
A Generic Object-Oriented Constraint-Based
Model for University Course Timetabling

Kyriakos Zervoudakis and Panagiotis Stamatopoulos

Department of Informatics and Telecommunications,
University of Athens,

Panepistimiopolis, 157 84 Athens, Greece
{quasi, takis}@di.uoa.gr

Abstract. The construction of course timetables for academic institu-
tions is a very difficult problem with a lot of constraints that have to be
respected and a huge search space to be explored, even if the size of the
problem input is not significantly large, due to the exponential number
of the possible feasible timetables. On the other hand, the problem itself
does not have a widely approved definition, since different variations of it
are faced by different departments. However, there exists a set of entities
and constraints among them which are common to every possible instan-
tiation of the timetabling problem. In this paper, we present a model of
this common core in terms of Ilog Solver, a constraint programming
object-oriented C++ library, and we show the way this model may be
extended to cover the needs of a specific academic unit.

1 Introduction

The construction of university timetables falls under the class of scheduling
problems. Its difficulty [8], along with the fact that an educational institution
has to tackle it once or twice a year, has drawn the attention of researchers
from various fields, even as long ago as the 1960s [15]. Since then, the problem
has been tackled with various approaches including graph coloring [23], network
flows [6] and operations research methods [1]. During the last years, various
artificial intelligence techniques have also been used against the problem, like
tabu search [3], [30], simulated annealing [9], [27], genetic algorithms [24], [10]
and constraint programming [16], [22], [19], [11], [26].

It is surprising that, even now, after all these years, not all educational in-
stitutions use automated tools to construct timetables. A survey regarding this
issue in British universities [5] showed that only 21% of the universities used a
computer for constructing examination timetables. 37% used a computer only
for assisting the process and 42% did not use computers at all. Although these
data concern examination timetabling, it seems that the numbers are similar for
course timetabling case as well.

One might wonder about the reasons for this situation. In [2], it is mentioned
that many institutions have automated solutions, but they are so tailored to
each institution’s case that they cannot be used by others. It is true that the

E. Burke and W. Erben (Eds.): PATAT 2000, LNCS 2079, pp. 28–47, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Generic Object-Oriented Constraint-Based Model 29

differences between institutions are many, especially as far as quality criteria
are concerned. That makes the use of one tool that was implemented for one
university inappropriate for another. What is more, it is possible for a tool that
was developed for one institution to be inapplicable for that same institution if
some changes in the curricula occur.

In [2] the basic rules that govern timetables are also mentioned. In spite
of the differences between institutions, some basic categories of rules can be
recognized. The quality determination criteria can also be easily categorized and
many similarities can be identified. For example, in all cases the same hard rules
hold, such as that one teacher cannot give more than one lecture simultaneously
or that one student cannot attend more than one lecture at a time. Most quality
criteria have to do with the distribution of certain groups of lectures in time, like
uniform distribution of the lectures in each day of the week, dense scheduling
of these lectures for every day, upper bounds in the time that a teacher or a
student can be occupied in teaching activities and so on.

Constraint programming is a problem solving methodology that allows the
user to describe the data of a problem and the constraints that govern them with-
out explicitly handling these constraints. This methodology fits perfectly to the
timetabling problem, as someone might define the involved entities and express,
in a declarative way, what is a legal and good timetable. On the other hand, it
would be very good, from the software engineering point of view, if the modeling
were to follow an object-oriented approach, as the obtained result would then
be as general as we would like it to be at the same time as having unbounded
opportunities to be specialized as much as we would like, in order to capture
any specific timetabling situation. Fortunately, the combination of constraint
programming and object-oriented design is provided by an existing commercial
C++ library, the Ilog Solver [21], [20]. In this paper, a generic model for uni-
versity course timetabling, which is based on Ilog Solver, is presented. The
application of this model on the specific course timetabling problem faced by the
Department of Informatics and Telecommunications of the University of Athens
is also described.

2 University Course Timetabling

Most university timetabling problems are based on the basic student–course
model [7]. Let U = {u1, u2, . . . , u|U |} be the set of students, S = {s1, s2, . . . , s|S|}
be the set of courses taught, di be the number of teaching periods for course
si, Sj = {sj1 , sj2 , . . . , sj|Sj |} be the set of courses student j wishes to attend,
T = {t1, t2, . . . , t|T |} be the set of teachers, t : S �→ T a function mapping each
course to the teacher that teaches it and xi,k, 1 ≤ k ≤ di, 1 ≤ xi,k ≤ p the time
that the kth teaching period of course si is given, with p the number of possible
teaching periods of the institution (the maximum length of the timetable). A
solution to the problem is any assignment to the variables xi,k such that the
following constraints are respected:

30 K. Zervoudakis and P. Stamatopoulos

– A teacher cannot give more than one course at a time
∑
i,k

[xi,k = m][tn = t(si)] ≤ 1, ∀m,n; (1)

– A student cannot attend more than one course at a time∑
i,k

[xi,k = m][si ∈ Sj] ≤ 1, ∀j,m. (2)

The above model gives complete freedom to the student to select the courses
he/she takes and is close to the way most universities operate. If, in addition, a
set of classrooms C = {c1, c2, . . . , c|C|} is added, as well as a constraint

∑
i,k

[xi,k = m][cli,k = cn] ≤ 1, ∀m,n (3)

where cli,k is the classroom where the kth teaching period of course si is con-
ducted, then the model becomes even more realistic. Within the framework of
this basic model, a number of more specialized, but common in practice, con-
straints can be expressed. For example, the unavailabilities of a teacher can be
taken into account by modifying constraint (1):

∑
i,k

[xi,k = m][tn = t(si)] ≤ avail(tn,m), ∀m,n (4)

where avail(tn,m) equals 1 if teacher tn is available in periodm, or 0 if not. Next,
a short introduction to the Ilog Solver library is given and, then, an object-
oriented constraint programming model of the timetabling problem, based on
the student-course model, is presented.

