
ARTIFICIAL INTELLIGENCE 231

Definite Clause Grammars for Language
Analysis--A Survey of the Formalism and a
Comparison with Augmented Transition
Networks

Fernando C. N. Pereira and David H. D. Warren

Department of Artificial Intelligence, University of Edinburgh

Recommended by Daniel G. Bobrow and Richard Burton

ABSTRACT

A clear andpowerfulformalism for describing languages, both natural and artificial, follows f iom a
method for expressing grammars in logic due to Colmerauer and Kowalski. This formalism, which
is a natural extension o f context-free grammars, we call "definite clause grammars" (DCGs).

A DCG provides not only a description of a language, but also an effective means for analysing
strings o f that language, since the DCG, as it stands, is an executable program o f the programming
language Prolog. Using a standard Prolog compiler, the DCG can be compiled into efficient code,
making it feasible to implement practical language analysers directly as DCGs.

This paper compares DCGs with the successful and widely used augmented transition network
(ATN) formalism, and indicates how ATNs can be translated into DCGs. It is argued that DCGs
can be at least as efficient as ATNs, whilst the DCG formalism is clearer, more concise and in
practice more powerful

1. Introduction

The aims of this paper are:
(1) to give an introduction to "definite clause grammars" (DCGs)--a. formalism,

originally described by Colmerauer (1975), in which grammars are expressed as
clauses of first-order predicate logic, providing a natural generalisation of context-
free grammars;

(2) to explain how DCGs constitute effective programs of the programming
language Prolog, and how they can thereby be used to implement practical 3ystems
for language analysis;

(3) to compare DCGs with the augmented transition network (ATN) formalism,
Artificial Intelligence 13 (.1980), 231-278

Copyright © 1980 by North-Holland Publishing Company

232 F . C . N . PEREIRA, D. H. D. WARREN

and to show how an ATN can be translated into a DCG. It is NOT our intention
to propose any definite solutions to the many unsolved linguistic problems of
particular languages such as English; we describe only how DCGs can be used,
not how they should be used. We take an informal approach wherever possible.
We start by reviewing some basic concepts, making clear our terminology in the
process.

The usual way one attempts to make precise the definition of a language,
whether it is a natural language or a programming language, is through a collection
ofrules called a grammar. (Following normal usage, we restrict the term "grammar"
to language definitions of this kind.) The rules of a grammar define which strings
of words or symbols are valid sentences of the language. In addition, the grammar
generally gives some kind of analysis of the sentence, into a structure which makes
its meaning more explicit.

A fundamental class of grammar is the context-free grammar (CFG), familiar to
the computing community in the notation of "BNF" (Backus-Naur form). In
CFGs, the words, or basic symbols, of the language are identified by terminal
symbols, while categories of phrases of the language are identified by non-terminal
symbols. Each rule of a CFG expresses a possible form for a non-terminal, as a
sequence of terminals and non-terminals. The analysis of a string according to a
CFG is a parse tree, showing the constituent phrases of the string and their
hierarchical relationships.

An important idea, due to Colmerauer and Kowalski (cf. Kowalski, 1974b;
Colmerauer, 1975), is to translate the special purpose formalism of CFGs into a
general purpose one, namely first-order predicate logic. They devised a particular
method (having its origins in Colmerauer's (1970) Q-systems) for expressing
context-free rules as logic statements of a restricted kind, known as definite clauses
or "Horn clauses". The problem of recognising, or parsing, a string of a language
is then transformed into the problem of proving that a certain theorem follows
from the definite clause axioms which describe the language.

These ideas might only have been of theoretical interest. However, at the same
time, Colmerauer and Kowalski originated a more far-reaching idea. This was that
a collection of definite clauses can be considered to be a program (see Kowalski
(1974a, 1974b); van Emden (1975).) It turns out that automatic deduction can
exhibit all the characteristics we associate with effective computation, provided the
deduction is pursued in a suitably goal-directed way.

A practical realisation of this concept of "programming in logic" was developed
by Colmerauer and his colleagues in the form of the programming language
Prolog. (See Roussel (1975), Pereira et al. (1978).) Prolog is based on a very simple
but efficient proof procedure. Several implementations of the language have been
completed, and these implementations have shown that Prolog can be as efficient
as conventional high-level programming languages, cf. Warren et al. (1977).
Prolog has been successfully used to write large-scale programs for a number of

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 233

useful applications, including algebraic "symbol crunching" (Bergman and Kanoui,
1975), architectural design (Markusz, 1977), drug design (Darvas et al., 1977) and
compiler implementation (Warren, 1977a, 1977b).

Now if a CFG is expressed in definite clauses according to the Colmerauer-
Kowalski method, and executed as a Prolog program, the program behaves as an
efficient top-down parser for the language the CFG describes. 1 This fact becomes
particularly significant when coupled with another discovery--that the technique
for translating CFGs into definite clauses has a simple generalisation, resulting in
a formalism far more powerful than CFGs, but equally amenable to execution by
Prolog. This formalism--the main subject of our papermwe call definite clause
grammars (DCGs). DCGs are a special case of Colmerauer's (1975) "metamorphosis
grammars", which are for Chomsky type-0 grammars what DCGs are for CFGs.
Although metamorphosis grammars can be translated into definite clauses, the
correspondence is not nearly so direct as that for DCGs.

DCGs are a natural extension of CFGs. As such, DCGs inherit the properties
which make CFGs so important for language theory: the possible forms for the
sentences of a language are described in a clear and modular way; it is possible to
represent the recursive embedding of phrases which is characteristic of almost all
interesting languages; there is an established body of results on CFGs which is
very useful in designing parsing algorithms.

Now it is well known that CFGs are not fully adequate for describing natural
language, nor even many programming languages. DCGs overcome this in-
adequacy by extending CFGs in three important ways.

Firstly, DCGs provide for context-dependency in a grammar, so that the per-
missible forms for a phrase may depend on the context in which that phrase occurs
in the string. Secondly, DCGs allow arbitrary tree structures to be built in the
course of the parsing, in a way that is not constrained by the recursive structure of
the grammar; such tree structures can provide a representation of the "meaning"
of the string. Thirdly, DCGs allow extra conditions to be included in the grammar
rules; these conditions make the course of the parsing depend on auxiliary compu-
tations, up to an unlimited extent.

DCGs, as implemented via Prolog, have been used to write a number of practical
systems for language analysis, e.g. for natural language question answering (Dahl,
1977), and in compiler implementation (Warren, 1977b).

DCGs bear some similarities to other formalisms known to computer scientists,
notably the "van Wijngaarden grammars" used in the Algol-68 Report (van
Wijngaarden, 1974), and the "affix grammars" which Koster (1971) took as the
basis for the compiler definition language CDL. Like a van Wijngaarden grammar,
a DCG can be viewed as a grammar consisting of an infinite number of context-
free rules. Like an affix grammar, a DCG extends a CFG by augmenting
non-terminals with arguments. However the three formalisms have significant

1The efficiency of the parser also depends on a"suitable" choice of CFG to descrit~e the language.

234 F . c . N . PEREIRA, D. H. D. WARREN

differences; it seems fair to say that both van Wijngaarden grammars and affix
grammars can be viewed as special cases of DCGs.

In this paper we shah be specifically concerned with comparing DCGs with a
formalism which at first sight is less obviously similar, namely "augmented tran-
sition networks" (ATNs). ATNs were introduced by Woods (1970) as a powerful
and practical formalism for natural language analysis. They have been used to
implement a number of working natural language systems (Woods et al., 1972,
1976; Bates, 1975; Burton, 1976), and some efficient implementations of the
formalism have been developed (Burton and Woods, 1976; Finin and Hadden,
1977). For the reader not familiar with ATNs, we recommend Bates (1978) as a
clear and thorough introduction.

We have chosen ATNs for comparison because they are widely known, because
they are often considered to represent the "state of the art" in formalisms for
practical natural language analysis, and because some of the most interesting
natural language systems have been written within the ATN formalism. We shall
argue that DCGs can be at least as efficient as ATNs, whilst the DCG formalism
is clearer, more concise and in practice more powerful.

The paper begins with a concise introduction to logic as a programming language
and to Prolog. We recommend the reader to skim through this section and refer
back to it later. The next section explains in detail the basic DCG formalism. This
is followed by an account, for the ATN-minded reader, of how ATNs can be
translated into DCGs. Finally we give a detailed discussion of the advantages ef
DCGs relative to ATNs, and conclude with a summary of why we think DCGs
represent a significant advance. The appendices contain a full example of the
translation of an ATN into a DCG, and also some DCG performance data
obtained using our DECsystem-10 implementation of Prolog.

Note that, in describing various formalisms, we shall often use bold-face symbols
as meta- or syntactic variables. These symbols are NOT part of the formalism
under discussion, but are a device which helps to make our description of the
formalism shorter and more precise.

2. Logic as a Programming Language---The Definite Clause
Subset

In this section, we define the syntax and semantics of a certain subset of logic
("definite clauses"), which amounts essentially to a dropping of disjunction
("or") from the logic, and we indicate how this subset forms the basis of the
practical programming language known as Prolog. Definite clauses have also been
called "Horn clauses" or "regular clauses", but we prefer the name coined by van
Emden (1975), since it gives at least some indication of their nature. We describe
the definite clause subset from a conventional programming standpoint, using the
notation and terminology of Prolog.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 235

2.1. Syntax, terminology and informal semantics

2.1.1. Terms

The data objects of the language are called terms. A term is either a constant, a
variable or a componnd term.

The constants include integers such as:

0 1 999

and atoms such as:

a void = := 'Algol-68' []

The symbol for an atom can be any sequence of characters, which in general must
be written in quotes unless there is no possibility of confusion with other symbols
(such as variables, integers). As in conventional programming languages, constants
denote definite elementary objects.

Variables will be distinguished by an initial capital letter, e.g.

X Value A A I

A variable should be thought of as standing for some particular but unidentified
object. Note that a variable is not simply a storage location which can be assigned
to, as in most programming languages; rather it is a local name for some data
object, cf. the variable of pure Lisp and identity declarations in Algol-68.

The structured data objects of the language are the compound terms. A com-
pound term comprises a fnnctor (called the principal functor of the term) and a
sequence of one or more terms called arguments. A functor is characterised by its
name, which is an atom, and its arity or number of arguments. For example the
compound term whose functor is named 'point' of arity 3, with arguments X, Y
and Z, is written:

point(X,Y,Z)

One may think of a functor as a record type and the arguments of a compound
term as the fields of a record. Compound terms are usefully pictured as trees. For
example, the term:

s(np(john),vp(v(likes),np(mary)))

would be pictured as the structure:

np

john v

I
likes

vp

np

I
mary

17

236 F . c . N . PEREIRA, D. H. D. WARREN

Sometimes it is convenient to write a compound term using an optional infix
notation, e.g.

X + Y (P;Q) X < Y

instead of:
+(X,Y) ;(P,Q) <(X,Y)

Note that we consider an atom to be a functor of arity 0.
An important class of data structures are the lists. These are essentially the same

as the lists of Lisp. A list either is the atom:
[]

representing the empty list, or is a compound term with functor ' - ' and two argu-
ments which are respectively the head and tail of the list. Thus a list of the first
three natural numbers is the structure:

, / ' \
D

This would be written in standard syntax as:

• (1 , . (2 , - (3 , [D))

but we shall write it, using a special list notation, as:
[1,2,3]

Our notation when the tail of a list is a variable is exemplified by:

[XIL] [a,b I L]
representing respectively:

/ ' \
X L

/ \ .
a

b / ~ L

2.1.2. Clauses

A fundamental unit of a logic program is the goal or procedure call. Examples are:

gives(tom,apple,teacher) reverse([1,2,3],L) X < Y

A goal is merely a special kind of term, distinguished only by the context in which
it appears in the program. The (principal) functor of a goal is called a predicate. It
corresponds roughly to a procedure name in a conventional programming language.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 237

A logic program consists simply of a sequence of statements called clauses. A
clause comprises a head and a body. The head either consists of a single goal or is
empty. The body consists of a sequence of zero or more goals (i.e., it too may be
empty).

