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ABSTRACT 

A clear andpowerfulformalism for describing languages, both natural and artificial, follows f iom a 
method for expressing grammars in logic due to Colmerauer and Kowalski. This formalism, which 
is a natural extension o f  context-free grammars, we call "definite clause grammars" (DCGs). 

A DCG provides not only a description of  a language, but also an effective means for analysing 
strings o f  that language, since the DCG, as it stands, is an executable program o f  the programming 
language Prolog. Using a standard Prolog compiler, the DCG can be compiled into efficient code, 
making it feasible to implement practical language analysers directly as DCGs. 

This paper compares DCGs with the successful and widely used augmented transition network 
(ATN) formalism, and indicates how ATNs can be translated into DCGs. It is argued that DCGs 
can be at least as efficient as ATNs, whilst the DCG formalism is clearer, more concise and in 
practice more powerful 

1. Introduction 

The aims of this paper are: 
(1) to give an introduction to "definite clause grammars" (DCGs)--a. formalism, 

originally described by Colmerauer (1975), in which grammars are expressed as 
clauses of first-order predicate logic, providing a natural generalisation of context- 
free grammars; 

(2) to explain how DCGs constitute effective programs of the programming 
language Prolog, and how they can thereby be used to implement practical 3ystems 
for language analysis; 

(3) to compare DCGs with the augmented transition network (ATN) formalism, 
Artificial Intelligence 13 (.1980), 231-278 
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and to show how an ATN can be translated into a DCG. It is NOT our intention 
to propose any definite solutions to the many unsolved linguistic problems of 
particular languages such as English; we describe only how DCGs can be used, 
not how they should be used. We take an informal approach wherever possible. 
We start by reviewing some basic concepts, making clear our terminology in the 
process. 

The usual way one attempts to make precise the definition of a language, 
whether it is a natural language or a programming language, is through a collection 
ofrules called a grammar. (Following normal usage, we restrict the term "grammar" 
to language definitions of this kind.) The rules of a grammar define which strings 
of words or symbols are valid sentences of the language. In addition, the grammar 
generally gives some kind of analysis of the sentence, into a structure which makes 
its meaning more explicit. 

A fundamental class of grammar is the context-free grammar (CFG), familiar to 
the computing community in the notation of "BNF" (Backus-Naur form). In 
CFGs, the words, or basic symbols, of the language are identified by terminal 
symbols, while categories of phrases of the language are identified by non-terminal 
symbols. Each rule of a CFG expresses a possible form for a non-terminal, as a 
sequence of terminals and non-terminals. The analysis of a string according to a 
CFG is a parse tree, showing the constituent phrases of the string and their 
hierarchical relationships. 

An important idea, due to Colmerauer and Kowalski (cf. Kowalski, 1974b; 
Colmerauer, 1975), is to translate the special purpose formalism of CFGs into a 
general purpose one, namely first-order predicate logic. They devised a particular 
method (having its origins in Colmerauer's (1970) Q-systems) for expressing 
context-free rules as logic statements of a restricted kind, known as definite clauses 
or "Horn clauses". The problem of recognising, or parsing, a string of a language 
is then transformed into the problem of proving that a certain theorem follows 
from the definite clause axioms which describe the language. 

These ideas might only have been of theoretical interest. However, at the same 
time, Colmerauer and Kowalski originated a more far-reaching idea. This was that 
a collection of definite clauses can be considered to be a program (see Kowalski 
(1974a, 1974b); van Emden (1975).) It turns out that automatic deduction can 
exhibit all the characteristics we associate with effective computation, provided the 
deduction is pursued in a suitably goal-directed way. 

A practical realisation of this concept of "programming in logic" was developed 
by Colmerauer and his colleagues in the form of the programming language 
Prolog. (See Roussel (1975), Pereira et al. (1978).) Prolog is based on a very simple 
but efficient proof procedure. Several implementations of the language have been 
completed, and these implementations have shown that Prolog can be as efficient 
as conventional high-level programming languages, cf. Warren et al. (1977). 
Prolog has been successfully used to write large-scale programs for a number of 
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useful applications, including algebraic "symbol crunching" (Bergman and Kanoui, 
1975), architectural design (Markusz, 1977), drug design (Darvas et al., 1977) and 
compiler implementation (Warren, 1977a, 1977b). 

Now if a CFG is expressed in definite clauses according to the Colmerauer- 
Kowalski method, and executed as a Prolog program, the program behaves as an 
efficient top-down parser for the language the CFG describes. 1 This fact becomes 
particularly significant when coupled with another discovery--that the technique 
for translating CFGs into definite clauses has a simple generalisation, resulting in 
a formalism far more powerful than CFGs, but equally amenable to execution by 
Prolog. This formalism--the main subject of our papermwe call definite clause 
grammars (DCGs). DCGs are a special case of Colmerauer's (1975) "metamorphosis 
grammars", which are for Chomsky type-0 grammars what DCGs are for CFGs. 
Although metamorphosis grammars can be translated into definite clauses, the 
correspondence is not nearly so direct as that for DCGs. 

DCGs are a natural extension of CFGs. As such, DCGs inherit the properties 
which make CFGs so important for language theory: the possible forms for the 
sentences of a language are described in a clear and modular way; it is possible to 
represent the recursive embedding of phrases which is characteristic of almost all 
interesting languages; there is an established body of results on CFGs which is 
very useful in designing parsing algorithms. 

Now it is well known that CFGs are not fully adequate for describing natural 
language, nor even many programming languages. DCGs overcome this in- 
adequacy by extending CFGs in three important ways. 

Firstly, DCGs provide for context-dependency in a grammar, so that the per- 
missible forms for a phrase may depend on the context in which that phrase occurs 
in the string. Secondly, DCGs allow arbitrary tree structures to be built in the 
course of the parsing, in a way that is not constrained by the recursive structure of 
the grammar; such tree structures can provide a representation of the "meaning" 
of the string. Thirdly, DCGs allow extra conditions to be included in the grammar 
rules; these conditions make the course of the parsing depend on auxiliary compu- 
tations, up to an unlimited extent. 

DCGs, as implemented via Prolog, have been used to write a number of practical 
systems for language analysis, e.g. for natural language question answering (Dahl, 
1977), and in compiler implementation (Warren, 1977b). 

DCGs bear some similarities to other formalisms known to computer scientists, 
notably the "van Wijngaarden grammars" used in the Algol-68 Report (van 
Wijngaarden, 1974), and the "affix grammars" which Koster (1971) took as the 
basis for the compiler definition language CDL. Like a van Wijngaarden grammar, 
a DCG can be viewed as a grammar consisting of an infinite number of context- 
free rules. Like an affix grammar, a DCG extends a CFG by augmenting 
non-terminals with arguments. However the three formalisms have significant 

1The efficiency of the parser also depends on a"suitable" choice of CFG to descrit~e the language. 
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differences; it seems fair to say that both van Wijngaarden grammars and affix 
grammars can be viewed as special cases of DCGs. 

In this paper we shah be specifically concerned with comparing DCGs with a 
formalism which at first sight is less obviously similar, namely "augmented tran- 
sition networks" (ATNs). ATNs were introduced by Woods (1970) as a powerful 
and practical formalism for natural language analysis. They have been used to 
implement a number of working natural language systems (Woods et al., 1972, 
1976; Bates, 1975; Burton, 1976), and some efficient implementations of the 
formalism have been developed (Burton and Woods, 1976; Finin and Hadden, 
1977). For the reader not familiar with ATNs, we recommend Bates (1978) as a 
clear and thorough introduction. 

We have chosen ATNs for comparison because they are widely known, because 
they are often considered to represent the "state of the art" in formalisms for 
practical natural language analysis, and because some of the most interesting 
natural language systems have been written within the ATN formalism. We shall 
argue that DCGs can be at least as efficient as ATNs, whilst the DCG formalism 
is clearer, more concise and in practice more powerful. 

The paper begins with a concise introduction to logic as a programming language 
and to Prolog. We recommend the reader to skim through this section and refer 
back to it later. The next section explains in detail the basic DCG formalism. This 
is followed by an account, for the ATN-minded reader, of how ATNs can be 
translated into DCGs. Finally we give a detailed discussion of the advantages ef  
DCGs relative to ATNs, and conclude with a summary of why we think DCGs 
represent a significant advance. The appendices contain a full example of the 
translation of an ATN into a DCG, and also some DCG performance data 
obtained using our DECsystem-10 implementation of Prolog. 