3 Ilog Solver

Ilog Solver [21], [20] is a constraint programming object-oriented C++ library.
Some information on Solver is necessary in order for the model that follows
to be understood. The type IlcInt corresponds to the C++ long type. Integer
constraint variables are represented by the class IlcIntVar. A command like
IlcIntVar x(m,0,10) creates a constrained variable x with the integers from 0
to 10 included in its domain. m is an object of the class IlcManager to which all
constrained variables and constraints between them are connected. The method
IlcIntVar::removeValue(IlcInt a) removes value a from a variable’s domain
and the method IlcIntVar::setValue(IlcInt a) assigns value a to a variable.
The class IlcIntVarArray implements an array of constrained integer variables.
The call IlcIntVarArray t(m,10) creates an array of 10 constrained integer
variables which can be accessed, as usually, with the overloaded operator [].
Constraints are represented by the class IlcConstraint and can be created
with the overloaded C++ relational operators. If x and y are objects of the class

A Generic Object-Oriented Constraint-Based Model 31

IlcIntVar, the call IlcConstraint c(x>y) creates a constraint c that ensures
all values in x’s domain are greater than the minimum of y’s domain. In order for
a constraint to be posted, the method IlcManager::add() has to be used. The
above constraint, for example, can be posted with the call m.add(c). Posting
a constraint ensures that it will be considered by Solver’s internal constraint
propagation engine and that after any modification of a constrained variable,
the constraint network will be modified, in order to be brought to a certain
consistency degree. Solver uses a version of the AC-5 algorithm [28] to bring the
constraint graph to an arc-consistent state after any such modification. Finally,
Solver supports goal programming and gives the user the ability to define any
search algorithm of choice, like depth-first search (DFS), limited-discrepancy
search (LDS) and so on. We omit the details of the implementation in Solver
terms of these algorithms, since they are not necessary for the scope of this
paper.

4 Object-Oriented Modeling

The model for the university course timetabling problem we present in this
section aims to be as generic as possible. However, some simplifying assumptions
are commonplace in many universities. For example, the mathematical model
presented in Section 2 considers only the number of teaching periods for each
subject with no further constraints. For example, a four period subject can be
split in two two-hour lectures, one three-hour lecture and one one-hour lecture
and so on. It is usual for many universities for subjects to be partitioned in
lectures in a preprocessing step and this model follows this assumption. Time is
measured in multiples of a predetermined unit of time, further partitioning of
which is of no practical importance. This unit can be an hour, half an hour or
whatever. In the following, this unit will be referred to as a “teaching period”.
Also, there is a maximum number of such units within which the timetable has
to be constructed. A timetable is constructed for a week with D days and H
time units every day. The model, however, can be easily extended to cases where
timetables span within more than one week.

The similarity in format of the equations in the student–course model is
obvious. Teachers and classrooms are necessary resources for a lecture to take
place and each resource cannot support more than one activity at a time. Thus,
it is reasonable for the notion of resource to play a central role in the modeling of
the problem. It can also be seen that although a student is not actually a resource
for a lecture, the equations that define the constraints on students are of the same
form, since lectures that are taken by one student cannot be conducted at the
same time. In the original student–course model, every student is completely
free to take the course he/she chooses. This is true for many universities where
modularity is important. In other universities, a student can select from a set
of predetermined course offers. In any case, the net effect is that either because
of student preferences or because of predetermined management decisions, some
sets of lectures are formed and it is demanded that no two lectures of the same set

32 K. Zervoudakis and P. Stamatopoulos

be conducted at the same time. Thus, these sets are modeled like other resources
and will be called “lecture groups” from now on.

One more important issue is the criteria according to which the quality of
a timetable is measured, since, in practice, this is an optimization problem.
However, it would be very difficult to gather all such criteria and present a way
of implementing them with the model which follows. We will try to display by
example that the implementation of the most usual criteria is not only possible
but, indeed, easy within this framework.

4.1 Subjects

class c_Subject {
protected:
IlcIntVarArray StartVariables; };

The class c Subject represents a subject. StartVariables is an array of
constrained variables, each one representing the time in which a lecture of this
subject is scheduled. This class is used for logistic purposes, but also for calcu-
lating preferences regarding the distance between lectures of the same subject.

4.2 Lectures

class c_Lecture {
protected:
IlcInt Duration;
IlcIntVar Start;
IlcIntVar Classroom; };

The class c Lecture represents a lecture. It contains the two decision vari-
ables for each lecture: the starting time of the lecture and the classroom in which
it is conducted.

4.3 Unary Resources

class c_UnaryResource {
protected:
IlcIntVarArray TimeTable;
IlcIntVarArray LectureTimeUnits;

public:
void add(IlcIntVar start, IlcInt duration); };

As mentioned before, the notion of a unary resource is of central importance
in the modeling. The class c UnaryResource represents a unary resource: that
is, a resource that can only support one activity at a time. In order to declare
that a lecture uses a certain resource (any activity can of course require more
than one resource) the method add has to be called with parameter variables
Start and Duration of the corresponding lecture:

A Generic Object-Oriented Constraint-Based Model 33

void c_UnaryResource::add(IlcIntVar start, IlcInt duration) {
for (IlcInt i=0; i<duration; i++)
LectureTimeUnits[count++]=start+i; }