If neither the head nor the body of the clause is empty, we call it a non-unit
clause, and write it in the form:

P :- Q, R, S.

where P is the head goal and Q, R and S are the goals which make up the body.
We can read such a clause either declaratively as:

"P is true if Q and R and S are true."

or procedurally as:

"To satisfy goal P, satisfy goals Q, R and S."

If the body of the clause is empty, we call it a unit clause, and write it in the
form:

P.

where P is the head goal. We interpret this declaratively as:

"P is true."

and procedurally as:

"Goal P is satisfied."

Finally, if the head of the clause is empty, we call the clause a question and write
it in the form:

?- P, Q.

where P and Q are the goals of the body. Such a question is read declaratively as:

"Are P and Q true ?"

and procedurally as:

"Satisfy goals P and Q."

Clauses generally contain variables. Note that variables in different clauses are
completely independent, even if they have the same name - i.e., the "lexical scope"
of a variable is limited to a single clause. Each distinct variable in a clause should
be interpreted as standing for an arbitrary value. To illustrate this, we give some
examples of clauses containing variables, with possible declarative and procedural

readings:

(1) employed(X) :- employs(Y,X).
"For any X and Y, X is employed if Y employs X."
"To find whether X is employed, find a Y that employs X."

238 F . C . N . PEREIRA, D. H. D. WARREN

(2) derivative(X,X,l).
"For any X, the derivative of X with respect to X is 1."
"The goal of finding a derivative for the expression X with respect to X

itself is satisfied by the result 1."

(3) ?- ungulate(X), aquaticS).
"Is it true of any X, that X is an ungulate and X is aquatic?"
"Find an X which is bot~ an ungulate and aquatic."

In a logic program, the procedure for a particular predicate is the sequence of
clauses in the program whose head goals have that predicate as principal functor.
For example, the procedure for a ternary predicate 'concatenate' might well
consist of the two clauses:

concatenate([X I LI],L2,[X I L3]):-concatenate(L1,L2,L3).
concatenate([],L,L).

where 'concatenate(L1,L2,L3)' means "the list L1 concatenated with the list L2 is
the list L3".

As we have seen, the goals in the body of a clause are linked by the operator ' , '
which can be interpreted as conjunction ("and"). For convenience, we sometir es
also use an operator ' ; ' standing for disjunction ("or"). (The precedence o f ' ; '
is such that it domina tes ' , ' but is dominated by ' :- '). An example is the clause:

grandfather(X,Z) :-
(mother(X,Y); father(X,Y)), father(Y,Z).

which can be read as:

"For any X, Y and Z,
X has Z as a grandfather if
either the mother of X is Y or the father of X is Y,
and the father of Y is Z."

Such uses of disjunction can always be eliminated by defining an extra predicate
m for instance the previous example is equivalent to:

grandfather(X,Z) :- parent(X,Y), father(Y,Z).
parent(X,Y) :- mother(X,Y).
parent(X,Y) :- father(X,Y).

w and so disjunction will not be mentioned further in the following, more formal,
description of the semantics of clauses.

2.2. Declarative and procedural semantics

The semantics of definite clauses should be fairly clear from the informal inter-
pretations already given. However, it is useful to have a precise definition. The

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 239

declarative semantics of definite clauses tells us which goals can be considered true
according to a given program, and is defined recursively as follows.

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause (or
term) is obtained, by substituting, for each of zero or more of its variables, a
new term for all occurrences of the variable.

For example, if a program contains the preceding procedure for 'concatenate',
than the declarative semantics tells us that:

concatenate([a],[b],[a,b])

is true, because this goal is the head of a certain instance of the first clause for
'concatenate', namely,

concatenate([a],[b],[a,b]) :- concatenate([],[b],[b])

and we know that the only goal in the body of this clause instance is true, since it
is an instance of the unit clause which is the second clause for 'concatenate'.

Note that the declarative semantics makes no reference to the sequencing of
goals within the body of a clause, nor to the sequencing of clauses within a pro-
gram. This sequencing information is, however, very relevant for the procedural
semantics which Prolog gives to definite clauses. The procedural semantics defines
exactly how the Prolog system will execute a goal, and the sequencing information
is the means by which the Prolog programmer directs the system to execute his
program in a sensible way. The effect of executing a goal is to enumerate, one by
one, its true instances. Here then is an informal definition of the procedural
semantics.

To execute a goal, the system searches for the first clause whose head matches
or unifies with the goal. The unification process (Robinson, 1965) finds the most
general common instance of the two terms, which is unique if it exists. If a match
is found, the matching clause instance is then activated by executing in turn,
from left to right, each of the goals (if any) in its body. If at any time the system
fails to find a match for a goal, it backtracks, i.e., it rejects the most recently
activated clause, undoing any substitutions made by the match with the head of
the clause. Next it reconsiders the original goal which activated the rejected
clause, and tries to find a subsequent clause which also matches the goal.

For example, let us consider the question:

?- concatenate(X,Y, [a,b])

which can be read declaratively as:
"Are there lists X and Y which when concatenated yield the list [a,b] ?"

If we execute the goal expressed in this question, we find that it matches the head
of the first clause for 'concatenate', with X instantiated to [a I XI]. The new

240 F . C . N . PEREIRA, D. H. D. WARREN

variable XI is constrained by the new goal (or recursive procedure call) which is
produced:

concatenate(X l,Y,[b])

Again this goal matches the first clause, instantiafing XI to [b] X2], and yielding
the new goal:

concatenate(X2,Y,D)

Now this goal will only match the second clause, instantiating both X2 and Y to
[]. Since there are no further goals to be executed, we have a solution:

X = [a,b]

Y - - [I

i.e., a true instance of the original goal is:

concatenate([a,b],N,[a,b])

If we reject this solution, backtracking will generate the further solutions:

x = [a] Y = [b]

X - [] Y = [a,b]

in that order, by re-matching, against the second clause for 'concatenate', goals
already solved once using the first clause.

2.3. Notable features of logic programs

The simplicity of the syntax and semantics of logic programs conceals a number of
notable features not found in conventional programming languages. These are
discussed in Warren et al. (1977). Here we list briefly those features which are
especially relevant to grammar writing.

(1) Pattern matching (unification) replaces the conventional use of selector and
constructor functions for operating on structured data.

(2) The arguments of a procedure can serve, not only for it to receive one or
more values as input, but also for it to return one or more values as output.
Procedures can thus be "multi-output" as well as "multi-input".

(3) The input and output arguments of a procedure do not have to be dis-
tinguished in advance, but may vary from one call to another. Procedures can thus
be "multi-purpose".

(4) Procedures may generate (via backtracking, in the case of Prolog) a set of
alternative results. Such procedures are called "non-determinate". Backtracking
amounts to a high-level form of iteration.

(5) Procedures may return "incomplete" results, i.e. the term or terms returned
as the result of a procedure may contain variables, which are only filled in later,
by calls to other procedures. The effect is similar to the use of assignment in a
conventional language to fill in fields of a data structure. Note, however, that

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 241

there may be many occurrences of an uninstantiated variable, and that all of
these get filled in simultaneously (in a single step) when the variable is finally
instantiated. Note also that when two variables are unified together, they become
identified as one. The effect is as though an invisible pointer, or reference, linked
one variable to the other. We refer to these related phenomena as the "logical
variable".

(6) "Program" and "da ta" are identical in form. A procedure consisting solely
of unit clauses is closer to an array, or table of data, in a conventional language.

3. How to Write Grammars in Logic

In this section we describe the formalism of definite clause grammars. The basic
idea has been discussed by Kowalski (1974b) and Colmerauer (1975) has given a
fully formal treatment.

3.1. Expressing context-free grammars in definite clauses

To describe how grammars can be expressed in logic, we begin by considering
context-free grammars (CFGs). For these, we use the following notation, which
will prove convenient later.

Each rule has the form:

nt --, body.

where nt is a non-terminal symbol and body is a sequence of one or more items
separated by commas. Each item is either a non-terminal symbol or a sequence of
terminal symbols. The meaning of the rule is that body is a possible form for a
phrase of type nt. A non-terminal symbol is written as a Prolog atom, while a
sequence of terminals is written as a Prolog list, where a terminal may be any
Prolog term. The null string is written as the empty list '[]'. As in the syntax of
clauses, this basic notation is extended by allowing alternatives to appear in body.
Alternative sequences of symbols are separated by semi-colons, with parentheses
where necessary.

We now show a simple CFG to illustrate the notation. The grammar covers
sentences such as "John loves Mary" and "Every man that lives loves a woman":

sentence ~ noun_phrase, verb_phrase.
noun_phrase --, determiner, noun, rel_clause.
noun_phrase - , name.
verb_phrase --, trans_verb, noun_phrase.
verb_phrase ~ intrans_verb.
rel_clause --, [that], verb_phrase.
rel_clause --, [].
determiner --, [every].
determiner --, [a].
noun - , [man].

242 F . C . N . PEREIRA, D. H. D. WARREN

noun - , [woman].
name - , [john].
name ~ [mary].
trans_verb - , [loves].
intrans_verb --~ [lives].

We regard each rule of a CFG as "syntactic sugar" for a definite clause of logic.
To get the translation, we associate with each non-terminal a 2-place predicate
(having the same name). The arguments of the predicate represent the beginning
and end points in the string of a phrase for that non-terminal. The first seven rules
in the example translate into:

sentence(S0,S) :- noun_phrase(S0,S 1), ". ~rb_phrase(S 1 ,S).
noun_phrase(S0,S) :- determiner(S0,S 1), noun(S 1 ,$2), rel_clause(S2,S).
noun_phrase(S0,S) :- name(S0,S).
verb_phrase(S0,S) :- trans_verb(S0,S l), noun_phrase(S I,S).
verb_phrase(S0,S) :- intrans_verb(S0,S).
rel_clause(S0,S) :- connects(S0,that,S 1), verb_phrase(S I,S).
rel_clause(S,S).

We can read the first clause as "a sentence extends from SO to S if there is a
noun phrase from SO to S 1 and a verb phrase from S 1 to S"; we can read the last
clause as "a relative clause extends from S to S", i.e., "a relative clause may be
empty".

To represent terminal symbols in rules, we use a 3-place predicate, 'connects',
where 'connects(S1,T,S2)' means "terminal symbol T lies between points SI and
$2 in the string". Thus the remaining rules translate into:

determiner(S0,S) :- connects(S0,every, S).
determiner(S0,S) :- connects(S0,a,S).
noun(S0,S) :- connects(S0,man,S).
noun(S0,S) :- connects(S0,woman,S).
name(S0,S) :- connects(S0,john,S).
name(S0,S) :- connects(S0,mary,S).
trans_verb(S0,S) :- connects(S0,1oves,S).
intrans_verb(S0,S) :- connects(S0,1ives,S).

The first clause, for instance, reads "there is a determiner from SO to S if the word
"every" lies between SO and S".

Now, to represent a particular sentence to be recognised, say:

Every man that lives loves M a r y .
1 2 3 4 5 6 7

we tag the sentence with integers as shown, and translate it into the following set
of unit clauses:

DEFIlqITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 243

connects(l,every,2).
connects(2,man,3).
connects(3,that,4).
connects(4,1ives,5).
connects(5,1oves,6).
connects(6,mary,7).

Then to determine whether that sentence is grammatical, We try to prove the goal:
?- sentence(l,7).

The proof procedure used determines the parsing strat!:gy, cf. Kowalski (1974b).
This will be discussed further in Section 3.4 with particular reference to the Prolog
proof procedure.