Note that, in describing various formalisms, we shall often use bold-face symbols 
as meta- or syntactic variables. These symbols are NOT part of the formalism 
under discussion, but are a device which helps to make our description of the 
formalism shorter and more precise. 

2. Logic as a Programming Language---The Definite Clause 
Subset 

In this section, we define the syntax and semantics of a certain subset of logic 
("definite clauses"), which amounts essentially to a dropping of disjunction 
("or") from the logic, and we indicate how this subset forms the basis of the 
practical programming language known as Prolog. Definite clauses have also been 
called "Horn clauses" or "regular clauses", but we prefer the name coined by van 
Emden (1975), since it gives at least some indication of their nature. We describe 
the definite clause subset from a conventional programming standpoint, using the 
notation and terminology of Prolog. 
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2.1. Syntax, terminology and informal semantics 

2.1.1. Terms 

The data objects of the language are called terms. A term is either a constant, a 
variable or a componnd term. 

The constants include integers such as: 

0 1 999 

and atoms such as: 

a void = :=  'Algol-68' [] 

The symbol for an atom can be any sequence of characters, which in general must 
be written in quotes unless there is no possibility of confusion with other symbols 
(such as variables, integers). As in conventional programming languages, constants 
denote definite elementary objects. 

Variables will be distinguished by an initial capital letter, e.g. 

X Value A A I 

A variable should be thought of as standing for some particular but unidentified 
object. Note that a variable is not simply a storage location which can be assigned 
to, as in most programming languages; rather it is a local name for some data 
object, cf. the variable of pure Lisp and identity declarations in Algol-68. 

The structured data objects of the language are the compound terms. A com- 
pound term comprises a fnnctor (called the principal functor of the term) and a 
sequence of one or more terms called arguments. A functor is characterised by its 
name, which is an atom, and its arity or number of arguments. For example the 
compound term whose functor is named 'point' of arity 3, with arguments X, Y 
and Z, is written: 

point(X,Y,Z) 

One may think of a functor as a record type and the arguments of a compound 
term as the fields of a record. Compound terms are usefully pictured as trees. For 
example, the term: 

s(np(john),vp(v(likes),np(mary))) 

would be pictured as the structure: 

np 

john v 

I 
likes 

vp 

np 

I 
mary 

17 
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Sometimes it is convenient to write a compound term using an optional infix 
notation, e.g. 

X + Y  (P;Q) X < Y  

instead of: 
+(X,Y) ;(P,Q) <(X,Y) 

Note that we consider an atom to be a functor of arity 0. 
An important class of data structures are the lists. These are essentially the same 

as the lists of Lisp. A list either is the atom: 
[] 

representing the empty list, or is a compound term with functor ' - '  and two argu- 
ments which are respectively the head and tail of the list. Thus a list of the first 
three natural numbers is the structure: 

, / ' \  
D 

This would be written in standard syntax as: 

• ( 1 , .  ( 2 , - ( 3 , [ D ) )  

but we shall write it, using a special list notation, as: 
[1,2,3] 

Our notation when the tail of a list is a variable is exemplified by: 

[XIL]  [a,b I L] 
representing respectively: 

/ ' \  
X L 

/ \ .  
a 

b / ~  L 

2.1.2. Clauses 

A fundamental unit of a logic program is the goal or procedure call. Examples are: 

gives(tom,apple,teacher) reverse([1,2,3],L) X < Y  

A goal is merely a special kind of term, distinguished only by the context in which 
it appears in the program. The (principal) functor of a goal is called a predicate. It 
corresponds roughly to a procedure name in a conventional programming language. 
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A logic program consists simply of a sequence of statements called clauses. A 
clause comprises a head and a body. The head either consists of a single goal or is 
empty. The body consists of a sequence of zero or more goals (i.e., it too may be 
empty). 

If neither the head nor the body of the clause is empty, we call it a non-unit 
clause, and write it in the form: 

P :- Q, R, S. 

where P is the head goal and Q, R and S are the goals which make up the body. 
We can read such a clause either declaratively as: 

"P  is true if Q and R and S are true." 

or procedurally as: 

"To satisfy goal P, satisfy goals Q, R and S." 

If the body of the clause is empty, we call it a unit clause, and write it in the 
form: 

P. 

where P is the head goal. We interpret this declaratively as: 

"P  is true." 

and procedurally as: 

"Goal P is satisfied." 

Finally, if the head of the clause is empty, we call the clause a question and write 
it in the form: 

?- P, Q. 

where P and Q are the goals of the body. Such a question is read declaratively as: 

"Are P and Q true ?" 

and procedurally as: 

"Satisfy goals P and Q." 

Clauses generally contain variables. Note that variables in different clauses are 
completely independent, even if they have the same name - i.e., the "lexical scope" 
of a variable is limited to a single clause. Each distinct variable in a clause should 
be interpreted as standing for an arbitrary value. To illustrate this, we give some 
examples of clauses containing variables, with possible declarative and procedural 

readings: 

(1) employed(X) :- employs(Y,X). 
"For  any X and Y, X is employed if Y employs X." 
"To find whether X is employed, find a Y that employs X." 
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(2) derivative(X,X,l). 
"For any X, the derivative of X with respect to X is 1." 
"The goal of finding a derivative for the expression X with respect to X 

itself is satisfied by the result 1." 

(3) ?- ungulate(X), aquaticS). 
"Is it true of any X, that X is an ungulate and X is aquatic?" 
"Find an X which is bot~ an ungulate and aquatic." 

In a logic program, the procedure for a particular predicate is the sequence of 
clauses in the program whose head goals have that predicate as principal functor. 
For example, the procedure for a ternary predicate 'concatenate' might well 
consist of the two clauses: 

concatenate( [X I LI],L2,[X I L3]):-concatenate(L1,L2,L3). 
concatenate([],L,L). 

where 'concatenate(L1,L2,L3)' means "the list L1 concatenated with the list L2 is 
the list L3". 

As we have seen, the goals in the body of a clause are linked by the operator '  , '  
which can be interpreted as conjunction ("and"). For convenience, we sometir es 
also use an operator ' ; '  standing for disjunction ("or"). (The precedence o f '  ; '  
is such that it domina tes ' , '  but is dominated by '  :- '). An example is the clause: 

grandfather(X,Z) :- 
(mother(X,Y); father(X,Y)), father(Y,Z). 

which can be read as: 

"For any X, Y and Z, 
X has Z as a grandfather if 
either the mother of X is Y or the father of X is Y, 
and the father of Y is Z." 

Such uses of disjunction can always be eliminated by defining an extra predicate 
m for instance the previous example is equivalent to: 

grandfather(X,Z) :- parent(X,Y), father(Y,Z). 
parent(X,Y) :- mother(X,Y). 
parent(X,Y) :- father(X,Y). 

w and so disjunction will not be mentioned further in the following, more formal, 
description of the semantics of clauses. 

2.2. Declarative and procedural semantics 

The semantics of definite clauses should be fairly clear from the informal inter- 
pretations already given. However, it is useful to have a precise definition. The 
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declarative semantics of definite clauses tells us which goals can be considered true 
according to a given program, and is defined recursively as follows. 

A goal is true if it is the head of some clause instance and each of the goals (if 
any) in the body of that clause instance is true, where an instance of a clause (or 
term) is obtained, by substituting, for each of zero or more of its variables, a 
new term for all occurrences of the variable. 

For example, if a program contains the preceding procedure for 'concatenate', 
than the declarative semantics tells us that: 

concatenate([a],[b],[a,b]) 

is true, because this goal is the head of a certain instance of the first clause for 
'concatenate', namely, 

concatenate([a],[b],[a,b]) :- concatenate([],[b],[b]) 

and we know that the only goal in the body of this clause instance is true, since it 
is an instance of the unit clause which is the second clause for 'concatenate'. 