As can be seen above, for each time unit of a lecture’s duration, one vari-
able in array LectureTimeUnits is created. For example, if a resource supports
three lectures out of which the first has duration 2 time units and starting time
[0..2 4], the second duration 1 and starting time [8..9] and the third du-
ration 3 and starting time [12], then the array LectureTimeUnits will have
six elements (the sum of the lectures’ durations) which will be [0..2 4][1..3
5][8..9][12][13][14]. The array TimeTable has D*H elements which corre-
spond to the D*H time units of a timetable. Each one of them takes values
within the interval [-1..d], where d is the number of elements in the array
LectureTimeUnits. When all lectures have been added, then the Solver func-
tion inverse is called. This function’s declaration is

IlcConstraint IlcInverse(IlcIntVarArray f, IlcIntVarArray invf);

according to which if f ’s length is n and invf ’s length is m then

– If f [i] ∈ [0,m− 1] then invf [f [i]] == i,
– If invf [j] ∈ [0, n− 1] then f [invf [j]] == j.

The above constraint guarantees that during each time unit the resource supports
at most one activity.

4.4 Multiple Resources

class c_MultipleResource : public c_UnaryResource {
protected:
IlcInt Multiplicity;

public:
void add(IlcIntVar start, IlcIntVar classroom, IlcInt duration); };

In most cases, a unary resource can represent teachers and groups of lectures
that cannot be given simultaneously, since an activity will either require such a
resource or not. But this is not enough in the case of resources such as classrooms,
since a lecture can be given in any one of a certain set of classrooms. This
requirement is a disjunctive demand of a resource. In our case, all such resources,
let us say classrooms, are modeled as one multiple resource with multiplicity
equal to the number of the individual resources. The produced class was created
with minor modifications on the existing unary resource class:

– The array TimeTable has mult*D*H elements instead of D*H, where mult is
the multiplicity of the resource. Each D*H-tuple of this array corresponds to
one of the mult individual resources.

– In order for a lecture to be added to a resource, one more parameter is needed
along with the starting variable of the lecture and its duration, namely a
constrained variable representing the resource to which the lecture will be
eventually assigned. In the case of classrooms, this variable represents the
classroom in which the lecture will take place.

34 K. Zervoudakis and P. Stamatopoulos

– The add method is modified as follows:

void c_MultipleResource::add(IlcIntVar start,
IlcIntVar classroom, IlcInt duration) {

for (IlcInt i=0; i<duration; i++) {
LectureTimeUnits[count++]=start+i+classroom*D*H; } }

As can be seen, the elements of the array LectureTimeUnits are like the
ones in unary resources plus the term classroom*D*H which makes each of these
elements point to the D*H-tuple of the multiple resource corresponding to the
value of the variable classroom.

5 Application

We believe that the proposed model is general enough to cover most cases.
Its representative potential will be exhibited through one real problem, that of
constructing a course timetable for the Department of Informatics and Telecom-
munications of the University of Athens (DIT/UoA).

5.1 Curricula

The set of given courses and the teaching periods for each course are given. In
case the course cannot (or is not desired to) be given in one lecture, then it is
partitioned into two or more lectures of predefined duration. In this case, lectures
of the same course cannot be given in the same day. Each lecture is taught by
one or more teachers. If a course is given by another department, then it is
scheduled by that department. It can be required for a lecture to be given in a
specific classroom or in one of a subset of the available ones. In this case, a degree
of preference between classrooms can be given. The undergraduate curriculum
is organized over four years. Each course can be either obligatory for a certain
year or belong to a certain group of lectures which are called directions. It is
demanded that lectures of the same year which are either obligatory or belong
to the same group not be given simultaneously. Also, there is the possibility
for teachers to express certain personal constraints on the maximum number of
teaching hours in a day and the maximum number of days in which they are
occupied in teaching activities.

The above are hard constraints that have to be respected fully in order for a
timetable to be feasible. Apart from these, there are also several criteria accord-
ing to which the quality of a timetable is measured. It is desired that obligatory
lectures or lectures of the same direction and year have as few gaps as possible
between them during each day. It is also desired for such lectures to be as uni-
formly distributed during the timetabling period as possible, and it is desired
for lectures of the same course to have a reasonable distance in days between
them.

A Generic Object-Oriented Constraint-Based Model 35

5.2 Formulation

Let L = {l1, l2, . . . , l|L|} be the set of lectures, T = {t1, t2, . . . , t|T |} the set of
teachers, C = {c1, c2, . . . , c|C|} the set of classrooms and S = {s1, s2, . . . , s|S|}
the set of courses. There exists a function sub : L �→ S which maps every lecture
to the corresponding course. Let D be the number of teaching days in a week
and H the number of periods in every day. Let di be the duration of lecture li.
We define xi,1 = xi, xi,j = xi,j−1 + 1, j = 2, . . . , di. Let t(li) ⊆ T the teachers
of lecture li and G = {g1, g2, . . . , g|G|}, gi ⊆ L, the set of lecture groups. The
problem is to find the time and classroom for each lecture, so a solution is any
mapping sol : L �→ {0, 1, . . . , D ∗ H − 1} × C, sol(li) �→ (xi, cli) such that the
following constraints are respected:

– Any two lectures with one or more common teachers cannot be given simul-
taneously:

∑
i,j

[xi,j = k][tm ∈ t(li)] ≤ 1, 0 ≤ k ≤ D ∗H − 1, 1 ≤ m ≤ |T |.

– Any two lectures cannot be given simultaneously in the same classroom:
∑
i,j

[xi,j = k][cl(li) = cm] ≤ 1, 0 ≤ k ≤ D ∗H − 1, 1 ≤ m ≤ |C|.

– Any two lectures of the same group cannot be given simultaneously:
∑
i,j

[xi,j = k][li ∈ gm] ≤ 1, 0 ≤ k ≤ D ∗H − 1, 1 ≤ m ≤ |G|.