We may now notice that the representation of a context-free grammar by clauses
is data-independent, in the sense that the actual representation of the string to be
parsed is not "known" by the clauses--only the predicate 'connects' and the goal
to be proved take it into account. If we tag a point in a string, no t by an integer,
but instead by the list of symbols occurring after that point in the string, it is no
longer necessary to provide a separate 'connects' clause for each symbol in the
string. Instead we can define the 'connects' predicate in a single, general clause:

connects([W [S],W,S).
which can be read as "The string position labelled by the list with head W and
tail S is connected by symbol W to the string position labelled S". The goal of
proving the original sentence grammatical is now expressed as:

?- sentence([every,man,that,lives,loves,mary],[]).
Depending on the proof procedure, one representation or the other may be

preferred, for efficiency reasons. In the case of Prolog, the proofs with the two
representations will be essentially the same, with integer tags substituted by final
segments of the input string.

Note that in cases where the second representation is used, it is possible to
execute, or "preprocess", all the calls to 'connects' at "compile-time", thereby
dispensing with any need to refer to the predicate at "run-time". For example,
preprocessing in this way the clause:

rel_clause(S0,S) :- connects(S0,that,S 1), verb_phrase(S I,S).

we get:
rel_clause([that I Sl],S) :- verb_phrase(S l,S).

Note that in Colmerauer (1975), grammar rules are directly identified with definite
clauses of this preprocessed form, and there is therefore no mention ofthe'connects'
predicate.

The foregoing discussion allows us to identify context-free rules with definite
clauses of a certain form. A context-free grammar is thus identified with a set of
such clauses.

244 F . C . N . PEREIRA, D. H. D. WARREN

3.2. Definite dame grammars

We now generalise context-free grammars, in a way that will maintain the corres-
pondence with definite clauses, to obtain the formalism of definite clause grammars.

3.2.1. Notation

The notation for DCGs extends our notation for context-free grammars in the
following way:

(1) Non-terminals are allowed to be compound terms in addition to the simple

atoms allowed in the context-free case, e.g.

np(X,S) sentence(S)

(2) In the right-hand side of a rule, in addition to non-terminals and lists of
terminals, there may also be sequences of procedure calls, written within .the
brackets ' {' and ' } '. These are used to express extra conditions which must be
satisfied for the rule to be valid, e.g.,

noun(N) ~ [WI, {rootform(W,N), is_noun(N)}.

The last example can be read as "a phrase identified as the noun N may consist of
the single word W, where N is the root form of W and N is a noun".

Non-terminals, terminals and procedure calls in the right-hand side of a rule
will be referred to collectively as goals.

3.2.2. The meanin# of the DCG notation as definite clauses

A rule of a DCG is again no more than "syntactic sugar" for a certain kind of
definite clause. Terminal symbols are translated exactly as before; a non-terminal
of arity N translates into an N + 2 place predicate (having the same name), whose
first N arguments are those explicit in the non-terminal and whose last two
arguments are as in the translation of a context-free non-terminal; procedure calls
in the right-hand side of a rule are simply translated as themselves. For example,
the rule:

noun(N) -o [W], {rootform(W,N), is_noun(N)}

represents the clause:

noun(N,S0,S) :-connects(S0,W,S), rootform(W,N), is_noun(N).

3.3. The use of definite clause grammars

We now discuss how the DCG formalism provides for three important mecha-
nisms in language analysis, namely the building of structures (such as parse trees),
the imposing of extra conditions on the constituents of a phrase, and a general
treatment of context dependency.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 245

3.3.1. Building structures

The extra arguments of non-terminals provide the means of building structure in
grammar rules. As non-terminals are "expanded", by matching against grammar
rules, structures are progressively built up in the course of the unification process.

Here we just present a simple example. The context-free grammar of Section 3.1
is modified to produce explicitly for each phrase an interpretation which is simply
its parse tree. We also take the opportunity of introducing a more compact, and
(as we shall see later) more efficient, way of representing the dictionary, i.e., the
rules defining those non-terminals which correspond to word classes (or parts of
speech). In general, instead of having a rule of the form:

category(arguments) ~ [word].
for each word in the class category, we write a general rule:

category(arguments) --, [W], {cat(W, arguments)}.
and define a "dictionary procedure" cat consisting of clauses of the form:

cat(word, arguments).
for each word in category.

The rules for the modified example are"
sentence(s(NP, VP)) --, noun_phrase(NP), verb_phrase(VP).
noun_phrase(np(Det,Noun,Rel))--, determiner(Det), nounI.Noun),

rel_clause(Rel).
noun_phrase(np(Name)) --, name(Name).
verb_phrase(vp(TV,NP)) --, trans_verb(TV), noun_phrase(NP).
verb_phrase(vp(IV)) - , intrans_verb(IV).
rel_clause(rel(that,VP)) --, [that], verb_phrase(VP).
rel_clause(rel(nil)) --, [].
determiner(det(W)) ~ [W], {is_determiner(W)}.
noun(n(W)) --, [W], {is_noun(W)}.
name(name(W)) --. [W], {is_name(W)}.
trans_verb(tv(W)) --, [W], {is_trans(W)}.
intrans_verb(iv(W)) --, [W], {is_intrans(W)}.

We read an augmented non-terminal such as 'noun-phrase(NP)' as "a noun
phrase with interpretation NP" . Thus the first rule is read as "A sentence with
interpretation s(NP,VP) may consist of a noun phrase with interpretation NP
followed by a verb phrase with interpretation VP". Examples of clauses from the
associated dictionary are:

is_determiner(every).
is_noun(man).
is-name(mary).
is_tram(loves).
is_intrans(lives).

246 F . C . N . PEREIRA, D. H. D. WARREN

The analysis of the sentence "Every man loves Mary" with these rules produces
the following parse tree:

np

det n tel tv

I I I I
every man nil loves

vp

np

I
n a m e

I
mary

i.e., it follows from the declarative semantics of definite clauses that:

sentence(theta,[every,man,loves,mary], [])

is a true term, where tbeta is the term depicted above.

3.3.2. Extra conditions

The use of explicit procedure calls in the body of a rule to restrict the constituents
accepted, is illustrated by the following rule:

d~.te(D,M) -~ month(M), [D], {integer(D), 0 < D, D < 32}.

We can read this rule as "A phrase representing the date day D of month M may
be written as a phrase representing the month M followed by a symbol D, where
D is an integer greater than 0 and less than 32".

3.3.3. Context dependency

The arguments of non-terminals in a DCG can be used not only to build structures
but also to carry and test contextual information. For instance, we can modify the
example of Section 3.3.1 to handle the "number" agreement (singular or plural)
required between certain determiners, nouns and verbs. The modified grammar
will accept sentences such as "Every man loves some girl" and "All men like
girls", but will reject an ungrammatical sentence such as "All men that lives love
a woman". To handle the number agreement, certain non-terminals will have an
extra argument which can take the values 'singular' or 'plural'; the dictionary
predicates will have the "number" argument and also an argument to return the
root form of a word. The modified rules are:

sentence(s(NP,VP)) -~
noun_phrase(N, NP), verb_phrase(N,VP).

noun_phrase(N, np(Det,Noun, Rel))
determiner(N, Det), noun(N, Noun), rel_clause(N, Rel).

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 247

ncun_phrase(singular, rip(Name)) --, name(Name).
verb_phrase(N, vp(TV,NP)) --,

trans_verb(N,TV), noun_phrase(N I,NP).
verb_phrase(N, vp(IV)) ~ intrans_verb(N,IV).
rel_clause(N, rel(that,VP)) - , [that], verb_phrase(N,VP).
rel_clausc(N, rel(nil)) - , [].

determiner(N, det(W)) --, [W], {is_determiner(W,N)}.
determiner(plural, det(nil)) - , [].
noun(N, n(Root)) --, [W], {is_noun(W,N, Root)}.
name(name(W)) - , [W], {is_name(W)}.
trans_verb(N, tv(Root)) - , [W], {is_trans(W,N,Root)}.
intrans_verb(N, iv(Root)) --, [W], {is_intrans(W,N,Root)}.

E:~amples of clauses from the associated dictionary are:

is_determiner(every,singular).
is _determiner(all,plural).
is-noun(man,singular,man).
is_noun(men,plural,man).
is_name(mary).
is _tram(likes,singular,like).
is _tram(like,plural,like).
is_intrans(live,plural,live).

3.4. How DCGs are executed by Prolog

So far, we have been discussing DCGs from a declarative point of view. To under-
stand a DCG, this is perfectly adequate--for since the DCG is no more than a
set of definite clauses, its meaning is independent of any execution mechanism.
However, as we have already noted, each proof procedure for definite clauses
corresponds to a different parsing strategy for DCGs. We now discuss what this
means in the case of the Prolog proof procedure.

From the procedural semantics of Prolog, it follows that, to parse a sentence,
the grammar rules are used top-down, one at a time, and that goals in a rule are
executed from left to right (i.e. the sentence is parsed from left to right). If there
are alternative rules at any point, backtracking will eventually return to them. It
is up to the grammar writer to formulate the grammar in such a way that the same
work is not repeated unnecessarily on different backtracking alternatives. In
practice this is not too difficult for languages intended to be read from left to
right, although it often makes the grammar less readable than it would otherwise
have been. All the work of the analysis is done by the same uniform mechanism
(the Prolog proof procedure) and, in current Prolog implementations, the back-
tracking is performed very efficiently.

248 F . C . N . PEREIRA, D. H. D. WARREN

To show how Prolog executes a DCG, and in particular the backtracking and
the pattern matching, we will now describe the main steps in parsing the "garden
path" sentence:

That man that whistles tunes pianos.
1 2~ 3 4 5 6 7

according to the DCG in the previous section, with a dictionary including the
following clauses:

is _determiner(that, singular).
is_noun(man,singular, man).
is_noun(men,plural,man).
is_noun(pianos, plural,piano).
is_noun(tunes,plural,tune).
is_trans(whistles,singular, whistle).
is_trans(tunes,singular, tune).
is_intrans(whistles,singular,whistle).

For greater readability, we will here write Prolog goals coming from DCG
non-terminals or terminals in the form:

symbol from pointl to lmhtt2

where symbol is a non-terminal or list of terminals and imintl, pohtt2 are positions
in the input string, as labelled above.

The initial goal is:

sentence(S) from 1 to 7

This matches the single rule for 'sentence', creating the instantiation:

S - s(NP, VP).
and the goals:

noun_phrase(N, NP) from 1 to PI,
verb_phrase(N, VP) from P1 to 7,

Prolog next matches the first of those goals against the first rule for 'noun_phrase',
producing the instantiation:

NP = np(Det,Noun, Rel).

and the goals:

determiner(N, De0 from 1 to P2,
noun(N,Noun) from P2 to P3,
rel_clause(N, Rel) from P3 to P1,

Now the first of these goals expands into two subgoals:

[W] from 1 to P2
is_determiner(W,N)

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 249

both of which succeed immediately, since the word at position 1 in the string is
"that" and because the dictionary contains the clause:

is_determiner(that,singular).

The solution to the 'determiner' goal is therefore:

determiner(singular, det(that)) from 1 to 2

Prolog now proceeds to the goal for 'noun', which is currently instantiated to:

noun(singular,Noun) from 2 to P3

This succeeds in a manner similar to the goal for 'determiner', with solution:

noun(singular, n(man)) from 2 to 3

Note that, had the word at position 2 been "men" instead of "man", the goal
would not have succeeded, since no match would be found for the intermediate
subgoal:

is_noun(men,singular, Root)

Prolog now proceeds to match the 'rel_clause' goal against the first rule for
'rel_clause' yielding the new goals:

[that] from 3 to P4,
verb_phrase(singular,VPl) from P4 to P 1,

The first of these goals succeeds trivially, with:

P 4 = 4

and the second matches the first rule for 'verb_phrase', producing the subgoals:

trans_verb(singular,TV) from 4 to PS,
noun_phrase(M,NPl) from P5 to PI,

Both subgoals eventually succeed, with solutions:

trans_verb(singular, tv(whistle)) from 4 to 5
noun_phrase(plural,

np(det(nil),n(tune),rel(nil))) from 5 to 6

where the second solution is obtained via a match against the first rule for 'noun_
phrase'.