Note that the declarative semantics makes no reference to the sequencing of 
goals within the body of a clause, nor to the sequencing of clauses within a pro- 
gram. This sequencing information is, however, very relevant for the procedural 
semantics which Prolog gives to definite clauses. The procedural semantics defines 
exactly how the Prolog system will execute a goal, and the sequencing information 
is the means by which the Prolog programmer directs the system to execute his 
program in a sensible way. The effect of executing a goal is to enumerate, one by 
one, its true instances. Here then is an informal definition of the procedural 
semantics. 

To execute a goal, the system searches for the first clause whose head matches 
or unifies with the goal. The unification process (Robinson, 1965) finds the most 
general common instance of the two terms, which is unique if it exists. If a match 
is found, the matching clause instance is then activated by executing in turn, 
from left to right, each of the goals (if any) in its body. If at any time the system 
fails to find a match for a goal, it backtracks, i.e., it rejects the most recently 
activated clause, undoing any substitutions made by the match with the head of 
the clause. Next it reconsiders the original goal which activated the rejected 
clause, and tries to find a subsequent clause which also matches the goal. 

For example, let us consider the question: 

?- concatenate(X,Y, [a,b]) 

which can be read declaratively as: 
"Are there lists X and Y which when concatenated yield the list [a,b] ?" 

If we execute the goal expressed in this question, we find that it matches the head 
of the first clause for 'concatenate', with X instantiated to [a I XI]. The new 
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variable XI is constrained by the new goal (or recursive procedure call) which is 
produced: 

concatenate(X l,Y,[b]) 

Again this goal matches the first clause, instantiafing XI to [b ] X2], and yielding 
the new goal: 

concatenate(X2,Y,D) 

Now this goal will only match the second clause, instantiating both X2 and Y to 
[]. Since there are no further goals to be executed, we have a solution: 

X = [a,b] 

Y - - [ I  

i.e., a true instance of the original goal is: 

concatenate([a,b],N,[a,b]) 

If we reject this solution, backtracking will generate the further solutions: 

x = [a] Y = [b] 

X -  [] Y = [a,b] 

in that order, by re-matching, against the second clause for 'concatenate', goals 
already solved once using the first clause. 

2.3. Notable features of logic programs 

The simplicity of the syntax and semantics of logic programs conceals a number of 
notable features not found in conventional programming languages. These are 
discussed in Warren et al. (1977). Here we list briefly those features which are 
especially relevant to grammar writing. 

(1) Pattern matching (unification) replaces the conventional use of selector and 
constructor functions for operating on structured data. 

(2) The arguments of a procedure can serve, not only for it to receive one or 
more values as input, but also for it to return one or more values as output. 
Procedures can thus be "multi-output" as well as "multi-input". 

(3) The input and output arguments of a procedure do not have to be dis- 
tinguished in advance, but may vary from one call to another. Procedures can thus 
be "multi-purpose". 

(4) Procedures may generate (via backtracking, in the case of Prolog) a set of 
alternative results. Such procedures are called "non-determinate". Backtracking 
amounts to a high-level form of iteration. 

(5) Procedures may return "incomplete" results, i.e. the term or terms returned 
as the result of a procedure may contain variables, which are only filled in later, 
by calls to other procedures. The effect is similar to the use of assignment in a 
conventional language to fill in fields of a data structure. Note, however, that 
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there may be many occurrences of an uninstantiated variable, and that all of 
these get filled in simultaneously (in a single step) when the variable is finally 
instantiated. Note also that when two variables are unified together, they become 
identified as one. The effect is as though an invisible pointer, or reference, linked 
one variable to the other. We refer to these related phenomena as the "logical 
variable". 

(6) "Program" and "da ta"  are identical in form. A procedure consisting solely 
of unit clauses is closer to an array, or table of  data, in a conventional language. 

3. How to Write Grammars in Logic 

In this section we describe the formalism of definite clause grammars. The basic 
idea has been discussed by Kowalski (1974b) and Colmerauer (1975) has given a 
fully formal treatment. 

3.1. Expressing context-free grammars in definite clauses 

To describe how grammars can be expressed in logic, we begin by considering 
context-free grammars (CFGs). For these, we use the following notation, which 
will prove convenient later. 

Each rule has the form: 

nt --, body. 

where nt is a non-terminal symbol and body is a sequence of one or more items 
separated by commas. Each item is either a non-terminal symbol or a sequence of 
terminal symbols. The meaning of the rule is that body is a possible form for a 
phrase of type nt. A non-terminal symbol is written as a Prolog atom, while a 
sequence of terminals is written as a Prolog list, where a terminal may be any 
Prolog term. The null string is written as the empty list '[]'. As in the syntax of 
clauses, this basic notation is extended by allowing alternatives to appear in body. 
Alternative sequences of symbols are separated by semi-colons, with parentheses 
where necessary. 

We now show a simple CFG to illustrate the notation. The grammar covers 
sentences such as "John loves Mary" and "Every man that lives loves a woman":  

sentence ~ noun_phrase, verb_phrase. 
noun_phrase --, determiner, noun, rel_clause. 
noun_phrase - ,  name. 
verb_phrase --, trans_verb, noun_phrase. 
verb_phrase ~ intrans_verb. 
rel_clause --, [that], verb_phrase. 
rel_clause --, []. 
determiner --, [every]. 
determiner --, [a]. 
noun - ,  [man]. 
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noun - ,  [woman]. 
name - ,  [john]. 
name ~ [mary]. 
trans_verb - ,  [loves]. 
intrans_verb --~ [lives]. 

We regard each rule of a CFG as "syntactic sugar" for a definite clause of logic. 
To get the translation, we associate with each non-terminal a 2-place predicate 
(having the same name). The arguments of the predicate represent the beginning 
and end points in the string of a phrase for that non-terminal. The first seven rules 
in the example translate into: 

sentence(S0,S) :- noun_phrase(S0,S 1), ". ~rb_phrase(S 1 ,S). 
noun_phrase(S0,S) :- determiner(S0,S 1), noun(S 1 ,$2), rel_clause(S2,S). 
noun_phrase(S0,S) :- name(S0,S). 
verb_phrase(S0,S) :- trans_verb(S0,S l), noun_phrase(S I,S). 
verb_phrase(S0,S) :- intrans_verb(S0,S). 
rel_clause(S0,S) :- connects(S0,that,S 1), verb_phrase(S I,S). 
rel_clause(S,S). 

We can read the first clause as "a sentence extends from SO to S if there is a 
noun phrase from SO to S 1 and a verb phrase from S 1 to S"; we can read the last 
clause as "a relative clause extends from S to S", i.e., "a relative clause may be 
empty". 

To represent terminal symbols in rules, we use a 3-place predicate, 'connects', 
where 'connects(S1,T,S2)' means "terminal symbol T lies between points SI and 
$2 in the string". Thus the remaining rules translate into: 

determiner(S0,S) :- connects(S0,every, S). 
determiner(S0,S) :- connects(S0,a,S). 
noun(S0,S) :- connects(S0,man,S). 
noun(S0,S) :- connects(S0,woman,S). 
name(S0,S) :- connects(S0,john,S). 
name(S0,S) :- connects(S0,mary,S). 
trans_verb(S0,S) :- connects(S0,1oves,S). 
intrans_verb(S0,S) :- connects(S0,1ives,S). 

The first clause, for instance, reads "there is a determiner from SO to S if the word 
"every" lies between SO and S". 

Now, to represent a particular sentence to be recognised, say: 

Every man that lives loves M a r y .  
1 2 3 4 5 6 7 

we tag the sentence with integers as shown, and translate it into the following set 
of unit clauses: 
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connects(l,every,2). 
connects(2,man,3). 
connects(3,that,4). 
connects(4,1ives,5). 
connects(5,1oves,6). 
connects(6,mary,7). 

Then to determine whether that sentence is grammatical, We try to prove the goal: 
?- sentence(l,7). 

The proof procedure used determines the parsing strat!:gy, cf. Kowalski (1974b). 
This will be discussed further in Section 3.4 with particular reference to the Prolog 
proof procedure. 