– Two lectures of the same course cannot be given in the same day:

sub(li) = sub(lj) ⇒ xi/H �= xj/H, 1 ≤ i, j ≤ |L|.
– The quality of a timetable is calculated according to three criteria which

are linearly combined with certain weights to produce the objective function
which is to be minimized:

• Uniform distribution of the teaching hours for every lecture group dur-
ing the week. For each lecture group, this is the difference between the
maximum and minimum number of teaching hours in a day during the
teaching week:

∑
g∈G

(
max

0≤d≤D−1

{ ∑
li∈g

di[xi/H = d]
}

− min
0≤d≤D−1

{ ∑
li∈g

di[xi/H = d]
})

.

• Gaps between lectures of the same group during each day:
∑

g∈G

∑
0≤d≤D−1 max({xi + di + 1 : xi/H = d, li ∈ g} ∪ {0})
− min({xi : xi/H = d, li ∈ g} ∪ {0}) − ∑

li∈g di

36 K. Zervoudakis and P. Stamatopoulos

• Distances between lectures of the same course. As mentioned before, it is
desired for these lectures to have a reasonable distance between them for
educational purposes. This is calculated through a user-defined function
pen : [1..D − 1] �→ {0, 1, . . .} as

∑
s∈S

pen(max{xi/H : sub(li) = s} − min{xi/H : sub(li) = s}).

The low-level similarities between this and the student–course model are
obvious. The way that the specialities of this case are implemented on top of the
core object model is outlined in the next section.

5.3 Subclasses

The basic unary resource class is subclassed to provide classes for the teacher
and lecture groups representation. Some extra features are added to provide new
characteristics for these classes. In the case of teachers, for example, the number
of days with teaching activities and the maximum number of continuous teaching
hours in every day are needed. Thus, two new features, which are calculated
appropriately, are added to this class:

class c_Teacher : public c_UnaryResource {
IlcIntVar OccupiedDays;
IlcIntVar MaxContinuous; };

In the case of lecture groups, two extra features are needed, namely the
measure of uniform distribution of teaching hours through the days of the week
and the sum of holes between lectures for all the days of the week:

class c_LectureGroup : public c_UnaryResource {
protected:
IlcIntVar Difference;
IlcIntVarArray Holes; };

Penalties are associated with distances between lectures of the same subject.
These penalties are provided by the user:

IlcIntArray Penalties;
if (nbLectures==1)
Penalty=IlcIntVar(m,0,0);

else {
IlcIntVar s1=IlcMax(StartVariables)/H;
IlcIntVar s2=IlcMin(StartVariables)/H;
Difference=s1-s2;
IlcIfThen(Difference==k, Penalty==Penalties[k-1]); }

Classrooms are just a multiple resource and no extra members are needed
for this class.

A Generic Object-Oriented Constraint-Based Model 37

6 Search

One of the reasons that makes constraint programming attractive is the fact that
logical implications stemming from the variables, their possible values and the
constraints that are posted upon them are carried out in an implicit way with-
out the programmer’s manual intervention. Values that are possible for certain
variables are ruled out if they violate any of the constraints. In theory, these
implications can be carried out until all inconsistent combinations of values for
the variables are ruled out. However, this is a task of exponential complexity, so,
in practice, implications are calculated only to a limited extent and the task of
finding solutions is accomplished through search. Usually, the search space of a
problem is viewed as a tree, where each decision point represents a variable and
the edges towards its children are its possible values.

In this case, the variables are the starting times for each lecture. Although
there are variables for classrooms too, in our approach, the main decision is the
one concerning time. After that decision is made, the lecture is placed on the
most appropriate classroom, but that is not regarded as a decision or, in other
words, no backtracking occurs for assigning a value to a classroom variable.

Two factors influence the efficiency of the search. The first one is the heuristic
rules which involve the selection of a variable to be instantiated next (variable-
ordering heuristics) and the selection of a value for that variable (value-ordering
heuristics). Heuristics form the actual search tree by labeling each node with a
variable and each edge with a value. Usually, the choices of the value-ordering
heuristic are depicted by ordering the possible values from left to right, with the
leftmost edge being the one selected first by the heuristic. The second factor is
the search method which controls the order in which the nodes of the search tree
are going to be examined.

6.1 Search Methods

Some of the most popular and efficient search methods were implemented, name-
ly DFS, iterative broadening (IB) [14], LDS [18] and depth-bounded discrepancy
search (DDS) [29]. These search methods evolved from the need to exploit the
heuristic rules used in the search in the best possible way.

DFS implements the obvious way to explore a search space by examining
all the leaves of the search tree from left to right and backtracking if needed.
Although constraint propagation prunes hopeless parts of the search space, there
is always the danger for such an approach to get trapped in a shallow part of
the search tree. One of the reasons for this is that DFS considers each of the
decisions of assigning a value to a variable of equal importance. That means that
the first choice of a value for a variable made by the value-ordering heuristic is
thought of as having the same probability to lead to a solution as the second
or any of the latter decisions. IB narrows the search space by searching only
the subtree which includes a certain number of the leftmost decisions of the
value-ordering heuristic, practically exploring a subtree of limited width. This
follows from the assumption that the first choices of the value-ordering heuristic

38 K. Zervoudakis and P. Stamatopoulos

are most probable to lead to a solution. In case this assumption is false, then
the width to which the search was limited is incremented and the whole process
starts from the beginning.