We have now obtained a solution to the original 'noun_phrase' goal, corres-
ponding to the phrase "that man that whistles tunes". The next goal to be executed,
which comes from the original activation of the rule for 'sentence', is:

verb_phrase(si~gular,VP) from 6 to 7.

(Now remember that the word at position 6 is "pianos"). Matching this goal
against the first rule for 'verb_phrase' leads to the goal:

trans_verb(singular,TVl) from 6 to P6,

250 F . C . N . IPEREIRA, D. H. D. WARREN

which cannot succeed, because "pianos" is not a 'trans_verb'. In the same way,
the second rule for 'verb_phrase' fails, because "pianos" is not an 'intrans_verb'.

At this point, Prolog backtracks to the most recent goal for which there is still
an alternative rule available, namely:

noun_phrase(M,NPl) from 5 to PI
This goal is now matched against the second rule for 'noun_phrase', leading to the
goal:

name(Name) from 5 to P1

which fails because the word at position 5, "tunes", is not a 'name'. Backtracking
again, the most recent choice is the use of the first rule for 'verb_phrase' to match
the goal:

verb_phrase(singular, VPl) from 4 to PI

So, this goal is now matched against the second rule for 'verb_phrase', producing
eventually the solution:

verb_phrase(singular, iv(whistle)) from 4 to 5

We have now found a second solution to the original 'noun_phrase' goal,
corresponding to the phrase "that man that whistles". The only goal still pending
is the second goal from the original activation of the rule for 'sentence'. This goal
is currently instantiated to:

verb_phrase(singular,VP) from 5 to 7.

Execution of the goal this time succeeds, producing the result:

verb_phrase(singular, vp(tv(tune),np(det(nil),n(piano),rel(nil))) from
5 t o 7

thus completing the parsing. Putting together the various instantiations, we obtain,
as result S, the structure depicted below:

/ - S

d e t J re,
that man vp

I
IV

I
whistle

vp

np

I J'n tune det rel

f I f
nil piano nil

3.5. The role of the logical variable in DCGs

The feature of logic programs which we have called the "logical variable" makes
DCGs a very powerful formalism for implementing practical language analysers.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 251

Structures can be built piecemeal, leaving unspecified parts as variables. The
structure can be passed around, and be completed as the parsing proceeds. When
the fragments needed are available, the "holes" in the structure represented by
variables are filled by unification. Thus it is easy to build terms with structures
which do not parallel the parse tree. We illustrate this first with a very simple
example, and then in the following section give a much deeper example.

For the first example, we want to recognise sentences comprising a verb 'pre-
cedes" or 'follows', and names of months, e.g., "May follows April". The inter-
pretation given to a sentence of this type will be a term of the form 'before(M 1,M2)'.
For instance, the interpretation of "May follows April" will be 'before(april,may)'.
The context-free grammar for this example is given by the rules:

sentence - , month,verb,month.

verb --, [precedes].
verb - , [follows].

month --, [january].
month -} [february].

etc.

To construct the required interpretation, we give the non-terminals extra arguments
as follows:

sentence(S) --, month(M l),verb(M 1 ,M2,S),month(M2).

verb(M l,M2,before(M I,M2)) - , [precedes].
verb(Ml,M2,bef'~re(M2,M1)) --, [follows].

month(january) --, [january].
month(february) -~ [february].

etc.

We read the non-terminal 'verb(MI,M2,S)' as "a verb whose interpretation in the
context of a subject M 1 and object M2, is S".

Notice that, in general, it is not necessary that the first two arguments of 'verb'
be known when the proof procedure builds the third argument during the execution
of a rule for 'verb'. That is, the relationship between the arguments of a non-
terminal is defined independently of any particular order of executing the rules.

Running the example with Prolog, the parsing proceeds from left to right, so in
the first rule, the structure S is built before one of its components, M2, is known.
This component gets filled in later during the parsing of the rest of the sentence.
Note that it is cumbersome and less natural to postpone the building of the struc-
ture S until M2 is known, i.e., until the end of the rule for 'sentence', since the
form of S depends crucially on the nature of the verb.

3.6. A more sophisticated example

The more sophisticated example of the logical variable in this section has been

18

252 F . C . N . PEREIRA, D. H. D. WARREN

chosen to illustrate how naturally and concisely one can express complex structure
building in a DCG. We leave to the reader the detailed analysis of the example•

The DCG is again an extension of our original context-free example. It forma-
lises the mapping between English and formulae of classical logic which is usually
outlined in introductory logic textbooks• For example, the term constructed as the
representation of the sentence:

Every man that lives loves a woman.

will be:

all(X)" (man(X) & lives(X) =:. exists(Y) • (woman(Y) & loves(X,Y)))

(where' "", ' & ' and ' =~' are binary functors written as infix operators). Notice
how different the structure of this term is from that of the corresponding parse
tree, i.e., compare-

all

I
X

with:

=:~

man ~ ' / & lives exists : ~ &

x x Y I J \
Y X Y

det n el tv np

every man that vp loves det n re l
f I I I
iv a woman nil
I

lives

The DCG follows. To avoid details not essential to the purpose of the example,
we have not introduced auxiliary predicates for the dictionary.

sentence(P) - , noun_phrase(X,P l ,P), verb_phrase(X,P l).

noun_phrase(X,PI,P) - ,
determiner(X,P2,Pl,P), noun(X,P3), rel_clause(X,P3,P2).

noun_phrase(X,P,P) - , name(X).

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 253

verb_phrase(X,P) -~ trans_verb(X,Y,P 1), noun_phrase(Y,P 1 ,P).
verb_phrase(X,P) ~ intrans_verb(X,P).

rel_clause(X,PI,Pl & P2) ~ [that], verb_phrase(X,P2).
rel_clause(X,P,P) ~ [].

determiner(X,P1,P2, all(X) :(PI =~ P2)) ~ [every].
determiner(X,P1,P2, exists(X) : (PI & P2)) ~ [a].

noun(X, man(X)) -~ [man].
noun(X, woman(X)) ~ [woman].

name(john) ~ [john].

trans_verb(X,Y, loves(X,Y)) --} [loves].
intrans_verb(X, lives(X)) --+ [lives].

Each non-terminal has one or more arguments. The last argument gives the
interpretation of the corresponding phrase. This intcrpretation in general depends
on other items, as specified by the preceding arguments of the non-terminal. For
example, the word "loves" has the interpretation 'luves(X,Y)', which depends on
individuals X and Y. A more complex case is the word "every", which has the
interpretation:

all(X) :(PI =~ P2)

in the context of two properties PI and P2 of an individual X. (The property PI
will correspond to the rest of the noun phrase containing the word "every", and
the property P2 will come from the rest of the sentence). Observe that the non-
terminal for a noun phrase takes the form 'noun_phrase(X,PI,P)', i.e., the inter-
pretation P of the noun phrase will depend on a property P l of an individual X.
This is because in general a noun phrase contains a determiner such as "every".
For example, the interpretation of the noun phrase "every man" will be:

all(X) : man(X) =~ PI.

The second rule for 'noun_phrase' tells us the interpretation of a noun phrase
which consists solely of a name, or "proper noun", e.g., "John". We see that this
interpretation, in the context of a property P of some individual X, is simply P
itself, provided the individual X is that named by the proper noun (e.g., 'john').

The reader familiar with Montague's (1973) work, will note the similarity of this
analysis to Montague's treatment.

Executing this DCG with Prolog brings into play the full power of the logical
variable. For the order in which phrases are parsed is such that some parts of the
translation of a phrase are not available when that translation is built. For example
the interpretation P of a sentence is produced by its subject noun phrase, and,
naturally, this interpretation P will also depend on the (as yet unknown) inter-
pretation of the verb phrase which completes the sentence. Such unknown items
are left as variables to be filled in later.

254 V . C . N . PEI~FTRA, D. H. D. WARREN

4. How to Translate ATNs into DCGs

The purpose of this section is to explain to the ATN-minded reader how an ATN
can be translated into a DCG describing the same language and producing the
same analysis in essentially the same way. We do not attempt to give a definitive
algorithm, as there is always room for ingenuity in producing a good DCG trans-
lation. Rather, we indicate the basic ideas underlying the translation process. We
take (Bates, 1978) as the definitive reference on ATNs.

4.1. Decomposing the network

A simple transition network, i.e., a network without cycles and with a single start
and end node, can be directly translated as follows:

(1) the simple network corresponds to a non-terminal;

(2) each distinct path from the start node to the end node translates into a
distinct rule for that non-terminal;

(3) the body of each rule is a translation, in order, of the arcs which make up
the corresponding path.

Now in general a network has cycles. But it is clear that any network is equivalent
to a set of simple networks connected by PUSHes and POPs, what we shall call a
decomposition. To illustrate all this, we now show how an unaugmented transition

verb object

P~

~ f N p O 1 ' ' V P ~

NP NP
S O 4 - -

Q2 POP

np

adjs PPS

DE N
NP

" O 8 ~ POP

PP

PREP NP
PP -~Q 9 = Q 10 ~-POP

FIG. 1.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 2 5 5

Q1 = Q 4
verb s" Q2/ object

=' POP

V Ve xj"
Q3

POP object
NP

- 4 ~ m
pps

* : POP

~ , u f

DET
NP ~ *

NPR

adjs N pps

~ P O P

ADJ adjs

adjs ' = * ~" * - - : POP

PP pps

pps =~ * ~ * = POP

PREP NP
PP • ' - Q g =Q10 =POP

Fxc. 2.

network (taken from Woods (1970)) translates into a DCG which is simply a CFG~
The network is shown in Fig. 1, where the boxes identify a decomposition into the
simple networks of Fig. 2 (where anonymous nodes are labelled by '.'). These in
turn translate into the following rules:

s ~ np, verb, object.
s -* aux , n p , v , object .

verb ~ v.

verb ~ aux, v.

object ~ np, pps.
object ~ [1.

np ~ det, adjs, n, pps.
np ~ npr.

256 F . C . N . PEREIRA, D. H. D. WARREN

adjs --, adj, adjs.
adjs -~ ft.
pps -o pp, pps.
pps ~ H.

pp -+ prep, rip.

Note that the V arc from Q3 to Q4 has been translated into two separate occur-
rences o f ' v ', in the second and fourth rules.

Not all decompositions lead to equally concise translations. In general, a more
concise translation is obtained if each simple network obeys a minimality constraint,
that the different paths through the network only meet at the start and end nodes.
The decomposition shown above roughly accords with this principle.

4.2. Translating the arcs

We will assume that the Lisp test in an arc is translated into a goal, test, and the
Lisp actions into a sequence of goals, actions. Each arc type is then translated as
follows in the body of a rule:

(CAT category. . .)
(WRD v;'ord...)
(MEM l i s t . . .)
(T S T . . .)
(J U M P . . .)
(PUSH subnetwork...)
(P O P . . .)

[W], {tes~, category(W), actions},
[word], {test, actions},
[W], {test, in(W, list), actions},
[W], {test:, actions},
{test, actions},
{test }, subnetwork, { actions},
{test, actions}.

Of course, in cases where the original test or actions are empty, the corresponding
goals can be completely omitted from the DCG version. Tile predicate 'in(X,L)'
tests whether X i a member of the list L. Note that these translations are in-
complete, as no attention is paid to argument passing in PUSH arcs (SENDRs)
and return values in POP arcs. This will be discussed later.