We may now notice that the representation of a context-free grammar by clauses 
is data-independent, in the sense that the actual representation of the string to be 
parsed is not "known" by the clauses--only the predicate 'connects' and the goal 
to be proved take it into account. If we tag a point in a string, no t  by an integer, 
but instead by the list of symbols occurring after that point in the string, it is no 
longer necessary to provide a separate 'connects' clause for each symbol in the 
string. Instead we can define the 'connects' predicate in a single, general clause: 

connects([W [ S],W,S). 
which can be read as "The string position labelled by the list with head W and 
tail S is connected by symbol W to the string position labelled S". The goal of 
proving the original sentence grammatical is now expressed as: 

?- sentence([every,man,that,lives,loves,mary],[]). 
Depending on the proof procedure, one representation or the other may be 

preferred, for efficiency reasons. In the case of Prolog, the proofs with the two 
representations will be essentially the same, with integer tags substituted by final 
segments of the input string. 

Note that in cases where the second representation is used, it is possible to 
execute, or "preprocess", all the calls to 'connects' at "compile-time", thereby 
dispensing with any need to refer to the predicate at "run-time". For example, 
preprocessing in this way the clause: 

rel_clause(S0,S) :- connects(S0,that,S 1), verb_phrase(S I,S). 

we get: 
rel_clause([that I Sl ],S) :- verb_phrase(S l,S). 

Note that in Colmerauer (1975), grammar rules are directly identified with definite 
clauses of this preprocessed form, and there is therefore no mention ofthe'connects' 
predicate. 

The foregoing discussion allows us to identify context-free rules with definite 
clauses of a certain form. A context-free grammar is thus identified with a set of 
such clauses. 



244 F . C . N .  PEREIRA, D. H. D. WARREN 

3.2. Definite dame grammars 

We now generalise context-free grammars, in a way that will maintain the corres- 
pondence with definite clauses, to obtain the formalism of definite clause grammars. 

3.2.1. Notation 

The notation for DCGs extends our notation for context-free grammars in the 
following way: 

(1) Non-terminals are allowed to be compound terms in addition to the simple 

atoms allowed in the context-free case, e.g. 

np(X,S) sentence(S) 

(2) In the right-hand side of a rule, in addition to non-terminals and lists of 
terminals, there may also be sequences of procedure calls, written within .the 
brackets ' {' and ' } '. These are used to express extra conditions which must be 
satisfied for the rule to be valid, e.g., 

noun(N) ~ [WI, {rootform(W,N), is_noun(N)}. 

The last example can be read as "a  phrase identified as the noun N may consist of 
the single word W, where N is the root form of W and N is a noun". 

Non-terminals, terminals and procedure calls in the right-hand side of a rule 
will be referred to collectively as goals. 

3.2.2. The meanin# of  the DCG notation as definite clauses 

A rule of a DCG is again no more than "syntactic sugar" for a certain kind of 
definite clause. Terminal symbols are translated exactly as before; a non-terminal 
of arity N translates into an N + 2 place predicate (having the same name), whose 
first N arguments are those explicit in the non-terminal and whose last two 
arguments are as in the translation of a context-free non-terminal; procedure calls 
in the right-hand side of a rule are simply translated as themselves. For example, 
the rule: 

noun(N) -o [W], {rootform(W,N), is_noun(N)} 

represents the clause: 

noun(N,S0,S) :-connects(S0,W,S), rootform(W,N), is_noun(N). 

3.3. The use of definite clause grammars 

We now discuss how the DCG formalism provides for three important mecha- 
nisms in language analysis, namely the building of structures (such as parse trees), 
the imposing of extra conditions on the constituents of a phrase, and a general 
treatment of context dependency. 
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3.3.1. Building structures 

The extra arguments of non-terminals provide the means of building structure in 
grammar rules. As non-terminals are "expanded", by matching against grammar 
rules, structures are progressively built up in the course of the unification process. 

Here we just present a simple example. The context-free grammar of Section 3.1 
is modified to produce explicitly for each phrase an interpretation which is simply 
its parse tree. We also take the opportunity of introducing a more compact, and 
(as we shall see later) more efficient, way of representing the dictionary, i.e., the 
rules defining those non-terminals which correspond to word classes (or parts of 
speech). In general, instead of having a rule of the form: 

category(arguments) ~ [word]. 
for each word in the class category, we write a general rule: 

category(arguments) --, [W], {cat(W, arguments)}. 
and define a "dictionary procedure" cat consisting of clauses of the form: 

cat(word, arguments). 
for each word in category. 

The rules for the modified example are" 
sentence( s(NP, VP) ) --, noun_phrase(NP), verb_phrase(VP). 
noun_phrase(np(Det,Noun,Rel) )--, determiner(Det), nounI.Noun), 

rel_clause(Rel). 
noun_phrase(np(Name) ) --, name(Name). 
verb_phrase(vp(TV,NP) ) --, trans_verb(TV), noun_phrase(NP). 
verb_phrase(vp(IV) ) - ,  intrans_verb(IV). 
rel_clause(rel(that,VP) ) --, [that], verb_phrase(VP). 
rel_clause(rel(nil) ) --, []. 
determiner(det(W) ) ~ [W], {is_determiner(W)}. 
noun(n(W) ) --, [W], {is_noun(W)}. 
name(name(W) ) --. [W], {is_name(W)}. 
trans_verb(tv(W) ) --, [W], {is_trans(W)}. 
intrans_verb(iv(W) ) --, [W], {is_intrans(W)}. 

We read an augmented non-terminal such as 'noun-phrase(NP)' as "a noun 
phrase with interpretation NP" .  Thus the first rule is read as "A sentence with 
interpretation s(NP,VP) may consist of a noun phrase with interpretation NP 
followed by a verb phrase with interpretation VP". Examples of clauses from the 
associated dictionary are: 

is_determiner(every). 
is_noun(man). 
is-name(mary). 
is_tram(loves). 
is_intrans(lives). 
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The analysis of the sentence "Every man loves Mary" with these rules produces 
the following parse tree: 

np 

det n tel tv 

I I I I 
every man nil loves 

vp 

np 

I 
n a m e  

I 
mary 

i.e., it follows from the declarative semantics of definite clauses that: 

sentence(theta,[every,man,loves,mary], []) 

is a true term, where tbeta is the term depicted above. 

3.3.2. Extra conditions 

The use of explicit procedure calls in the body of a rule to restrict the constituents 
accepted, is illustrated by the following rule: 

d~.te(D,M) -~ month(M), [D], {integer(D), 0 < D, D < 32}. 

We can read this rule as "A phrase representing the date day D of month M may 
be written as a phrase representing the month M followed by a symbol D, where 
D is an integer greater than 0 and less than 32". 

3.3.3. Context dependency 

The arguments of non-terminals in a DCG can be used not only to build structures 
but also to carry and test contextual information. For instance, we can modify the 
example of Section 3.3.1 to handle the "number" agreement (singular or plural) 
required between certain determiners, nouns and verbs. The modified grammar 
will accept sentences such as "Every man loves some girl" and "All men like 
girls", but will reject an ungrammatical sentence such as "All men that lives love 
a woman". To handle the number agreement, certain non-terminals will have an 
extra argument which can take the values 'singular' or 'plural'; the dictionary 
predicates will have the "number" argument and also an argument to return the 
root form of a word. The modified rules are: 

sentence(s(NP,VP) ) -~ 
noun_phrase(N, NP), verb_phrase(N,VP). 

noun_phrase(N, np(Det,Noun, Rel) ) 
determiner(N, Det), noun(N, Noun), rel_clause(N, Rel). 
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ncun_phrase(singular, rip(Name) ) --, name(Name). 
verb_phrase(N, vp(TV,NP) ) --, 

trans_verb(N,TV), noun_phrase(N I,NP). 
verb_phrase(N, vp(IV) ) ~  intrans_verb(N,IV). 
rel_clause(N, rel(that,VP) ) - ,  [that], verb_phrase(N,VP). 
rel_clausc(N, rel(nil) ) - ,  []. 

determiner(N, det(W) ) --, [W], {is_determiner(W,N)}. 
determiner(plural, det(nil) ) - ,  []. 
noun(N, n(Root) ) --, [W], {is_noun(W,N, Root)}. 
name(name(W) ) - ,  [W], {is_name(W)}. 
trans_verb(N, tv(Root) ) - ,  [W], {is_trans(W,N,Root)}. 
intrans_verb(N, iv(Root) ) --, [W], {is_intrans(W,N,Root)}. 