LDS gives even more importance to the heuristic by assuming that it makes
none or just a few errors and using the total number of discrepancies or the
deviations from the heuristic’s decisions as a guide for the search. In a first
iteration, the number of such discrepancies is assumed to be zero, thus only the
leftmost decision of the heuristic is considered for each node. If the assumption
proves to be false, then the number of discrepancies is incremented assuming
that the heuristic might make at most one error and the process is repeated.

DDS is also a discrepancy-based search method. LDS revisits nodes that were
examined in earlier iterations and DDS uses an algorithm that examines each
node only once.

Both discrepancy-based methods are heavily depending on the heuristic’s
accuracy. However, it is not always the case that a heuristic making no more
than, let us say, 5% erroneous decisions can be implemented. Actually, it is
usual for heuristics to get confused deep in the search tree. Usually, this is
tackled by adding a lookahead parameter of a certain depth in the method,
allowing subtrees of that depth at the bottom of the search tree to be explored
fully without taking the discrepancies that occur there into account. The trust
of such methods in the heuristic’s accuracy is also expressed by the assumption
that heuristics usually make errors high in the search tree where decisions are
not so informed. In our approach, the opposite was also implemented in LDS’s
case: that is a version that assumes that the heuristic fails deeply in the search
tree.

In our implementation, it was also possible to loosen the confidence on the
heuristic. For example, IB increases the width bound by one in every itera-
tion and the same happens with the number of allowed discrepancies in LDS.
We implemented versions that allowed bounds to be variable, thus allowing the
search to explore wider areas of the search space in every iteration. This seems
to contradict the very essence of these methods and that might be true in feasi-
bility problems, but there is a good reason for this; these methods were designed
for feasibility problems. In other words, they were designed assuming that the
heuristic makes choices towards finding a solution and not necessarily a good
one. On the other hand, timetabling problems are usually optimization prob-
lems, so the heuristics are targeted towards the quality of the solutions. In the
experiments that follow, it will be seen that there is a trade-off between the
ease in finding a solution and its quality. Since we are interested in quality, it
is reasonable to examine how these search methods can be extended to handle
heuristics towards better solution and how that affects their ability to find one.

6.2 Heuristics

The celebrated first-fail [17] and Brelaz [4] variable ordering heuristics are em-
ployed in our implementation. Also, some other general-purpose heuristics, the
kappa family of heuristics for constraint satisfaction problems, proposed in [13],

A Generic Object-Oriented Constraint-Based Model 39

are also included. The first-fail selection criterion is supposed to follow the rule
“in order to succeed, try first where you are most likely to fail”. Although it is
argued that selecting the variable with the least values in its domain leads to
harder subproblems, this heuristic is efficient in many cases. The Brelaz heuris-
tic extends it by tie-breaking on the number of neighboring unbound constraint
variables in the constraint graph. The kappa family of heuristics is based on a
measure of difficulty of a constraint satisfaction problem (CSP), namely the pa-
rameter kappa. The kappa heuristic selects the variable that is supposed to lead
to an easier subproblem when instantiated. Since it is costly to compute, two
approximations are proposed, the E(N) and the rho heuristics, the former be-
ing closer to the original kappa measure. Since these parameters are extensively
described in [13], we will describe them only briefly for the sake of completeness.
The kappa parameter expresses the constrainedness of a problem, or else the
difficulty of finding a solution for it, and is defined as follows; if V is the set of
variables, C the set of constraints on those variables, Ci the set of constraints
on variable i and mv the cardinality of variable’s v domain, then the parameter
kappa of the problem is equal to

κ =
−∑

c∈C log(1 − pc)∑
v∈V log(mv)

where pc is the tightness of a constraint involving two variables, that is the
percentage of the combinations of values of the two variables that are ruled out
by the constraint. Since this parameter is hard to compute, two approximations
are provided; E(N), which approximates the expected number of solutions for
a problem

E(N) =
∏
v∈V

mv ×
∏
c∈C

(1 − pc)

and ρ, which approximates the solution density

ρ =
∏
c∈C

(1 − pc).

These parameters can be used as heuristic information in the following manner:
since a problem with bigger kappa is tougher than one with a lower one, we
should branch on the variable which would lead to an easier problem if instanti-
ated. The same idea holds for E(N) and ρ as well. The only practical problem in
calculating these parameters in a real problem is that they were expressed for bi-
nary CSPs. However, we can use the assumption that the dominating constraint
in timetabling problems is that no two activities demanding some common re-
source can happen simultaneously, which in general holds. Thus, we can easily
calculate the parameter pc for any pair of lectures demanding any common re-
source. Of course, we will have to ignore disjunctive resources – classrooms in our
case – in our calculations, but that is not of great importance, since timetabling
problems can also be solved in two phases, taking classrooms into account in the
second one.

40 K. Zervoudakis and P. Stamatopoulos

Although the literature is rich in general-purpose variable ordering heuristics,
the same does not hold for value ordering ones. That is to be expected in opti-
mization problems, since such heuristics have to do with the quality evaluation
criteria and thus depend on the problem instance. In our case, heuristics making
decisions according to the objective function of the DIT/UoA were implemented
among which was one choosing the value that caused the minimum increase in
the lower bound of the objective. Also, heuristics aiming at finding a feasible
solution were implemented. Following the idea behind the kappa heuristics and
the effectiveness of first-fail, a heuristic that chose the value for the current vari-
able that maximized the product of the values of the remaining variables, as
proposed in [12], was also implemented.

7 Experimental Results

Experiments were carried out on a Sun SPARCserver 1000 under SunOS 5.6 and
with 256 MB of main memory. The problem to be solved involved 68 lectures
that had to be scheduled in five days of nine teaching periods, each within four
classrooms. The total duration of the lectures is 187 hours.