The VIR arc and its associated HOLD action do not have a straightforward
translation, and their special-purpose effect must be achieved in DCGs with some
of the general purpose mechanisms available. The chief purpose of HOLD and
VIR is to handle what transformational grammarians call constituent extraposition,
that is the phenomenon where a constituent occurs in the "surface" sentence
outside the phrase to which it belongs in the "deep structure". A general and
powerful means for treating constituent extraposition is provided by an extension
of DCGs, called "extraposition grammars" (Pereira, 1979). However, an alterna-
tive solution is available in DCGs, through the use of extra arguments to carry the
extraposed constituents. A technique directly analogous to this second approach
is discussed by Woods (1973) to avoid VIR/HOLD in ATNs, and has been used
in situations where parsing cafinot proceed from ~lt'-~" to rigk: t-n-~°s---L07~'~.--~--_, __,..., Woods
et al., 1976). We shall therefore not go into further detail.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 257

4.3. Treatment df registers, tests and actions

All tests and actions on an arc act upon values kept in registers. Now the concept
of a register, i.e. a named updatable location where a value can be assigned to or
retrieved from, does not exist in logic programming w instead values are passed
or built in variables, where a variable is a local name for a value used in a particular
clause, rather than an assignable location. The effects achieved in ATNs using
registers are obtained in DCGs through the use of variables. The values of the
variables get filled in by the pattern matching which takes place when a goal or
non-terminal is executed. Therefore, non-terminals in the translation of an ATN
must be augloented with extra arguments, to make use of the pattern matching.

Each non-terminal has at least one argument, which represents the structure
returned by the corresponding simple network. This is usually written as the last
argument of that non-terminal, and we shall always follow this convention.

For each register of a simple network which is set by a SENDR in some PUSH
for that network, there must be a further ("input") argument in the non-terminal
representing that network. In the same way, each value sent back to the calling
network by a LIFTR in the called network corresponds to an ("output") argument
in the non-terminal for the called network.

The case of PUSH arcs which were not in the original network, but which arise
from its decomposition, is treated as if there were a SENDR for each original
network register used in the simple network PUSHed for, and a LIFTR for each
original network register which is changed in the invoked network. (And, in the
case of a ~,bnetwork introduced by the decomposition, there need be no argument
for a return value.)

For a simple network, each register used in a path from the start node to a POP
arc is translated into as many variables as the register takes different values in that
path. (Usually we name these variables with variants of the name of the corres-
ponding register.)

The value returned at the POP exit of a path in a simple network is just filled
into the return value argument of the head of the rule for that path.

BUILDQs are translated in a straightforward and much simpler fashion as
terms containing variables corresponding to register values.

The foregoing discussion is better illustrated by a small example. This example
is a simplification of the network in Appendix 1 (taken from Woods, 1970). The
network covers simple declarative sentences in active and passive form. We depict
the network with the arcs labelled by integers, followed by the details of each arc:

3
1 2 ~ 5 7 8

S I~Q2 ~ Q 3 ~ Q 4 N ~ -~Q7 tpQ6

258 F . C . N . PEREIRA, D. H. D. WARREN

1: (PUSH NP T
(SETR SUBJ .))

2: (CAT V T
(SETR V .))

3: (CAT V (AND (GETF • PPRT)
(EQ (GETR V) (QUOTE BE)))

(SETR OBJ (GETR SUBJ))
(SETR SUBJ (BUILDQ (NP (PRO (SOMEONE))))
(SETR V ,)
(SETR AGFLAG T))

4: (PUSH NP T
(SETR OBJ ,))

5: (WRD BY (GETR AGFLAG))
6: (POP (BUILDQ (S + (VP (V +) +))

SUBJ V OBJ)
13

7: (PUSH NP T
(SETR SUBJ ,))

8: (POP (BUILDQ (S + (VP (V +) +))
SUBJ V OBJ)

T)
The context-free rules corresponding to a decomposition of the network are as
follows (where 'aN' stands for the translatiorf of arc N):

s - , al,a2,rest_verb,agent.
rest_verb -, a3.
rest_verb -, a4.
agent -, a5,a7.
agent -, [].

We now add arguments to the non-terminals in these rules in the way described
above, and insert the translation of tests and actions. Tests and actions will be
translated whenever possible via by pattern matching in the head of a rule, rather
than by actual goals in the body of a rule. The dictionary predicate 'v' resulting
from the CAT arcs has two extra arguments, to retarn the root form of the verb
and the tense feature to be used in the GETF test in arc 3. Here are the augmented
rules:

s(R)
np(SubjO),
IV], { v(V,VO,Tense) },
rest_verb(SubjO,VO, Subjl,Vl,Obj,Agflag),
agent(Subj l,V 1,0bj,Agttag, R).

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 259

rest_verb(Subj0,be, np(pro(someone)),V l,Subj0,t)
[V], { v(V,Vl,pprt) }.

rest_verb(Subj,V, Subj,V,Obj,f) ~ np(Obj).

agent(Subj0,V,Obj,t, s(Subj l,vp(v(V),Obj)))
[by],
np(Subjl).

agent(Subj,V, Obj,Agflag, s(Subj,vp(v(V),Obj))) ~ [].

5. The Advantages of DCGs

Woods (1970) discusses the advantages of the ATN formalism under six headings
covering, in our view, just five essentially distinct criteria:

Woods ' s headinys

1. Perspicuity
2. Generative Power
3. Efficiency of Representation
4. Capturing Regularities
5. Efficiency of Operation
6. Flexibility for Experimentation

essential criteria

1. Perspicuity
2. Power and Generality
3. Conciseness

ditto
4. Efficiency
5. Flexibility

We argue that, on each of these criteria, and on one extra criterion of our own
(6. Suitability for Theoretical Work), DCGs rate at least as highly as ATNs, and
that in several respects DCGs represent a significant advance.

5.1. Perspicuity

Practical systems for natural language analysis are necessarily large and complex,
and, for the time being at least, writing them is very much an experimental activity.
Therefore perspicuity--desirable in any formalism--is particularly important
here. The subjective quality of being easy to understand takes on a more objective
formmhow much real time and effort does it take to modify and extend the
system ?

Perspicuity is the area where we think DCGs show the most marked improve-
ment over ATNs.

The main reason is that DCGs can be understood in a way which is qualitatively
different from the way one understands an ATN. Like an ATN, a DCG can be
understood as a machine for analysing a particular language. However, unlike an
ATN, a DCG can also be understood as a description of a language. DCGs share
this property with CFGs. As Woods puts it (referring to CFGs), "by looking at a
rule, the consequences of that rule for the types of construction that are permitted
are immediately apparent".

This can be accounted for informally by noting that it is a straightforward
mechanical process to translate each rule of a DCG (or CFG) into a statement of

260 F . C . N . PEREIRA, D. H. D. WARREN

ordinary English, given a glossary of all the symbols (i.e., functors) used in the
grammar. The resulting English statements describe what forms are permissible
for the phrases which make up the object language in question. We have given
examples of this informal translation in our discussion of DCGs. Note that'a DCG
is unlikely to be readily comprehensible without such a glossary, or some equivalent
explanation of the meaning of each symbol and the purpose of its arguments.
However, a good choice of names for functors and variables can do much to
suggest the intended interpretation.

The immediacy of the relationship between a DCG and the language it describes
can also be given a completely formal explication in terms of the declarative
semantics of definite clauses. We have previously discussed how a DCG can be
identified with a set of definite clauses. The declarative semantics allows us to
further identify this set of definite clauses with a (probably infinite) set of "true
terms". Each one of these true terms specifies that a certain phrase of the object
language occurs between certain points in a certain string. The set of true terms as
a whole amounts to an enumeration of all possible occurrences of all possible
phrases of the object language. Note that nowhere does this explication involve
any notion of executing a DCG.

An ATN shares none of the foregoing properties of a DCG. To explain formally
how an ATN defines a language seems necessarily to involve the notion of how an
ATN is executed. Certainly this is the way ~TNs are always explained informally
in the literature--see for instance Bates (1978), Section 2, and contrast this with
the way we introduce DCGs. Conceptually at least, an ATN is no more than a
particular mechanism for parsing a language top-down, left-to-right, and the
sequencing imposed by this parsing strategy is implicit in the way registers are
operated on. Although it is possible (with ingenuity) to produce other kinds of
parsers for ATNs, this requires a re-interpretation of the meaning of arc actions,
and necessitates restrictions on register usage.

Bates (1978), in her introduction, claims that "one does not need to know how
to program a computer in order to write or use an ATN". However, from the
outset, her account of ATNs uses such computing jargon as "pushing the current
computation onto a stack". Now although it might be possible to explain the
PUSH arc in other terms to non-programmers, it is hard to see how the function
of ATN registers could be explained other than by going into some basic com-
puting concepts. Thus, despite Bates's claims to the contrary, it does seem that a
knowledge of conventional programming is necessary to properly understand an
ATN, whereas the declarative semantics of a DCG is genuinely independent of any
notions specific to computing.

However, what we have been discussing so far is not the only aspect in which
DCGs are clearer than ATNs. Even without their capability to be understood as
language descriptions, and viewed simply as machines, DCGs are in many ways
more perspicuous than ATNs.

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 261

One of the main reasons for this is that DCGs are more modular. The machinery
of a DCG is made up of small components (clauses) which communicate only
through explicitly passed arguments. There are no global variables--the scope of
each variable is limited to a single clause. As a result, the behaviour of each clause
in a DCG can be understood independently of any other. In an ATN, on the other
hand, the smallest unit which can be isolated in this way is a subnetwork (i.e. a
part of the network not connected to the rest except via PUSHes and POPs). No
smaller unit can be isolated, since the scope of a register is an entire subnetwork.
Now in practice (e.g. LUNAR), subnetworks tend to be very large, and contain
too great a mass of detail to be readily assimilated in one piece.

A second factor making DCGs easier to understand is that there is no assign-
ment, i.e. the value of a variable, once fixed, cannot change. No assignment means
no side effects, and therefore no possibility of the various sources of confusion
which stem from unforseen side effects. Happily, most ATNs actually published
only use assignment in a restrained way, and are therefore relatively easy both to
understand and to translate into a DCG. In effect, DCGs enforce (and extend)
this good practice. It is also worth noting that the ATN writer would lose nothing
(in terms of efficiency) by adopting a "single assignment" policy in the style of a
DCG. For, given the way ATN register assignment has actually been implemented,
it is just as efficient to assign each new value to a fresh register as to update the
values of registers already assigned.

Another important feature of DCGs, which helps to make them much more
readable than ATNs, is the use of pattern matching in place of explicit tests and
BUILDQs. Pattern matching enables what are basically the same underlying
operations to be specified in a more concise and "visual" way.

A further point contributing to the clarity of DCGs is that they consist of a
single uniform formalism of maximum simplicity. In contrast, ATNs are a more
elaborate mixture of two formalisms--transition networks and Lisp. Generally
speaking, it does not make for easy comprehension to have a superabundance of
ways of saying the same thing, as is the case in ATNs.

5.2. Power and generality

One judges the "power and generality" of a formalism by considering what can,
and cannot, be expressed in the formalism--in both a theoretical and a practical
sense.

Theoretically, both ATNs and DCGs have the power of a Turing machine, and
in that sense are as general as can be. (The adequacy of definite clauses for pro-
gramming any computable task, without "coding" of the data, is proved by
Andreka and Nemeti (1976).)

Of more interest is the question of what tasks can usefully be programmed in the
two systems. In this context, one of the key features of DCGs is that they provide

262 F . C . N . PEREIRA, D. H. D. WARREN

an essentially more powerful mechanism for building structures than is available
in ATNs.