E:~amples of clauses from the associated dictionary are: 

is_determiner(every,singular). 
is _determiner(all,plural). 
is-noun(man,singular,man). 
is_noun(men,plural,man). 
is_name(mary). 
is _tram(likes,singular,like). 
is _tram(like,plural,like). 
is_intrans(live,plural,live). 

3.4. How DCGs are executed by Prolog 

So far, we have been discussing DCGs from a declarative point of view. To under- 
stand a DCG, this is perfectly adequate--for since the DCG is no more than a 
set of definite clauses, its meaning is independent of any execution mechanism. 
However, as we have already noted, each proof procedure for definite clauses 
corresponds to a different parsing strategy for DCGs. We now discuss what this 
means in the case of the Prolog proof procedure. 

From the procedural semantics of Prolog, it follows that, to parse a sentence, 
the grammar rules are used top-down, one at a time, and that goals in a rule are 
executed from left to right (i.e. the sentence is parsed from left to right). If there 
are alternative rules at any point, backtracking will eventually return to them. It 
is up to the grammar writer to formulate the grammar in such a way that the same 
work is not repeated unnecessarily on different backtracking alternatives. In 
practice this is not too difficult for languages intended to be read from left to 
right, although it often makes the grammar less readable than it would otherwise 
have been. All the work of the analysis is done by the same uniform mechanism 
(the Prolog proof procedure) and, in current Prolog implementations, the back- 
tracking is performed very efficiently. 
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To show how Prolog executes a DCG, and in particular the backtracking and 
the pattern matching, we will now describe the main steps in parsing the "garden 
path" sentence: 

That man that whistles tunes pianos. 
1 2~ 3 4 5 6 7 

according to the DCG in the previous section, with a dictionary including the 
following clauses: 

is _determiner(that, singular). 
is_noun(man,singular, man). 
is_noun(men,plural,man). 
is_noun(pianos, plural,piano). 
is_noun(tunes,plural,tune). 
is_trans(whistles,singular, whistle). 
is_trans(tunes,singular, tune). 
is_intrans(whistles,singular,whistle). 

For greater readability, we will here write Prolog goals coming from DCG 
non-terminals or terminals in the form: 

symbol from pointl to lmhtt2 

where symbol is a non-terminal or list of terminals and imintl, pohtt2 are positions 
in the input string, as labelled above. 

The initial goal is: 

sentence(S) from 1 to 7 

This matches the single rule for 'sentence', creating the instantiation: 

S - s(NP, VP). 
and the goals: 

noun_phrase(N, NP) from 1 to PI, 
verb_phrase(N, VP) from P1 to 7, 

Prolog next matches the first of those goals against the first rule for 'noun_phrase', 
producing the instantiation: 

NP = np(Det,Noun, Rel). 

and the goals: 

determiner(N, De0 from 1 to P2, 
noun(N,Noun) from P2 to P3, 
rel_clause(N, Rel) from P3 to P1, 

Now the first of these goals expands into two subgoals: 

[W] from 1 to P2 
is_determiner(W,N) 
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both of which succeed immediately, since the word at position 1 in the string is 
"that" and because the dictionary contains the clause: 

is_determiner(that,singular). 

The solution to the 'determiner' goal is therefore: 

determiner(singular, det(that) ) from 1 to 2 

Prolog now proceeds to the goal for 'noun', which is currently instantiated to: 

noun(singular,Noun) from 2 to P3 

This succeeds in a manner similar to the goal for 'determiner', with solution: 

noun(singular, n(man) ) from 2 to 3 

Note that, had the word at position 2 been "men" instead of "man", the goal 
would not have succeeded, since no match would be found for the intermediate 
subgoal: 

is_noun(men,singular, Root) 

Prolog now proceeds to match the 'rel_clause' goal against the first rule for 
'rel_clause' yielding the new goals: 

[that] from 3 to P4, 
verb_phrase(singular,VPl) from P4 to P 1, 

The first of these goals succeeds trivially, with: 

P 4 = 4  

and the second matches the first rule for 'verb_phrase', producing the subgoals: 

trans_verb(singular,TV) from 4 to PS, 
noun_phrase(M,NPl) from P5 to PI, 

Both subgoals eventually succeed, with solutions: 

trans_verb(singular, tv(whistle) ) from 4 to 5 
noun_phrase(plural, 

np(det(nil),n(tune),rel(nil)) ) from 5 to 6 

where the second solution is obtained via a match against the first rule for 'noun_ 
phrase'. 

We have now obtained a solution to the original 'noun_phrase' goal, corres- 
ponding to the phrase "that man that whistles tunes". The next goal to be executed, 
which comes from the original activation of the rule for 'sentence', is: 

verb_phrase(si~gular,VP) from 6 to 7. 

(Now remember that the word at position 6 is "pianos"). Matching this goal 
against the first rule for 'verb_phrase' leads to the goal: 

trans_verb(singular,TVl) from 6 to P6, 
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which cannot succeed, because "pianos" is not a 'trans_verb'. In the same way, 
the second rule for 'verb_phrase' fails, because "pianos" is not an 'intrans_verb'. 

At this point, Prolog backtracks to the most recent goal for which there is still 
an alternative rule available, namely: 

noun_phrase(M,NPl) from 5 to PI 
This goal is now matched against the second rule for 'noun_phrase', leading to the 
goal: 

name(Name) from 5 to P1 

which fails because the word at position 5, "tunes", is not a 'name'. Backtracking 
again, the most recent choice is the use of the first rule for 'verb_phrase' to match 
the goal: 

verb_phrase(singular, VPl) from 4 to PI 

So, this goal is now matched against the second rule for 'verb_phrase', producing 
eventually the solution: 

verb_phrase(singular, iv(whistle) ) from 4 to 5 

We have now found a second solution to the original 'noun_phrase' goal, 
corresponding to the phrase "that man that whistles". The only goal still pending 
is the second goal from the original activation of the rule for 'sentence'. This goal 
is currently instantiated to: 

verb_phrase(singular,VP) from 5 to 7. 

Execution of the goal this time succeeds, producing the result: 

verb_phrase(singular, vp(tv(tune),np(det(nil),n(piano),rel(nil)) ) from 
5 t o 7  

thus completing the parsing. Putting together the various instantiations, we obtain, 
as result S, the structure depicted below: 

/ - S  

d e t J   re, 
that man vp 

I 
IV 

I 
whistle 

vp 

np 

I J'n  tune det rel 

f I f 
nil piano nil 

3.5. The role of the logical variable in DCGs 

The feature of logic programs which we have called the "logical variable" makes 
DCGs a very powerful formalism for implementing practical language analysers. 
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Structures can be built piecemeal, leaving unspecified parts as variables. The 
structure can be passed around, and be completed as the parsing proceeds. When 
the fragments needed are available, the "holes" in the structure represented by 
variables are filled by unification. Thus it is easy to build terms with structures 
which do not parallel the parse tree. We illustrate this first with a very simple 
example, and then in the following section give a much deeper example. 

For the first example, we want to recognise sentences comprising a verb 'pre- 
cedes" or 'follows', and names of months, e.g., "May follows April". The inter- 
pretation given to a sentence of this type will be a term of the form 'before(M 1,M2)'. 
For instance, the interpretation of "May follows April" will be 'before(april,may)'. 
The context-free grammar for this example is given by the rules: 

sentence - ,  month,verb,month. 

verb --, [precedes]. 
verb - ,  [follows]. 

month --, [january]. 
month -} [february]. 

etc. 

To construct the required interpretation, we give the non-terminals extra arguments 
as follows: 

sentence(S) --, month(M l),verb(M 1 ,M2,S),month(M2). 

verb(M l,M2,before(M I,M2)) - ,  [precedes]. 
verb(Ml,M2,bef'~re(M2,M1)) --, [follows]. 

month(january) --, [january]. 
month(february) -~ [february]. 

etc. 

We read the non-terminal 'verb(MI,M2,S)' as "a verb whose interpretation in the 
context of a subject M 1 and object M2, is S". 

Notice that, in general, it is not necessary that the first two arguments of 'verb' 
be known when the proof procedure builds the third argument during the execution 
of a rule for 'verb'. That is, the relationship between the arguments of a non- 
terminal is defined independently of any particular order of executing the rules. 