The heuristics used for variable selection were first-fail, Brelaz and the kappa
family of heuristics Rho, E(N) and Kappa, denoted FF, BR, R, E and K re-
spectively. Many different value selection heuristics were used in preliminary
experiments. The most successful proved to be one that chose the value which
would lead to the least increase in the lower bound of the minimization objective.
Since the objective is represented by a constrained variable and the problem is
a minimization one, an increase in the lower bound of the objective value means
a certain decrease in the quality of the partial solution constructed until that
point.

In Figure 1, a quality (smaller values represent higher qualities) versus time
(measured in seconds) plot for DFS with some variable selection heuristics is
shown. A major drawback of DFS can be observed there: there is not much
improvement after the first solution is found. It can also be seen that the clas-
sic heuristics FF and BR are faster in finding a first solution than E and R
(no solution was found with K). Drawing conclusions from just one data set
is risky, but a first intuition is that the simple heuristics FF and BR can be
more efficient in this specific problem than other more sophisticated and generic
heuristics because of the following reason: the dominant type of constraint in
course timetabling is a disjunctive constraint between lectures which has, more
or less, the same effect in every pair of mutually exclusive lectures. Thus, what
remains is the number of values in every variable’s domain.

The LDS application on timetabling was not problem free. The first plot in
Figure 2 shows the progress of search with LDS. It can be observed that the
first solution is found rather late (an order of magnitude later than DFS) and
the quality is not that good. The last solution found is quite satisfactory, but is
found too late. This is a problem that should be expected; such methods were
designed to address feasibility problems assuming that special heuristics would

A Generic Object-Oriented Constraint-Based Model 41

0

10

20

30

40

50

60

70

80

90

10 100 1000

DFS

FF(30)
BR(28)

R(65)
E(37)
K(--)

Fig. 1. DFS with varying variable selection heuristics

assist the search for a solution. Truly, the second plot shows the progress of search
with LDS and a value selection heuristic targeting on feasibility. It is obvious
that such a heuristic leads very quickly to a solution. On the other hand, the
solution’s quality is not satisfactory at all and that should be expected, since
the value selection heuristic focuses on feasibility. In order to overcome these
problems, the original method was modified. The third plot shows the progress
of search with a modified version of LDS; the method assumes that the heuristic
fails lower in the search tree. With that addition alone the search is much faster.
The last plot shows one more addition: in every LDS iteration the discrepancy
limit is not increased by a step of one, but by a step of three discrepancies.
That means that less trust is justified upon the heuristic and its choices and the
method is allowed to explore wider areas of the search space. There it can be
observed that although LDS is somewhat slower than DFS in the beginning, it
soon manages to find solutions of equal quality and, eventually, even better ones
having the ability to escape from local minima.

Local search is a search method with great ability to escape from local minima
and very popular in optimization problems. In [25], a local search variant for
constraint programming is proposed, named large neighborhood search (LNS).
The main idea is to iteratively keep a part of a solution stable while leaving the
remaining variables unbound and thus performing a full search in a narrowed
search space. Results are shown in Figure 3. It can be seen that this method with
a good starting solution leads to the best-quality solution of the experiments

42 K. Zervoudakis and P. Stamatopoulos

0

10

20

30

40

50

60

70

80

90

10 100 1000

LDS

original(32)
feasibility(60)

low(32)
large step,low(24)

Fig. 2. LDS and variations with FF

presented. However, it should be noted that LNS alone is not able to provide
as good solutions as a direct tree search. As Figure 3 shows, LNS needs more
than 1000 s to reach a solution of quality slightly worse than the one found by a
direct tree search guided by good heuristics in something more than 10 s. That is
easily explained: LNS can lead only to minor local improvements. On the other
hand, global decisions made by heuristics taking into account the problem as a
whole can lead to larger improvements at the beginning of the search. Of course,
direct tree search will eventually get stuck in a local optimum and that is the
point where post-processing methods like LNS can be effectively used.

Another factor of interest is scalability. In this direction, we decided to use
artificial data sets created on the real ones we used. Data sets up to six times
bigger than the original data set used were created in the following way: the
teachers and classrooms were kept the same while the number of lectures given
and the total number of available time slots were multiplied by the corresponding
factor. For example, to create a data set twice as large as the original, we created
a timetabling problem with 10 instead of 5 days with 136 instead of 68 lectures
while keeping all the other elements untouched. Then, of course, it would not be
of interest to compare the objective value since the problems would be different.
One parameter that could be measured and show how the approach scales with
regard to the problem’s size is the time needed to reach a first solution. Figure 4
shows how the time needed for reaching a first solution scales for the original
problem mentioned above and for problems up to six times larger in size. All runs

A Generic Object-Oriented Constraint-Based Model 43

used plain DFS. The figure shows that time rises no faster than n3 but faster
than n2. That is to be expected in constraint programming. The complexity of
maintaining bound consistency is ed, where e is the number of constraints and
d is the cardinality of a variable’s domain. Increasing the problem size linearly
involves increasing d linearly, but also increasing the number of variables linearly
which leads to a quadratic increase of their interrelations or, in other words,
constraints between them. This increase in running time is not prohibitive, since
algorithms that scale polynomially are generally acceptable. We should also note
that since the problem of constructing a timetable for a university occurs twice
a year in most cases, there are no real-time constraints on the running time of
such an application. Also, the running time can further be reduced by using more
sophisticated propagation algorithms for the model’s constraints, like network
flow algorithms, for example.