In an ATN, it is impracticable to build structures which do not closely mirror
the recursive analysis of the string produced by the PUSH/POP mechanism. This
is because a POP arc can only return a single structure, and all of the subcomponents
of this structure must be known at the time of the POP. In a DCG, on the other
hand, a non-terminal may return more than one structure as its result, and these
structures may contain variables which only later get a value. Thus the structure(s)
generated in a DCG as the result of the analysis of a phrase may depend on items
in the sentence which are outside the phrase concerned, and which may not yet
have been encountered in the parsing. A good illustration of why this greater
generality is useful is provided by the "Sophisticated Example" of Section 3.6.

To simulate such use of the "logical variable" in an ATN, one might be tempted
to modify a previously generated structure using rplaea and ~ l a ~ . However, in
current ATN implementations at least, this would produce an unwanted side effect
on alternative branches of the parser's search space. The other way out would be
to use a function such as substitute, which involves copying all the structure
"above" the point to be modified. However the cost of this copying is likely to be
unacceptable in practice.

DCGs are more general than ATNs in that they can be used in a wider variety
of ways. This characteristic follows from the fundamental difference between
DCGs and ATNs discussed under"Perspicuity", namely that an ATN is a particular
machine for parsing a language top-down left-to-right, whereas a DCG is primarily
a language description, neutral towards implementation. As a result, a DCG can
be executed in a variety of different ways.

For example, Woods (1970) has discussed the question of whether ATNs can be
used for generation as well as for recognition, i.e. given a "deep-structure", to
generate the corresponding surface string(s), instead of the usual inverse process.
Now to use an ATN for generation would involve substantial changes in inter-
pretation of the operations labelling the arcs, and the feasibility of this re-
interpretation is questionable, particularly if arbitrary Lisp code is involved in arc
actions.

In contrast, it is perfectly feasible to program a generation process as a DCG
without any change whatsoever to the DCG formalism. Moreover, the same proof
procedure (e.g., in particular, Prolog) can be adequate for implementing both
generation and recognition processes. It is even possible to use the same DCG for
both kinds of task, although this will only be practicable in certain cases, and then
only with careful design.

A generation problem is specified by presenting an initial goal of the form:

?- sentence(structure, S,[]).

where structure is a term representing a deep-structure. The result will be to

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 263

instantiate S to a list representing the surface form of structure. Compare this with
the usual recognition problem, which is specified in the form:

.9- sentence(T,string, []).

where string is a list representing the initial surface string, and T becomes instan-
tiated to a corresponding deep structure.

I f a DCG is to be used for generation, the only clause for the 'connects' predicate
should be:

connects([W I S],W,S).

(and, as described earlier, all calls to 'connects' may be preprocessed away prior to
execution). For an example of a generation task programmed as a DCG and
executed by Prolog, see Chapter 4 of Colmerauer (1975).

We have been discussing an example of DCG generality where DCGs are used
to formalise two quite different kinds of task--generation as well as recognition--
using the same proof procedure, Prolog. Another case of DCG generality is that a
variety of different processes for solving a given task (such as recognitign) can be
obtained from the same DCG, by applying different proof procedures to it. Thus
the top-down left-to-right parsing entailed by using Prolog is by no means the only
way to execute a DCG. Other proof procedures would give different parsing
mechanisms (e.g., breadth-first, bottom-up). In particular, Earley's (1970) par~.ing
algorithm can be generalised to give a complete proof procedure for definite
clauses (Warren, 1975). Note, however, that a DCG which is efficient for execution
by one proof procedure will not necessarily be efficient for another.

A final point concerning the generality of DCGs is that they are not in principle
restricted to input consisting of a simple string of atomic symbols. The symbols
can be generalised to arbitrary tree structures (possibly with variables) and, more
interestingly, instead of a simple list of symbols one can have a "chart" (Kaplan,
1973) catering for alternatives in the input. For example, if part of the input string
is:

. . . definite clause grammar . . .
1 2 3 4

and the lexical items 'definite', 'clause', 'grammar', 'definite_clause', and 'definite_
clause_grammar' are in the dictionary, the following clauses for the 'connects'
predicate would represent the possible lexical interpretations:

connects(l, definite, 2).

connects(l, definite_clause, 3).
connects(l, definite_clause_grammar, 4).

connects(2, clause, 3).

connects(3, grammar, 4).

264 F . C . N . PEREIRA, D. H. D. WARREN

5.3. Conciseness

In his discussion of "Efficiency of Representation" and "Capturing Regularities",
Woods is really concerned with the conciseness of a formalism. This criterion is
aptly summed up in his "economy principle"--that the best grammar is that
which can characterise a language in the least number of symbols.

If, according to this principle, one compares the textual forms of equivalent
ATNs and DCGs (counting each identifier as one symbol, and discounting punt-
tuation symbols such as brackets and commas), one generally finds that DCGs are
significantly smaller. Typically, the DCG is only around halt" the size of the ATN.

DCGs are more concise than ATNs for the same reasons that logic programs
are in general more concise than programs in conventional languages. The main
factor is the use of pattern matching instead of explicit operations for setting and
testing registers and building structures.

As has been seen, DCGs are a natural generalisation of context-free grammars.
Woods (1970) states that "a major advantage of the transition network model over
the usual context-free grammar model is the ability to merge the common parts of
many context-free rules, thus allowing greater efficiency of representation". Here
Woods is claiming an advantage for the ATN formalism over CFGs, and his
subsequent argument to support the claim clearly also applies when comparing
ATNs with DCGs. However, we do not think that Woods's argument is correct.

The ability to merge the common parts of many context-free rules is not unique
to transition networks, but can be achieved without even going beyond the forma-
lism of context-free rules. For example, the sample grammar which Woods uses to
illustrate his argument:

s --, np,vp.
s - , q,np,vp.
s - , neg,np,vp.
s --, q,neg,np,vp.

is better re-expressed as:

s - , q,sl.
s - , s l .

sl -~ neg, s2.
sl --, s2.

s2 -~ np,vp.

and this is not so very different from (and in fact it is far more concise than) the
textual form of the transition network:

Q NEG

s l s2
NP VP

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 265

i .e. ,

(S
(PUSH Q T (TO S1))
(JUMP SI T))

(Sl
(PUSH NEG T (TO $2))
(JUMP $2 T))

(S2
(PUSH NP T (TO $3)))

(S3
(PUSH VP T (TO $4)))

(S4
(POP NIL T))

If one allows, as we do, alternatives to be given in a rule, then the grammar reduces
to a single rule, very close to the original regular expression:

s --, (q;[]),(neg;[l),np,vp.

Woods makes much of the ability in ATNs to merge similar parts of a network
by recording and testing extra information in registers. There is a direct counterpart
of this in DCGs, where similar rules can be coalesced by attaching extra arguments
to non-terminals. Whereas Woods seems to favour such merging for ATNs, we
think it encourages an intricate and low-level style of language description. More-
over it does not necessarily produce a more concise result. In the case of ATNs,
for example, information which was previously explicit in the network is now
encoded in Lisp as more complex tests and actions.

The modularity of DCGs encourages the grammar writer to keep separate what
are conceptually distinct parts of the grammar, and not to indulge in merging of
parts which are superficially similar.

5.4. Efficiency
The operational efficiency of a formalism for language analysis is a matter of
crucial importance for applications, such as LUNAR, intended to be genuinely
useful. Hence we discuss efficiency at length in this section.

First, let us recall that executing a DCG with Prolog gives a parsing mechanism
which can be described as "top-down, left-to-right, depth-first (i.e. one alternative
at a time)". Now this is precisely the parsing mechanism used in the majority of
ATN applications. Moreover, it is the required mode of operation for recent ATN
implementations (Burton and Woods, 1976; Finin and Hadden, 1977) which
compile the ATN into low-level code (using Lisp as an intermediary). Accordingly,
we shall restrict our discussion of efficiency to Prolog implementations of DCGs
and to such comparable ATN implementations.

266 F . C . N . PEREIRA, D. H. D. WARREN

A key property of DCGs, as regards their efficiency, is that a DCG is expressed
directly in a general purpose programming language, Prolog. Apart from optional
"syntactic sugar", a DCG is a Prolog program. DCGs do not need a special
interpreter or compiler. To discuss DCG efficiency, therefore, is to discuss Prolog
efficiency.

Now Warren, Pereira and Pereira (1977) have described how Prolog can be
compiled directly into efficient machine code. They put forward simple reasons
why one might expect the speed of the code produced to be comparable with that
for more conventional high-level languages, such as Lisp, and argue in particular
that pattern matching encourages a better implementation of operations on
structured data than the conventional use of selector and constructor functions
(such as ear, cdr and cons). A practical implementation exists for the DECsystem-10
machine and actual timing data (Warren, 1977a) supports these conclusions. On
the basis of this evidence, one can therefore say that a DCG is expressed directly
in a general purpose programming language which has an efficiency comparable
with Lisp.

An ATN, on the other hand, needs a special interpreter or compiler. Since the
ATN formalism relies so heavily on Lisp constructions for expressing tests etc., it
is difficult to imagine an ATN compiler which did not generate Lisp code as an
intermediary. Therefore it is probably fair to say that ATN efficiency is limited by,
and necessarily somewhat inferior to, the efficiency of Lisp for writing grammars.

A disadvantage of ATNs, or at least of the implementations described, is that
the system does not have immediate access to the value of a registerQthe GETR
function has to search down an association list of register-value pairs. In Prolog
implementations, on the other hand, each variable's value is stored at a known
location. This is achieved without any overheads of copying information into or
out of variable value cells at procedure call and exit (as happens, for example, in
"shallow binding" implementations of Lisp).

The only significant overhead of this kind in Prolog is attributable to its non-
determinacy. In certain circumstances when instantiating a variable, the variable's
address is remembered on a push-down list, so that the variable can be reset to
"uninstantiated" on backtracking. In the DECsystem-10 implementation, these
operations are implemented very efficiently at the machine-code level, and only
account for a small proportion of the time spent in a typical Prolog computation.
Note that the non-determinacy of ATNs has to be achieved using what facilities
are provided by the higher level language Lisp, which, unlike Prolog, does not
itself incorporate any machinery for non-determinate computation.

A discussion in Warren et al. (1977) attributes much of Prolog's surprisingly
competitive speed, compared with Lisp, to the use of "structure sharing" (Boyer
and Moore, 1972; Warren, 1977a) to build new data structures. The argument
applies afortiori if we compare with the structure building operations of ATNs.
Essentially structure sharing enables arbitrarily large data structures to be con-

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 267

structed with virtually no time cost. Constructing the new object merely involves
bringing together two pointers. One is a pointer to a "skeleton" structure, created
at compile-time, which corresponds to a term of the source program. The other
pointer is to an already existing vector of value cells, called a "frame", which
contains the values of variables occurring in the skeleton.

Now compare this one trivial operation with what is involved in the BUILDQ
of ATNs. There, space for the new st"ucture has to be allocated from Lisp's
"heap" storage (and ultimately garbage-collected), and all the information corres-
ponding to the skeleton structure and the values of its variables has to be copied
over into the newly allocated space. It is interesting to note a comment by Woods
(1973, p. 133), which, while acknowledging the inefficiencies of register access in
ATNs, appears to foresee the advantages of structure sharing: "if the structure
returned by the POP arc were merely the list of register contents themselves, then
the process of searching for registers by names could be almost totally eliminated".

A feature of the DECsystem-10 Prolog implementation which can make a very
significant contribution to the speed of operation of a DCG is the automatic
indexing provided for the clauses of each predicate (Warren et al., 1977; Warren,
1977a). When trying to execute a goal, the relevant clauses from the corresponding
predicate are accessed through a hash table keyed on the principal functor of the
first argument of the goal. In suitable circumstances, the indexing provides for the
immediate selection of an appropriate grammar rule from amongst a set of alter-
natives. This is instead of having to try all the alternatives one by one. A com-
parable facility does not appear to be available in ATN implementations. In-
cidentally, the same indexing makes it practicable to implement "dictionary"
predicates as sets of unit clauses (cf. many of our examples), since the indexing
ensures that the time to look up an individual word in the dictionary is (generally
speaking) independent of the number of words in the dictionary.