Running the example with Prolog, the parsing proceeds from left to right, so in 
the first rule, the structure S is built before one of its components, M2, is known. 
This component gets filled in later during the parsing of the rest of the sentence. 
Note that it is cumbersome and less natural to postpone the building of the struc- 
ture S until M2 is known, i.e., until the end of the rule for 'sentence', since the 
form of S depends crucially on the nature of the verb. 

3.6. A more sophisticated example 

The more sophisticated example of the logical variable in this section has been 

18 
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chosen to illustrate how naturally and concisely one can express complex structure 
building in a DCG. We leave to the reader the detailed analysis of the example• 

The DCG is again an extension of our original context-free example. It forma- 
lises the mapping between English and formulae of classical logic which is usually 
outlined in introductory logic textbooks• For example, the term constructed as the 
representation of the sentence: 

Every man that lives loves a woman. 

will be: 

all(X)" (man(X) & lives(X) =:. exists(Y) • (woman(Y) & loves(X,Y))) 

(where' "", ' & '  and ' =~' are binary functors written as infix operators). Notice 
how different the structure of this term is from that of the corresponding parse 
tree, i.e., compare- 

all 

I 
X 

with: 

=:~  

man ~ ' / &  lives exists : ~ &  

x x Y I J \  
Y X Y 

det n el tv np 

every man that vp loves det n re l 
f I I I 
iv a woman nil 
I 

lives 

The DCG follows. To avoid details not essential to the purpose of the example, 
we have not introduced auxiliary predicates for the dictionary. 

sentence(P) - ,  noun_phrase(X,P l ,P), verb_phrase(X,P l). 

noun_phrase(X,PI,P) - ,  
determiner(X,P2,Pl,P), noun(X,P3), rel_clause(X,P3,P2). 

noun_phrase(X,P,P) - ,  name(X). 
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verb_phrase(X,P) -~ trans_verb(X,Y,P 1), noun_phrase(Y,P 1 ,P). 
verb_phrase(X,P) ~ intrans_verb(X,P). 

rel_clause(X,PI,Pl & P2) ~ [that], verb_phrase(X,P2). 
rel_clause(X,P,P) ~ []. 

determiner(X,P1,P2, all(X) :(PI =~ P2) ) ~ [every]. 
determiner(X,P1,P2, exists(X) : (PI & P2) ) ~ [a]. 

noun(X, man(X) ) -~ [man]. 
noun(X, woman(X) ) ~ [woman]. 

name(john) ~ [john]. 

trans_verb(X,Y, loves(X,Y) ) --} [loves]. 
intrans_verb(X, lives(X) ) --+ [lives]. 

Each non-terminal has one or more arguments. The last argument gives the 
interpretation of the corresponding phrase. This intcrpretation in general depends 
on other items, as specified by the preceding arguments of the non-terminal. For 
example, the word "loves" has the interpretation 'luves(X,Y)', which depends on 
individuals X and Y. A more complex case is the word "every", which has the 
interpretation: 

all(X) :(PI =~ P2) 

in the context of two properties PI and P2 of an individual X. (The property PI 
will correspond to the rest of the noun phrase containing the word "every", and 
the property P2 will come from the rest of the sentence). Observe that the non- 
terminal for a noun phrase takes the form 'noun_phrase(X,PI,P)', i.e., the inter- 
pretation P of the noun phrase will depend on a property P l of an individual X. 
This is because in general a noun phrase contains a determiner such as "every". 
For example, the interpretation of the noun phrase "every man" will be: 

all(X) : man(X) =~ PI. 

The second rule for 'noun_phrase' tells us the interpretation of a noun phrase 
which consists solely of a name, or "proper noun", e.g., "John". We see that this 
interpretation, in the context of a property P of some individual X, is simply P 
itself, provided the individual X is that named by the proper noun (e.g., 'john'). 

The reader familiar with Montague's (1973) work, will note the similarity of this 
analysis to Montague's treatment. 

Executing this DCG with Prolog brings into play the full power of the logical 
variable. For the order in which phrases are parsed is such that some parts of the 
translation of a phrase are not available when that translation is built. For example 
the interpretation P of a sentence is produced by its subject noun phrase, and, 
naturally, this interpretation P will also depend on the (as yet unknown) inter- 
pretation of the verb phrase which completes the sentence. Such unknown items 
are left as variables to be filled in later. 
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4. How to Translate ATNs into DCGs 

The purpose of this section is to explain to the ATN-minded reader how an ATN 
can be translated into a DCG describing the same language and producing the 
same analysis in essentially the same way. We do not attempt to give a definitive 
algorithm, as there is always room for ingenuity in producing a good DCG trans- 
lation. Rather, we indicate the basic ideas underlying the translation process. We 
take (Bates, 1978) as the definitive reference on ATNs. 

4.1. Decomposing the network 

A simple transition network, i.e., a network without cycles and with a single start 
and end node, can be directly translated as follows: 

(1) the simple network corresponds to a non-terminal; 

(2) each distinct path from the start node to the end node translates into a 
distinct rule for that non-terminal; 

(3) the body of each rule is a translation, in order, of the arcs which make up 
the corresponding path. 

Now in general a network has cycles. But it is clear that any network is equivalent 
to a set of simple networks connected by PUSHes and POPs, what we shall call a 
decomposition. To illustrate all this, we now show how an unaugmented transition 

verb object 

P~ 

~ f N p  O 1 ' ' V P ~  

NP NP 
S O 4 - -  

Q2 POP 

np 

adjs PPS 

DE N 
NP 

" O  8 ~ POP 

PP 

PREP NP 
PP -~Q 9 = Q 10 ~-POP 

FIG. 1. 
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network (taken from Woods (1970)) translates into a DCG which is simply a CFG~ 
The network is shown in Fig. 1, where the boxes identify a decomposition into the 
simple networks of Fig. 2 (where anonymous nodes are labelled by '.'). These in 
turn translate into the following rules: 

s ~ np, verb, object. 
s -* aux ,  n p ,  v ,  object .  

verb  ~ v. 

verb ~ aux, v. 

object ~ np, pps. 
object ~ [1. 

np ~ det, adjs, n, pps. 
np ~ npr. 
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adjs --, adj, adjs. 
adjs -~ ft. 
pps -o pp, pps. 
pps ~ H. 

pp -+ prep, rip. 

Note that the V arc from Q3 to Q4 has been translated into two separate occur- 
rences o f '  v ', in the second and fourth rules. 

Not all decompositions lead to equally concise translations. In general, a more 
concise translation is obtained if each simple network obeys a minimality constraint, 
that the different paths through the network only meet at the start and end nodes. 
The decomposition shown above roughly accords with this principle. 

4.2. Translating the arcs 

We will assume that the Lisp test in an arc is translated into a goal, test, and the 
Lisp actions into a sequence of goals, actions. Each arc type is then translated as 
follows in the body of a rule: 

(CAT category. . .  ) 
(WRD v;'ord... ) 
(MEM l i s t . . .  ) 
( T S T . . . )  
( J U M P . . . )  
(PUSH subnetwork...  ) 
( P O P . . . )  

[W], {tes~, category(W), actions}, 
[word], {test, actions}, 
[W], {test, in(W, list), actions}, 
[W], {test:, actions}, 
{test, actions}, 
{test }, subnetwork, { actions}, 
{test, actions}. 

Of course, in cases where the original test or actions are empty, the corresponding 
goals can be completely omitted from the DCG version. Tile predicate 'in(X,L)' 
tests whether X i a member of the list L. Note that these translations are in- 
complete, as no attention is paid to argument passing in PUSH arcs (SENDRs) 
and return values in POP arcs. This will be discussed later. 