0

10

20

30

40

50

60

70

80

90

10 100 1000

Local search

good start(21)
bad start(32)

Fig. 3. Local search with varying quality of starting solutions

8 Conclusions

In this paper, we showed that it is possible to define, by exploiting the facili-
ties offered by object-oriented design, a generic model for the university course
timetabling problem, which might form the basis for dealing with the timetabling

44 K. Zervoudakis and P. Stamatopoulos

1

10

100

1000

0 1 2 3 4 5 6 7

DFS
n2
n3

Fig. 4. Scaling of time for the first solution w.r.t. problem size

problems faced by most academic departments. We demonstrated the extensibil-
ity of the core model by applying it to the case of the DIT/UoA. The fact that
the core model was extended might lead to the conclusion that it is too general,
since too much extra needs to be implemented in order to cover any specific case.
But, in order to produce the class c Teacher from c UnaryResource, 13 lines of
code were needed. In the case of c LectureGroup, 20 lines were needed. The aim
of the above model was not to be able to cover any specific case, but to provide
the framework on which any case could be covered. From a software engineering
point of view, all these little additions for calculating holes between lectures or
uniform distribution of lectures during a week or whatever could be stored in
libraries and a user could pick from a large collection of such building blocks to
construct classes that would represent the entities to model the problem to be
solved, minimizing the amount of extra effort.

What is more, the whole idea is based on the constraint programming frame-
work, since the tool employed is the Ilog Solver C++ library. Thus, the user
is allowed to express hard and soft constraints with the same ease. For example,
if one is concerned with the teaching hours of a teacher in a certain day, it is
equally easy to post a hard constraint on the maximum number of these hours or
add a penalty in the objective function, if that amount exceeds a certain limit,
or associate preferences with the values of that variable.

A variety of search methods and variable ordering heuristics were imple-
mented to be used for the search for near-optimum solutions. All search methods

A Generic Object-Oriented Constraint-Based Model 45

which were implemented behaved as they were expected to in theory. DFS was
able to find feasible solutions fast, but could not improve them significantly in the
long run. LDS, with some minor modifications aiming at the resolution of small
conflicts at the bottom of the search tree, showed better long-term behavior,
but was sometimes slow in finding a first solution. We expect LDS performance
to scale better as the problem size increases. DDS would not be our method of
choice, due to its lack of accepting modifications like LDS. IB did not improve
DFS’s performance significantly.

Concerning variable ordering heuristics, the celebrated first-fail and Brelaz
heuristics performed better than any other variable selection heuristic. The neg-
ative result of our experiments was the bad performance of the kappa family of
heuristics, which in some cases did not even lead to a feasible solution within
a reasonable time limit. One explanation might be that the kappa measure is
an approximate measure of a CSP’s difficulty, which takes into account several
factors, but mainly the number of values in each variable’s domain and the con-
straint tightness between pairs of variables, that is the percentage of the total
combinations between values of these two variables that are actually legal. In the
timetabling problem, however, the tightness between any two variables sharing
the same resources is constant. In other words, if some lectures are sharing the
same resources the tougher one to schedule would be the one having the fewer
possible slots regardless of the number of lectures, explaining why first-fail and
Brelaz apply well on our problem.

As for value ordering heuristics, no general heuristic was applied. Heuris-
tics targeted towards the DIT/UoA were used, that is heuristics that take into
account holes between lectures, the distribution of lectures during the days of
the week and the distances in days between lectures of the same subject. These
heuristics worked fine by guiding the search towards feasible solutions of satis-
fying quality. At first glance, such heuristics do not have to do with feasibility
and so the fact that the search finally reached feasible solutions might be consid-
ered coincidental. However, one can notice that the objective contains a factor
expressing the number of holes between lectures, so that the search is guided
towards more compact schedules. If the objective did not contain such a term,
then a heuristic taking into account both the objective and the feasibility fac-
tor should be used. The feasibility factor could be measured by counting holes
between lectures or, even better, with a heuristic calculating the product of the
cardinality of all remaining variables’ domains, as mentioned in the previous
section concerning heuristics.

The problem of using tree search in optimization is that the search, either
naive or sophisticated, will eventually get stuck in a local optimum. Using LNS
helped in every case with our experiments. In no case, however, could LNS
outperform direct tree search alone, so the best way to use it, in our opinion, is
as a post-processing method after a normal tree search has been performed and
a reasonable time cutoff limit reached.

46 K. Zervoudakis and P. Stamatopoulos

References

1. Badri, M.: A Two-Stage Multiobjective Scheduling Model for [Faculty-Course-
Time] Assignments. Eur. J. Oper. Res. 94 (1996) 16–28

2. Barbadym, V.A.: Computer-Aided School and University Timetabling: The New
Wave. In: Burke, E., Ross, P. (eds.): Proc. 1st Int. Conf. on the Practice and
Theory of Automated Timetabling. Lecture Notes in Computer Science, Vol. 1153.
Springer-Verlag, Berlin Heidelberg New York (1995) 22–45

3. Boufflet, J.P., Negre, S.: Three Methods Used to Solve an Examination Timetable
Problem. In: Burke, E., Ross, P. (eds.): Proc. 1st Int. Conf. on the Practice and
Theory of Automated Timetabling. Lecture Notes in Computer Science, Vol. 1153.
Springer-Verlag, Berlin Heidelberg New York (1995) 327–344

4. Brelaz, D.: New Methods to Color the Vertices of a Graph. JACM 22 (1979)
251–256,

5. Burke, E., Jackson, K., Kingston, J., Weare, R.: Automated University
Timetabling: The State of the Art. Comput. J. 40 (1997) 565–571

6. Chahal, N., de Werra, D.: An Interactive System for Constructing Timetables on
a PC. Eur. J. Oper. Res. 40 (1989) 32–37

7. de Werra, D.: An Introduction to Timetabling. Eur. J. Oper. Res. 19 (1985)
151–162

8. de Werra, D.: The Combinatorics of Timetabling. Eur. J. Oper. Res. 96 (1997)
504–513

