:

Table 103: The direct and indirect 'invoke' instruction form

direct_invoke_instruction(Insn) -> invoke_instruction(lnsn).

indirect_invoke_instruction(lnsn) -> invoke_instruction(insn).

We also declare the following IDB predicates that compute whether an ‘invoke' instruction is
direct or indirect.

Table 104: Idb predicates for the 'invoke' instruction

direct_invoke_instruction(lnsn) <-
invoke_instruction:function[insn] = Func,
operand:as_immediate[Func] = _

indirect_invoke_instruction(lnsn) <-
invoke_instruction:function[Iinsn] = Func,
operand:as_variable[Func] = _.

The 'invoke' instruction takes a list with the function's actual arguments.

Table 105: The 'invoke_instruction:arg' predicate

invoke_instruction:arg[lnsn, Index] = Arg ->
invoke_instruction(lnsn), int[64](Index), operand(Arg).
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We also compute the function signature and its return type with the following IDB predicates
as shown n the table below.

Table 106: The 'invoke_instruction:signature' idb predicate

invoke_instruction:signature[lnsn] = Type <-
invoke_instruction:function[insn] = Func,
operand:type[Func] = Type.

invoke_instruction:return_type[lnsn] = Type <-
invoke_instruction:signature[insn] = Signature,
function_type:return[Signature] = Type.

The 'invoke' instruction takes also two labels, a 'normal’ and an ‘exceptional label.

Table 107: The 'invoke' instruction labels

invoke_instruction:normal_label[lnsn] = Normal ->
invoke_instruction(lnsn), variable:label(Normal).

invoke_instruction:exception_label[lnsn] = Exception ->
invoke_instruction(lnsn), variable:label(Exception).

The 'invoke' instruction must satisfy a number of constraints. We mention some of them
below:

1. Every 'invoke' instruction must have a 'normal’ and an 'exceptional’ label'.

Table 108: Constraints for the 'invoke' instruction labels

invoke_instruction:normal_label[ ] = Normal ->
variable:label(Normal).

invoke_instruction:exceptional _label[ ] = Exceptional ->
variable:label(Exceptional).

2. The type of the 'invoke' instruction s also the type of the return value. Functions that
return no value are marked void.

Table 109: Constraint for the ‘invoke’ instruction return value type

invoke_instruction:return_type[lnsn] = Type, void_type[] != Type ->
instruction:type[lnsn] = Type.

As mentioned earlier, the ‘instruction:type' predicate holds the type of the resulting value for
each instruction. In this case, the 'invoke_instruction:return_type' predicate specifies that if

E.Psallida 51



Relational Representation of the LLVM Intermediate Language

the return type of the function's signature is not void then it must be the same as the type of
the 'invoke' instruction. This can also be declared as below:

Table 110: Constraint for the 'invoke' instruction return type

invoke_instruction:return_type[lnsn] = Type, void_type[ ] = Type ->
linstruction:type[lnsn] = _.

If the return type is void, then the 'invoke' instruction must return no type.
Aggregate Operations

As mentioned previously, arrays and structures are considered aggregate types. Aggregate
operations comprise the instructions 'insertvalue' and 'extractvalue'. We describe how we
represent the 'extractvalue’ instruction.

The 'extractvalue’ instruction extracts the value of a member field from an aggregate value.
It takes an operand that represents the aggregate value.

Table 111: The 'extractvalue' instruction

extractvalue_instruction:base[lnsn] = Aggregate ->
extractvalue_instruction(Insn), operand(Aggregate).

The 'extractvalue’ instruction takes also a number of constant indices that specify which value
to extract.

Table 112: Predicates for the indices of the 'extractvalue’ instruction

extractvalue_instruction:index[Insn, Index] = Idx ->
extractvalue_instruction(lnsn), int[64](Index), immediate(ldx).

extractvalue_instruction:nindices[Insn] = Total ->
extractvalue_instruction(lnsn), int[64](Total).

We also declare the 'extractvalue_instruction:nindices' predicate that holds the total number
of the indices.

The result is the value at the position in the aggregate specified by the indices. We can get
the resulting type for each dereference with the following rules as they compute the type of
the value of the aggregate at the specified index.

At position 0 the type is the same as the type of the operand argument. When the aggregate
is of array type we compute the resulting type for each dereference by its component type.
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Table 113: Rules to compute the resulting type for each dereference in the 'extractvalue’ instruction

extractvalue_instruction:interm_type[lnsn, 0] = Type <-
extractvalue_instruction:base[Insn] = Aggregate,

operand:type[Aggregate] = Type.

extractvalue_instruction:interm_typel[insn, Index + 1] = Comp <-
extractvalue_instruction:interm_type[Insn, Index] = Type,
array_type:component[Type] = Comp.

In order to determine the exact field of the struct type that we're trying to extract, we must be
able to compute the exact integer values that would be produced if we were to evaluate the
indexing constants, so that we can match against the fields of the operand argument. We
declare the following predicate that represents a map of [constant -> int]. For each constant

index, it returns its integer value.

Table 114: The 'constant:toint' predicate

constant:tolnt[Constant] = Value -> immediate(Constant), int[64](Value).
Now we can compute the resulting type for each dereference by the following rule.

Table 115: The 'extractvalue_instruction:interm_type' idb predicate

extractvalue_instruction:interm_typel[insn, Index + 1] = Comp <-
extractvalue_instruction:interm_type[lnsn, Index] = Type,
extractvalue_instruction:index[Insn, Index] = Constant,

constant:tolnt[Constant] = Value,
struct_type:field[Type, Value] = Comp.

The following rule computes the type of the 'extractvalue’ instruction, which is the type of the
value at the position specified by the indices.

Table 116: The 'extractvalue_instruction:value_type' idb predicate

extractvalue_instruction:value_type[lnsn] = Type <-
extractvalue_instruction:nindices[Insn] = Total,
extractvalue_instruction:interm_typel[ilnsn, Total] = Type.

This type must be the same as the type of the 'instruction:type' predicate for a given id.

Table 117: The 'extractvalue_instruction:value' predicate

extractvalue_instruction:value_type[lnsn] = Type ->
instruction:type[lnsn] = Type.
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Another constraint that must be satisfied is that the operand must be a value of struct or array

type.

Table 118: The 'extractvalue_instruction:base_type' idb predicate

extractvalue_instruction:base_type[lnsn] = Type <-
extractvalue_instruction:base[Insn] = Aggregate,
operand:type[Aggregate] = Type.

We compute the type of the operand value as above and then we declare the constraint:

Table 119: Constraint for the base type of the 'extractvalue' instruction

extractvalue_instruction:base_type[ ] = Type -> aggregate_type(Type).

We represent the rest of the instructions with the same principles as described above.
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Conclusion

In this project we introduced a relational representation for the LLVM IR, a low level language
with strictly defined semantics. We presented the type system and the instruction set of the
language and how they can be represented relationally into a Datalog workspace.
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Abbreviations
SSA Static Single Assignment
SIMD Single Instruction Multiple Data
ACM Association for Computing Machinery
IR Intermediate Representation
EDB Extensional Database
IDB Intentional Database
E.Psallida
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