The VIR arc and its associated HOLD action do not have a straightforward 
translation, and their special-purpose effect must be achieved in DCGs with some 
of the general purpose mechanisms available. The chief purpose of HOLD and 
VIR is to handle what transformational grammarians call constituent extraposition, 
that is the phenomenon where a constituent occurs in the "surface" sentence 
outside the phrase to which it belongs in the "deep structure". A general and 
powerful means for treating constituent extraposition is provided by an extension 
of DCGs, called "extraposition grammars" (Pereira, 1979). However, an alterna- 
tive solution is available in DCGs, through the use of extra arguments to carry the 
extraposed constituents. A technique directly analogous to this second approach 
is discussed by Woods (1973) to avoid VIR/HOLD in ATNs, and has been used 
in situations where parsing cafinot proceed from ~lt'-~" to rigk: t-n-~°s---L07~'~.--~--_, __,..., Woods 
et al., 1976). We shall therefore not go into further detail. 
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4.3. Treatment df registers, tests and actions 

All tests and actions on an arc act upon values kept in registers. Now the concept 
of a register, i.e. a named updatable location where a value can be assigned to or 
retrieved from, does not exist in logic programming w instead values are passed 
or built in variables, where a variable is a local name for a value used in a particular 
clause, rather than an assignable location. The effects achieved in ATNs using 
registers are obtained in DCGs through the use of variables. The values of the 
variables get filled in by the pattern matching which takes place when a goal or 
non-terminal is executed. Therefore, non-terminals in the translation of an ATN 
must be augloented with extra arguments, to make use of the pattern matching. 

Each non-terminal has at least one argument, which represents the structure 
returned by the corresponding simple network. This is usually written as the last 
argument of that non-terminal, and we shall always follow this convention. 

For each register of a simple network which is set by a SENDR in some PUSH 
for that network, there must be a further ("input") argument in the non-terminal 
representing that network. In the same way, each value sent back to the calling 
network by a LIFTR in the called network corresponds to an ("output") argument 
in the non-terminal for the called network. 

The case of PUSH arcs which were not in the original network, but which arise 
from its decomposition, is treated as if there were a SENDR for each original 
network register used in the simple network PUSHed for, and a LIFTR for each 
original network register which is changed in the invoked network. (And, in the 
case of a ~,bnetwork introduced by the decomposition, there need be no argument 
for a return value.) 

For a simple network, each register used in a path from the start node to a POP 
arc is translated into as many variables as the register takes different values in that 
path. (Usually we name these variables with variants of the name of the corres- 
ponding register.) 

The value returned at the POP exit of a path in a simple network is just filled 
into the return value argument of the head of the rule for that path. 

BUILDQs are translated in a straightforward and much simpler fashion as 
terms containing variables corresponding to register values. 

The foregoing discussion is better illustrated by a small example. This example 
is a simplification of the network in Appendix 1 (taken from Woods, 1970). The 
network covers simple declarative sentences in active and passive form. We depict 
the network with the arcs labelled by integers, followed by the details of each arc: 

3 
1 2 ~ 5 7 8 

S I~Q2 ~ Q 3 ~  Q 4  N ~  -~Q7 tpQ6 
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1: (PUSH NP T 
(SETR SUBJ .)) 

2: (CAT V T 
(SETR V .)) 

3: (CAT V (AND (GETF • PPRT) 
(EQ (GETR V) (QUOTE BE))) 

(SETR OBJ (GETR SUBJ)) 
(SETR SUBJ (BUILDQ (NP (PRO (SOMEONE)))) 
(SETR V ,) 
(SETR AGFLAG T)) 

4: (PUSH NP T 
(SETR OBJ ,)) 

5: (WRD BY (GETR AGFLAG)) 
6: (POP (BUILDQ (S + (VP (V +) +)) 

SUBJ V OBJ) 
13 

7: (PUSH NP T 
(SETR SUBJ ,)) 

8: (POP (BUILDQ (S + (VP (V +) +)) 
SUBJ V OBJ) 

T) 
The context-free rules corresponding to a decomposition of the network are as 
follows (where 'aN' stands for the translatiorf of arc N): 

s - ,  al,a2,rest_verb,agent. 
rest_verb -, a3. 
rest_verb -,  a4. 
agent -,  a5,a7. 
agent -,  []. 

We now add arguments to the non-terminals in these rules in the way described 
above, and insert the translation of tests and actions. Tests and actions will be 
translated whenever possible via by pattern matching in the head of a rule, rather 
than by actual goals in the body of a rule. The dictionary predicate 'v' resulting 
from the CAT arcs has two extra arguments, to retarn the root form of the verb 
and the tense feature to be used in the GETF test in arc 3. Here are the augmented 
rules: 

s(R) 
np(SubjO), 
IV], { v(V,VO,Tense) }, 
rest_verb(SubjO,VO, Subjl,Vl,Obj,Agflag), 
agent(Subj l,V 1,0bj,Agttag, R). 
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rest_verb(Subj0,be, np(pro(someone)),V l,Subj0,t) 
[V], { v(V,Vl,pprt) }. 

rest_verb(Subj,V, Subj,V,Obj,f) ~ np(Obj). 

agent(Subj0,V,Obj,t, s(Subj l,vp(v(V),Obj)) ) 
[by], 
np(Subjl). 

agent(Subj,V, Obj,Agflag, s(Subj,vp(v(V),Obj)) ) ~ []. 

5. The Advantages of DCGs 

Woods (1970) discusses the advantages of the ATN formalism under six headings 
covering, in our view, just five essentially distinct criteria: 

Woods ' s headinys 

1. Perspicuity 
2. Generative Power 
3. Efficiency of Representation 
4. Capturing Regularities 
5. Efficiency of Operation 
6. Flexibility for Experimentation 

essential criteria 

1. Perspicuity 
2. Power and Generality 
3. Conciseness 

ditto 
4. Efficiency 
5. Flexibility 

We argue that, on each of these criteria, and on one extra criterion of our own 
(6. Suitability for Theoretical Work), DCGs rate at least as highly as ATNs, and 
that in several respects DCGs represent a significant advance. 

5.1. Perspicuity 

Practical systems for natural language analysis are necessarily large and complex, 
and, for the time being at least, writing them is very much an experimental activity. 
Therefore perspicuity--desirable in any formalism--is particularly important 
here. The subjective quality of being easy to understand takes on a more objective 
formmhow much real time and effort does it take to modify and extend the 
system ? 

Perspicuity is the area where we think DCGs show the most marked improve- 
ment over ATNs. 

The main reason is that DCGs can be understood in a way which is qualitatively 
different from the way one understands an ATN. Like an ATN, a DCG can be 
understood as a machine for analysing a particular language. However, unlike an 
ATN, a DCG can also be understood as a description of a language. DCGs share 
this property with CFGs. As Woods puts it (referring to CFGs), "by looking at a 
rule, the consequences of that rule for the types of construction that are permitted 
are immediately apparent". 

This can be accounted for informally by noting that it is a straightforward 
mechanical process to translate each rule of a DCG (or CFG) into a statement of 
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ordinary English, given a glossary of all the symbols (i.e., functors) used in the 
grammar. The resulting English statements describe what forms are permissible 
for the phrases which make up the object language in question. We have given 
examples of this informal translation in our discussion of DCGs. Note that'a DCG 
is unlikely to be readily comprehensible without such a glossary, or some equivalent 
explanation of the meaning of each symbol and the purpose of its arguments. 
However, a good choice of names for functors and variables can do much to 
suggest the intended interpretation. 

The immediacy of the relationship between a DCG and the language it describes 
can also be given a completely formal explication in terms of the declarative 
semantics of definite clauses. We have previously discussed how a DCG can be 
identified with a set of definite clauses. The declarative semantics allows us to 
further identify this set of definite clauses with a (probably infinite) set of "true 
terms". Each one of these true terms specifies that a certain phrase of the object 
language occurs between certain points in a certain string. The set of true terms as 
a whole amounts to an enumeration of all possible occurrences of all possible 
phrases of the object language. Note that nowhere does this explication involve 
any notion of executing a DCG. 

An ATN shares none of the foregoing properties of a DCG. To explain formally 
how an ATN defines a language seems necessarily to involve the notion of how an 
ATN is executed. Certainly this is the way ~TNs are always explained informally 
in the literature--see for instance Bates (1978), Section 2, and contrast this with 
the way we introduce DCGs. Conceptually at least, an ATN is no more than a 
particular mechanism for parsing a language top-down, left-to-right, and the 
sequencing imposed by this parsing strategy is implicit in the way registers are 
operated on. Although it is possible (with ingenuity) to produce other kinds of 
parsers for ATNs, this requires a re-interpretation of the meaning of arc actions, 
and necessitates restrictions on register usage. 