9. Elmohamed, S., Coddington, P., Fox, G.: A Comparison of Annealing Techniques
for Academic Course Scheduling. In: Burke, E., Ross, P. (eds.): Proc. 2nd Int.
Conf. on the Practice and Theory of Automated Timetabling. Lecture Notes in
Computer Science, Vol. 1408. Springer-Verlag, Berlin Heidelberg New York (1997)
92–112

10. Erben, W., Keppler, J.: A Genetic Algorithm Solving aWeekly Course-Timetabling
Problem. In: Burke, E., Ross, P. (eds.): Proc. 1st Int. Conf. on the Practice and
Theory of Automated Timetabling. Lecture Notes in Computer Science, Vol. 1153.
Springer-Verlag, Berlin Heidelberg New York (1995) 198–211

11. Frangouli, H., Harmandas, V., Stamatopoulos, P.: UTSE: Construction of Opti-
mum Timetables for University Courses – A CLP Based Approach. In: Proc. 3rd
Int. Conf. on the Practical Applications of Prolog (1995) 225–243

12. Geelen, P. A.: Dual Viewpoint Heuristics for Binary Constraint Satisfaction Prob-
lems. In: Proc. 10th Eur. Conf. on Artificial Intelligence (1992) 31–35

13. Gent, I.P., MacIntyre, E., Prosser, P., Smith, B.M., Walsh, T.: An Empirical Study
of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem.
In: Proc. 2nd Int. Conf. on the Principles and Practice of Constraint Programming
(1996) 179–193

14. Ginsberg, M.L., Harvey, W.D.: Iterative Broadening. Artif. Intell. 55 (1992) 367–
383

15. Gotlieb, C.: The Construction of Class–Teacher Timetables. In: Proc. IFIP
Congress (1962) 73–77

16. Gueret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Timetables
Using Constraint Logic Programming. In: Burke, E., Ross, P. (eds.): Proc. 1st Int.
Conf. on the Practice and Theory of Automated Timetabling. Lecture Notes in
Computer Science, Vol. 1153. Springer-Verlag, Berlin Heidelberg New York (1995)
130–145

A Generic Object-Oriented Constraint-Based Model 47

17. Haralick, R.M., Elliott, G.L.: Increasing Tree Search Efficiency for Constraint
Satisfaction Problems. Artif. Intell. 14 (1980) 263–313,

18. Harvey, W.D., Ginsberg, M.L.: Limited Discrepancy Search. In: Proc. 14th Int.
Joint Conf. on Artificial Intelligence (1995) 607–613

19. Henz, M., Wurtz, J.: Using Oz for College Timetabling. In: Burke, E., Ross, P.
(eds.): Proc. 1st Int. Conf. on the Practice and Theory of Automated Timetabling.
Lecture Notes in Computer Science, Vol. 1153. Springer-Verlag, Berlin Heidelberg
New York (1995) 162–177

20. ILOG S.A.: ILOG Solver 4.4: Reference Manual (1999)
21. ILOG S.A.: ILOG Solver 4.4: User’s Manual (1999)
22. Lajos, G.: Complete University Modular Timetabling Using Constraint Logic Pro-

gramming. In: Burke, E., Ross, P. (eds.): Proc. 1st Int. Conf. on the Practice and
Theory of Automated Timetabling. Lecture Notes in Computer Science, Vol. 1153.
Springer-Verlag, Berlin Heidelberg New York (1995) 146–161

23. Mehta, N.: The Application of a Graph Coloring Method to an Examination
Scheduling Problem. Interfaces 11 (1981) 57–64

24. Rich, D.: A Smart Genetic Algorithm for University Timetabling. In: Burke, E.,
Ross, P. (eds.): Proc. 1st Int. Conf. on the Practice and Theory of Automated
Timetabling. Lecture Notes in Computer Science, Vol. 1153. Springer-Verlag,
Berlin Heidelberg New York (1995) 181–197

25. P. Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. In: Proc. 4th Int. Conf. on the Principles and Practice
of Constraint Programming (1998) 417–431

26. Stamatopoulos, P., Viglas, E., Karaboyas, S.: Nearly Optimum Timetable Con-
struction Through CLP and Intelligent Search. Int. J. Artif. Intell. Tools 7 (1998)
415–442

27. Thompson, J., Dowsland, K.: General Cooling Schedules for a Simulated Annealing
Based Timetabling System. In: Burke, E., Ross, P. (eds.): Proc. 1st Int. Conf. on
the Practice and Theory of Automated Timetabling. Lecture Notes in Computer
Science, Vol. 1153. Springer-Verlag, Berlin Heidelberg New York (1995) 345–363

28. van Hentenryck, P., Deville, Y., Teng, C.M.: A Generic Arc-Consistency Algorithm
and its Specializations. Artif. Intell. 57 (1992) 291–321

29. Walsh, T.: Depth-Bounded Discrepancy Search. In: Proc. 15th Int. Joint Conf. on
Artificial Intelligence (1997) 1388–1393

30. White, G., Zhang, J.: Generating Complete University Timetables by Combining
Tabu Search with Constraint Logic. In: Burke, E., Ross, P. (eds.): Proc. 2nd Int.
Conf. on the Practice and Theory of Automated Timetabling. Lecture Notes in
Computer Science, Vol. 1408. Springer-Verlag, Berlin Heidelberg New York (1997)
187–198

	Introduction
	University Course Timetabling
	Ilog Solver
	Object-Oriented Modeling
	Subjects
	Lectures
	Unary Resources
	Multiple Resources

	Application
	Curricula
	Formulation
	Subclasses

	Search
	Search Methods
	Heuristics

	Experimental Results
	Conclusions