To recapitulate, we have described a number of aspects in which (compiled)
Prolog implementations of DCGs might be expected to be more efficient than
current (compiled) ATN implementations:

(1) Compilation of a DCG is only a one stage process, and does not involve an
intermediate high level language (Lisp).

(2) Access to variable values is immediate and the overheads attributable to
non-determinacy are minimal.

(3) Structure building is done "on the fly", by "structure sharing", at almost no
extra cost.

(4) Automatic indexing provides for the immediate selection of appropriate
alte[natives in the grammar.

Above all, a DCG is merely a particular kind of program in an efficient and
general purpose programming language, whereas an ATN is a special purpose

formalism.

19

268 F . C . N . PEREIRA, D. H. D. WARREN

The decisive test of efficiency is, of course, to compare actual performance data.
For the comparison to be meaningful, one must compare equivalent grammars,
expressed in equivalent ways, building equivalent structures. The difficulty here is
that none of the ATNs for which times have been quoted in the literature has
actually been listed in full detail, and these ATNs are in any case unnecessarily big
for the purpose simply of making an exact comparison with an equivalent DCG.

Our experience with DCGs, which probably applies equally to ATNs, is that the
speed of a grammar depends predominantly on whether the grammar writer
chooses to aim at efficiency, or at maximal conciseness and simplicity. The physical
size of the grammar (number of rules, or arcs, say) is not, alone, a reliable indicator
of the likely parsing times.

In Appendix 2, we give some timing figures for a DCG translation of an early
specimen ATN, given by Woods (1970), and also data for a DCG of some com-
plexity covering a sizable subset of English. For what it is worth, bearing in mind
our previous remarks: this latter DCG running on a DEC KI10 takes approxi-
mately 8 msec. per word to parse an English sentence, while figures quoted for a
compiled version of LUNAR on a KAI0 (generally reckoned to be only half as
fast as a KII0) are of the order of 34 msec. per word on superficially similar
sentences.

5.5. Flexibility

In providing a framework for language analysis, a formalism should not be so
restrictive that it prevents experimentation with new and diverging ideas. Necessary
flexibility of this kind is available in ATNs by virtue of the open-ended use which
can be made of Lisp--to build diverse struc*ures, to express special conditions
on arcs, etc.

In an exactly analogous way, DCGs have a~-cess to the full power of the definite
clause subset of logic as a general purpose programming language. As in ATNs,
there is wide scope for building different kinds of structures to represent the result
of the analysis. Also, by using explicit calls to separately defined procedures, one
may easily incorporate into the grammar arbitrarily complex tests, and these tests
may depend on auxiliary information passed as extra arguments to non-terminals.
As mentioned previously, within the basic DCG formalism one can simulate the
effects ofspecial purpose ATN facilities such as the "hold list".

The DCG formalism is more flexible than ATNs in that, as previously discussed,
it is in no.way tied to a particular parsing or execution mechanism (although the
style in which the grammar is written will usually be optimised towards some
particular parsing mechanism). Thus writing a grammar as a DCG makes it much
easier to experiment with radically different parsing strategies, such as were tried
out in the BBN Speech Understanding System (Woods et al., 1976).

5.6. Suitability for theoretical work

In this section we argue that, unlike ATNs, DCGs can also be a useful formalism

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 269

for theoretical studies of language, and that, as a consequence, they potentially
provide a bridge between the work of theoretical linguists and philosophers, such
as Chomsky and Montague, and the work of those, such as Woods, concerned
with engineering practical natural language systems. To fully justify these claims
would call for another paper, so here we merely outline the key points of the
argument.

The theorists have (properly) concentrated on describing what natural language
is, in a clear and elegant way. In this context, details of how natural language is
actually recognised or generated need not be relevant, and indeed should probably
not be allowed to obscure the language definition. This concern with the "what"
rather than the "how" of language analysis is reflected in the kinds of formalism
developed by the theorists. At the time ATNs were developed, it was not clear how
such formalisms could be used as a basis for practical systems to actually carry out
language analysis, and the need to achieve workable systems necessitated the more
machine-oriented formalism of ATNs.

In consequence, the ATN formalism is fundamentally different from any used
in theoretical work. As has already been discussed under "Perspicuity", an ATN
is a description of a process for recognising a langaage, rather than a description
of the language itself. A symptom of the ATN's process orientation is the use of
the assignment operation--a concept virtually unknown outside computing, and
one which does not naturally enter into formal descriptions in mathematics or other
fields. For these reasons, the ATN formalism is not really suitable for theoretical
purposes (except in so far as it is more precise than other semi-formal methods for
describing language).

Because of this major difference between the ATN formalism and those normally
used by theorists, it has been difficult for the ATN writer to draw directly on
theoretical work, and difficult for the outsider to relate what is going on inside an
ATN with the kind of language analysis proposed by theorists.

In the years since ATNs were developed, the discovery that logic can be used as
a programming language has given us a formalism, DCGs, which can serve both
as a description of a language, and, by virtue of the procedural interpretation of
logic, as a description of a process for analysing that language. For practical
purposes, DCGs, while being less overtly machine-oriented than ATNs, can
nevertheless be implemented as efficiently and are a powerful tool for implementing
working natural language systems. Furthermore, DCGs seem eminently suitable
as a formalism for theoretical work~they are a natural and sufficiently powerful
generalisation of CFGs, and they have a clear declarative semantics independent
of any execution mechanism. Unlike ATNs, DCGs do not incorporate the concept
of assignment.

Indeed it could be argued that DCGs are more suitable as a formalism for
theoretical purposes than those in current use. It appears that current theoretical
formalisms are either less powerful than DCGs, or else, through being biased

270 F . C . N . PEREIRA, D. H. D. WARREN

towards the process of language generation, incorporate unnecessary notions of
execution order.

6. Conclusion

On both practical and philosophical grounds, we believe DCGs represent a
significant advance over ATNs.

Considered as practical tools for implementing language analysers, DCGs are
in a real sense more powerful than ATNs, since, in a DCG, the structure returned
from the analysis of a phrase may depend on items which have not yet been
encountered in the course of parsing the sentence. Such use of the power of the
"logical variable" is well illustrated by the "Sophisticated Example" of Section 3.6,
which we do not believe can be directly mimicked in an ATN.

Also on the practical side, the greater clarity and modularity of DCGs is a vital
aid in the actual development of systems of the size and complexity necessary for
real natural language analysis. Because the DCG consists of small independent
rules with a declarative reading, it is much easier to extend the system with new
linguistic constructions, or to modify the kind of structures which are built. Our
own experience of just these kinds of problems came from adapting a natural
language system written by Veronica Dahl (cf. Appendix 2). The modifications
involved substituting English for Spanish as the discourse language, and com-
pletely changing the domain of discourse. We found it quite straightforward to
make these substantial alterations, and doubt whether this would have been so,
had the system not been implemented as a DCG.

Finally, on the philosophical side, DCGs are significant because they potentially
provide a common formalism for theoretical work and for writing efficient natural
language systems. Note that we are NOT claiming that a DCG formulated as a
clear theoretical description of a language is likely to be suitable for execution as a
practical language analyser. We have argued only that a common formalism is
feasible for both. Normally a substantial transformation would be necessary to
turn a DCG conceived as a theoretical description of a language into a practical
implementation. It is an interesting problem for future research to see whether
such transformations can be performed systematically, possibly by generalising
known results on parsing with context-free grammars.

Appendix 1. A Full Example

The ATN from Woods (1970), as amended in Burton and Woods (1976), is listed
here, together with a DCG translation of a slightly modified network. The modi-
fications were mainly to prevent the acceptance of ungrammatical sequences of
verbs at node Q3/of the original ATN.

After the DCG proper, there is listed an extract from the dictionary of the DCG;
just one clause for each predicate is illustrated. Because of the indexing provided

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 271

Q 1 / V V

s / ~ " ' ~ J ' ~ ' f ' T T " ~ o 41 by

VP/ O 5 / - -- ~ O 6/

",ao,
NP/-

NPR

NP/3

,ao,

OET
J, NP/1 ADJ

NP/2

FIG. 3. Diagram of the ATN.

by the DECsystem-10 Prolog implementation, the speed of operation of the DCG
is not affected by the size of the dictionary (i.e., by the number of clauses provided
for each predicate).

Note the mutually exclusive nature of the three rules for the non-terminal
'complement' in the DCG proper. The Prolog indexing also serves to automatically
select the correct alternative from among these three rules.

Listiag of the ATN
(s/

(CAT AUX T
• (SETR V ,)
(SETR TNS (LIST (GETF • TENSE)))
(SETRQ TYPE Q)
(TO Ql/))

(PUSH NP/T
(SETR SUBJ ,)
(SETRQ TYPE DCL)
(TO Q2/)))

(Q1/
(PUSH NP/T

(SETR SUBJ ,)
(TO Q3/)))

272 F . C . N . PEREIRA, D. H. D. WARREN

(Q2/
(CAT V T

(SETR V ,)
(SETR TNS (LIST (GETF • TENSE)))
(TO Q3/)))

(Q3/
(CAT V (AND (GETF • PPRT)

(EQ (GETR V)
(QUOTE BE)))

(HOLD (OETR SUBJ))
(SETR SUBJ (BUILDQ (NP (PRO SOMEONE))))
(SETR AOFLAG T)
(SETR V ,)
-(TO Q3/))

(CA T V (AND (GETF • PPRT)
(EQ (GETR V)

(QUOTE HAVE)))
(SETR TNS (APPEND (GETR TNS)

(QUOTE (PERFECT))))
(SETR V ,)
(TO Q3/))

(PUSH NP/(TRANS (GETR V))
(SETR OBJ ,)
(TO Q4/))

(VIR NP (TRANS (GETR V))
(SETR OBJ ,)
(TO Q4/))

(POP (BUILDQ (S + -6 (TNS -6) (VP (V -6)))
TYPE suBJ TNS V)

(INTRANS (GETR V))))
(Q4/

(WRD BY (GETR AGFLAG)
(SETR AGFLAG NIL)
(TO Q7/))

(WRD TO (S-TRANS (GETR 3I))
(TO Q5/))

(POp (BUILDQ (S + + (TNS +) (VP (V +) +))
TYPE SUBJ TNS V OBJ)

33)
(Q5/

(PUSH VP/T
(SENDR SUBJ (GETR OBJ))

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 273

(SENDR TNS (GETR TINS))
(SENDRQ TYPE DCL)
(SETR OBJ ,)
(TO Q6/)))

(Q6/
(WRD BY (GETR AGFLAG)

(SETR AGFLAG NIL)
(TO Q7/))

(POP (BUILDQ (S + + (THIS +) (VP (V +) +))
TYPE SUBJ TNS V OBJ)

T))
(QT/

(PUSH NP/T
(SETR SUBJ ,)
(TO Q6/)))

(VP/
(CAT V (GETF • UNTENSED)

(SETR V ,)
(TO Q3/)))

(NP/
(CAT DET T

(SETR DET ,)
(TO NP/I))

(CAT NPR T
(SETR NPR ,)
(TO NP/3)))

(NP/I
(CAT ADJ T

(ADDL ADJS ,)
(TO NP/1))

(CAT N T
(SETR N ,)
(TO NP/2)))

(NP/2
(POP (BUILDQ (NP (DET +) (AOJ +) (hi +))

DET ADJS IN)
T))

fNP/3
(POP (BUILOQ (NP (NPR +))

NPR)

274 F . c . N . PEREIRA, D. H. D. WARREN

The DCG Proper
s e n t e n c e (S) - ~

[W], {aux_verb0V, Verb,Tense)},
nonn_phrase(G_Subj),
rest_sentence(q,G_Subj,Verb,Tense, S).

sentence(S) - ,

noun_phrase(G_.Subj),
[W], {verb(W, Verb,Tense)},
rest_sentence(dcl,G-Subj,Verb,Tense, S).

rest_sentence(Type,G_Subj,Verb,Tense,
s(Type, L_Subj,tns(Tense 1),VP)) --,

rest_verb(Verb,Tense,Verbl,Tensel),
{verbtype(Verbl,VType)},
complement(VType, Verbl,G_Subj,L_Subj,VP).

rest_verb(have,Tense,Verb,(Tense,perfect)) --,
[W], {past_participle(W,Verb)}.

rest_verb(Verb,Tense,Verb,Tense) - , [].
complement(copula,be,Obj,Snbj, vp(v(Verb),Objl)) --,

[W], {past_participle(W,Verb), transitive(Verb)},
rest_object(Obj,Verb,Obj 1),
agent(Subj).

complement(transitive,Verb,Subj,Subj, vp(v(Verb),Objl)) - ,
noun_phrase(Obj),
rest_object(Obj,Verb,Objl).

complement(intransitive,Verb,Subj,Subj, vp(v(Verb))) - , [1.
rest_object(Obj,Verb,S) --,

{s_transitive(Verb)},
[to,Verb 1], {infinitive(Verb 1)},
rest _sentence(dcl,Obj,Verb 1 ,present, S).

rest_object(Obj,Verb,Obj) - , [].
agent(Subj) - , [by], noun_phrase(Subj).
agent(np(pro(someone))) - , [].
noun_phrase(np(Det, adj(Adjs),n(Noun))) --,

[Det], {determiner(Det)},
adjectives(Adjs),
[Noun], {noun(Noun)}.

noun_phrase(np(npr(PN))) - , [PN], {proper_noun(PN)}.
adjectives([Adj [Adjs]) - ,

[Adj], {adjective(Adj)},
adjectives(Adjs).

adjectives([]) --, [].

DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 275

Extract from the Dictionary of the DCG
aux_verb(W,V,T) :- verb(W,V,T),auxiliary(V).
auxiliary(be).
verb(is,be,present).
proper_noun(john).
determiner(the).
adjective(nice).
noun(book).
verbtype(be,copula).
verbtype(V,transitive) :- transitive(V).
verbtype(V,intransitive) :- intransitive(V).
transitive(shoot).
intransitive(sleep).
s_transitive(believe).
infinitive(be).
past _participle(been,be).

Appendix 2. Performance Data

The DCG timing data which follows is for compiled code produced by the
DECsystem-10 Prolog implementation, running on a KI-10 processor. We list the
CPU times in milliseconds, averaged over 100 tests for examples in Part 1, and over
10 tests for examples in Part 2.

Part 1

The DCG is that listed in Appendix 1. For each example, there is listed the time to
obtain the first parse, followed by the time to exhaust all parses and the total
number of parses. For reference, the parse tree(s) obtained are also listed in
selected cases.

Observe thet in those cases where there is a unique parse, the overhead of going
on to seek alternative parses is very low. This is a result of the efficient implemen-
tation of backtracking, and of the generally highly determinate nature of this
particular grammar for top-down, left-to-right parsing.

(l) fred shot john---3 words
3.0 msec. 3.2 msec. 1 parse
s(dcl,np(npr(fred)),tns(past),vp(v(shoot),np(npr(john))))

(2) mary was liked by jolm--5 words
3.9 msec. 4.1 msec. 1 parse

(3) fred told mary to shoot john--6 words
5.1 msec. 5.7 msec. 1 parse

276 F . c . N . P E I R , D. H. D. WARREN

(4)

(5)

john was believed to have been shot by fredm9 words
5.7 msec. 8.3 msec. 2 parses
s(dcl,np(pro(someone)),tns(past),vp(v(believe, s(dcl,np(npr(fred)),

tns((present, perfect)),vp(v(shoot),np(npr0ohn))))))
s(dcl,np(npr(fred)),tns(past),vp(v(believe),s(dcl,np(pro(someone)),

tns((present, perfect)),vp(v(shoot),np(npr0ohn))))))

was dave believed to have told mary to tell fred to buy the book by john- -
16 words

9.6 msec. 12.1 msec. 1 parse

Part 2

Here we attempt to offer some kind of a comparison with the only available pub-
lished ATN timing data. We list five examples taken from Burton (1976) of sen-
tences with their CPU times for parsing by the compiled LUNAR system running
on a DEC KA-10 processor. Each of these examples is followed, for comparison,
by a superficially similar sentence accepted by a DCG based on the parsing
component of a natural language question-answering system written by Veronica
Dahl (1977). This system treats a sizable subset of natural language, approaching
in scale that of LUNAR.

All times are to obtain the first pars,: only. One structure produced as the result
of the DCG analysis is listed for reference. Note particularly that the DEC KI-10
processor used for the DCG times is generally reckoned to be nearly twice as fast
as a KA-10.

(l) Give me all analyses of S10046.
245 msec.

What are the files of David ?
78 msec.

(2)

(4)

How many breccias contain olivine ?
175 msec.

How many files date from Monday?
39 msec.
how_many(X:[] & file,

and(and(pr(file(X)),and(true,true)),
pr(dateof(X, [monday]))))

List modal plag analysis for lunar samples that contain olivine.
265 msec.

Which people are owners of small files that date from Monday ?
98 msec.

DEFINS[TE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 277

(7)

What is the average composition of olivine ?
275 msec.

What is the size of PLC ?
40 msec.

How many breccias do not contain Europium?
240 msec.

How many files do not date from Friday ?
38 msec.

ACKNOWLEDGEMENTS
We would like to thank all the people who read drafts of this paper, and particularly Chris
Mellish, William Woods, Alan Bundy and the referees for their detailed comments and suggestions.
The paper was written while Pereira was supported by a British Council Fellowship and Warren
by a British Science Research Council Grant (BRG/9445.5).

REFERENCES
Andreka, H. and Nemeti, I. (1976), The generalised completeness of Horn predicate-logic as a

programming language, Dept. of AI Research Report 21, Edinburgh (March 1976).
Bates, M. (1975), Syntactic analysis in a speech understanding system, BBN Report 3116 (August

1975).
Bates, M. (1978), The theory and practice of augmented transition networks, in: L. Bole (Ed.),

Natural Language Communication with Computers (Springer, Berlin, May 1978).
Bergman, M. and Kanoui, H. (1975), Sycophante: syst~me de calcul formel et d'int6gration

symbolique sur l'ordinateur, Groupe d'Intelligence Artificielle, Universit6 de Marseille-Luminy
(October 1975).

Boyer, R. S. and Moore, J. S. (1972), The sharing of structure in theorem proving programs, in:
Meltzer and Michie (Eds.), Machine Intelligence 7, (Edinburgh, 1972).

Burton, R. R. 0976), Semantic grammar: an engineering technique for construction of natural
language understanding systems, BBN Report 3453 (December 1976).

Burton, R. R. and Woods, W. A. (1976), A compiling system for augmented transition networks,
Preprints of COLING-76, Ottawa (June 1976).

Colmerauer, A. (1970), Les syst~:mes-Q ou un formalisme pour analyser et synth6tiser des phrases
sur ordinateur, Internal publication no. 43, D6partment d'Informatique, Universit6 de Montreal,
Canada (September 1970).

Colmerauer, A. (1975), Les grammaires de metamorphose, Groupe d'Intelligence Artificielle,
Universit6 de Marseille-Luminy (November 1975). Appears as "Metamorphosis Grammars" in:
L. Bole (Ed.), Natural Language Communication with Computers, (Springer, Berlin, May 1978).

Coimerauer, A. ~ 1977), An interesting natural language subset, Groupe d'Intelligence ArtificieUe,
Universit6 de Marseille-Luminy (October 1977).

Dahl, V. (1977), Un systeme d~ductif d'interrogation de banques de donn~es en Espagnol,
Groupe d'Intelligence Artificielle, Universit6 de Marseille-Luminy (November 1977).

Darvas, F., Futo, I. and Szeredi, P. (1977), Logic based program system for predicting drug
interactions, Int. J. Biomedical Comput. (1977).

Farley, J. (1970), An efficient context-free parsing algorithm, C. ACM 13 (February 1970).
van Emden, M. H. (1975), Programming with resolution logic, Report CS-75-30, Dept. of Com-

puter Science, University of Waterloo, Canada (November 1975).

278 F . c . N . PEREIRA, D. IL D. WARREN

Finin, T. and Hadden, G. (1977), Augmenting ATNs,/'roe. 5th IJCAI, MIT, Cambridge, MA
(August 1977).

Kaplan, R. M. (1973), A general syntactic processor, in: Randall Rustin (Ed.), NaturaILanguage
Processing (1973).

Koster, C. H. A. (1971), Aff~ grammars, in: J. E. L. Peck (Ed.), Algol-68 Implementation (North
Holland, Amsterdam, 1971).

Kowalski, R. A. (1974a), Predicate logic as programming language, Proc. IFIP 74, Stockholm
(1974).

Kowalski, R. A. (1974b), Logic for problem solving, DCL Memo 75, Dept. of AI, Edinburgh
(March 1974). (To be published by North-Holland, Amsterdam as part of a book of the same
title.)

Markusz, Z. (1977), Designing variants of fiats, Proc. IFIP Conf. (1977).
Montague, R. (1973), The proper treatment of quantification in ordinary English, in: R. M.

Thomason (Ed.), Formal Philosophy (Yale University Press: 1974).
Pereira, F. (1979), Extraposition grannnars, Working Paper No. 59, Dept. of AI, University of

Edinburgh (June 1979).
Pereira, L., Pereira, F. and Warren, D. (1978), User's guide to DECsystem-10 Prolog, Div. de

Informatica, LNEC, Lisbon and Dept. of AI, University of Edinburgh (September 1978).
Robinson, J. A. (1965), A machine-oriented logic based on the resolution principle, J. ACM 12

0965)°
Roussel, P. (1975), Prolog: manuel de rff~rence et d'utilisation, Groupe d'Intelligence Artificielle,

Universit6 de Marseille-Luminy (September 1975).
Warren, D. H. D. (1975), Implementation of an eff~cientipredicate logic interpreter based on

Farley deduction, Research proposal to the Science Research Council, Dept. of AI, University
of Edinburgh (1975).

Warren, D. H. D. (1977a), Implementing Prolog---compiling predicate logic prosrams, Dept. of
AI Research Reports 39 and 40, University of Edinburgh (May 1977).

Warren, D. H. D. (1977b), Logic programming and compiler writing, Dept. of AI Research
Report 44, University of Edinburgh (September 1977). To appear in Software Practke and
Experience.

Warren, D. H. D., Pereira, L. M. and Pereira, F. C. N. (1977), Prolog--the language and its
implementation compared with Lisp, Prec. ACM Symposium on AI and Programming Lan-
guages, SIOPLANI$1GART Newsletter (Rochester HY, August 19"/7).

van Wijngaarden, A. (Ed.)(1974), Revised Report on the Algorithmic Lang~ .~ Algol-68
(Springer, Berlin, 1976).

Woods, W. A. (1970), Transition network grammars for natural language analysis, C. ACM 13
.(October 1970).

Woods, W. A. (1973), An experimental parsing system for transition network grammars, in:
Randall Rusi~ (Ed.), Natural Language Processing (1973).

Woods, W. A., Kap!~ R. M. and Nash-Webber, B. (1972), The lunar sciences natural language
information system: ~aal report, BBN Report 2378 (June 1972).

Woods, W. A. et al. (1976), Speech understanding systems: final report, BBN RePOrt 3438
~ m b e r 1976).