Bates (1978), in her introduction, claims that "one does not need to know how 
to program a computer in order to write or use an ATN". However, from the 
outset, her account of ATNs uses such computing jargon as "pushing the current 
computation onto a stack". Now although it might be possible to explain the 
PUSH arc in other terms to non-programmers, it is hard to see how the function 
of ATN registers could be explained other than by going into some basic com- 
puting concepts. Thus, despite Bates's claims to the contrary, it does seem that a 
knowledge of conventional programming is necessary to properly understand an 
ATN, whereas the declarative semantics of a DCG is genuinely independent of any 
notions specific to computing. 

However, what we have been discussing so far is not the only aspect in which 
DCGs are clearer than ATNs. Even without their capability to be understood as 
language descriptions, and viewed simply as machines, DCGs are in many ways 
more perspicuous than ATNs. 
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One of the main reasons for this is that DCGs are more modular. The machinery 
of a DCG is made up of small components (clauses) which communicate only 
through explicitly passed arguments. There are no global variables--the scope of 
each variable is limited to a single clause. As a result, the behaviour of each clause 
in a DCG can be understood independently of any other. In an ATN, on the other 
hand, the smallest unit which can be isolated in this way is a subnetwork (i.e. a 
part of the network not connected to the rest except via PUSHes and POPs). No 
smaller unit can be isolated, since the scope of a register is an entire subnetwork. 
Now in practice (e.g. LUNAR), subnetworks tend to be very large, and contain 
too great a mass of detail to be readily assimilated in one piece. 

A second factor making DCGs easier to understand is that there is no assign- 
ment, i.e. the value of a variable, once fixed, cannot change. No assignment means 
no side effects, and therefore no possibility of the various sources of confusion 
which stem from unforseen side effects. Happily, most ATNs actually published 
only use assignment in a restrained way, and are therefore relatively easy both to 
understand and to translate into a DCG. In effect, DCGs enforce (and extend) 
this good practice. It is also worth noting that the ATN writer would lose nothing 
(in terms of efficiency) by adopting a "single assignment" policy in the style of a 
DCG. For, given the way ATN register assignment has actually been implemented, 
it is just as efficient to assign each new value to a fresh register as to update the 
values of registers already assigned. 

Another important feature of DCGs, which helps to make them much more 
readable than ATNs, is the use of pattern matching in place of explicit tests and 
BUILDQs. Pattern matching enables what are basically the same underlying 
operations to be specified in a more concise and "visual" way. 

A further point contributing to the clarity of DCGs is that they consist of a 
single uniform formalism of maximum simplicity. In contrast, ATNs are a more 
elaborate mixture of two formalisms--transition networks and Lisp. Generally 
speaking, it does not make for easy comprehension to have a superabundance of 
ways of saying the same thing, as is the case in ATNs. 

5.2. Power and generality 

One judges the "power and generality" of a formalism by considering what can, 
and cannot, be expressed in the formalism--in both a theoretical and a practical 
sense. 

Theoretically, both ATNs and DCGs have the power of a Turing machine, and 
in that sense are as general as can be. (The adequacy of definite clauses for pro- 
gramming any computable task, without "coding" of the data, is proved by 
Andreka and Nemeti (1976).) 

Of more interest is the question of what tasks can usefully be programmed in the 
two systems. In this context, one of the key features of DCGs is that they provide 
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an essentially more powerful mechanism for building structures than is available 
in ATNs. 

In an ATN, it is impracticable to build structures which do not closely mirror 
the recursive analysis of the string produced by the PUSH/POP mechanism. This 
is because a POP arc can only return a single structure, and all of the subcomponents 
of this structure must be known at the time of the POP. In a DCG, on the other 
hand, a non-terminal may return more than one structure as its result, and these 
structures may contain variables which only later get a value. Thus the structure(s) 
generated in a DCG as the result of the analysis of a phrase may depend on items 
in the sentence which are outside the phrase concerned, and which may not yet 
have been encountered in the parsing. A good illustration of why this greater 
generality is useful is provided by the "Sophisticated Example" of Section 3.6. 

To simulate such use of the "logical variable" in an ATN, one might be tempted 
to modify a previously generated structure using rplaea and ~ l a ~ .  However, in 
current ATN implementations at least, this would produce an unwanted side effect 
on alternative branches of the parser's search space. The other way out would be 
to use a function such as substitute, which involves copying all the structure 
"above" the point to be modified. However the cost of this copying is likely to be 
unacceptable in practice. 

DCGs are more general than ATNs in that they can be used in a wider variety 
of ways. This characteristic follows from the fundamental difference between 
DCGs and ATNs discussed under"Perspicuity", namely that an ATN is a particular 
machine for parsing a language top-down left-to-right, whereas a DCG is primarily 
a language description, neutral towards implementation. As a result, a DCG can 
be executed in a variety of different ways. 

For example, Woods (1970) has discussed the question of whether ATNs can be 
used for generation as well as for recognition, i.e. given a "deep-structure", to 
generate the corresponding surface string(s), instead of the usual inverse process. 
Now to use an ATN for generation would involve substantial changes in inter- 
pretation of the operations labelling the arcs, and the feasibility of this re- 
interpretation is questionable, particularly if arbitrary Lisp code is involved in arc 
actions. 

In contrast, it is perfectly feasible to program a generation process as a DCG 
without any change whatsoever to the DCG formalism. Moreover, the same proof 
procedure (e.g., in particular, Prolog) can be adequate for implementing both 
generation and recognition processes. It is even possible to use the same DCG for 
both kinds of task, although this will only be practicable in certain cases, and then 
only with careful design. 

A generation problem is specified by presenting an initial goal of the form: 

?- sentence(structure, S,[]). 

where structure is a term representing a deep-structure. The result will be to 
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instantiate S to a list representing the surface form of structure. Compare this with 
the usual recognition problem, which is specified in the form: 

.9- sentence(T,string, []). 

where string is a list representing the initial surface string, and T becomes instan- 
tiated to a corresponding deep structure. 

I f a  DCG is to be used for generation, the only clause for the 'connects' predicate 
should be: 

connects([W I S],W,S). 

(and, as described earlier, all calls to 'connects' may be preprocessed away prior to 
execution). For an example of a generation task programmed as a DCG and 
executed by Prolog, see Chapter 4 of Colmerauer (1975). 

We have been discussing an example of DCG generality where DCGs are used 
to formalise two quite different kinds of task--generation as well as recognition-- 
using the same proof procedure, Prolog. Another case of DCG generality is that a 
variety of different processes for solving a given task (such as recognitign) can be 
obtained from the same DCG, by applying different proof procedures to it. Thus 
the top-down left-to-right parsing entailed by using Prolog is by no means the only 
way to execute a DCG. Other proof procedures would give different parsing 
mechanisms (e.g., breadth-first, bottom-up). In particular, Earley's (1970) par~.ing 
algorithm can be generalised to give a complete proof procedure for definite 
clauses (Warren, 1975). Note, however, that a DCG which is efficient for execution 
by one proof procedure will not necessarily be efficient for another. 

A final point concerning the generality of DCGs is that they are not in principle 
restricted to input consisting of a simple string of atomic symbols. The symbols 
can be generalised to arbitrary tree structures (possibly with variables) and, more 
interestingly, instead of a simple list of symbols one can have a "chart" (Kaplan, 
1973) catering for alternatives in the input. For example, if part of the input string 
is: 

. . .  definite clause grammar . . .  
1 2 3 4 

and the lexical items 'definite', 'clause', 'grammar', 'definite_clause', and 'definite_ 
clause_grammar' are in the dictionary, the following clauses for the 'connects' 
predicate would represent the possible lexical interpretations: 

connects(l, definite, 2). 

connects(l, definite_clause, 3). 
connects(l, definite_clause_grammar, 4). 

connects(2, clause, 3). 

connects(3, grammar, 4). 
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5.3. Conciseness 

In his discussion of "Efficiency of Representation" and "Capturing Regularities", 
Woods is really concerned with the conciseness of a formalism. This criterion is 
aptly summed up in his "economy principle"--that the best grammar is that 
which can characterise a language in the least number of symbols. 

If, according to this principle, one compares the textual forms of equivalent 
ATNs and DCGs (counting each identifier as one symbol, and discounting punt- 
tuation symbols such as brackets and commas), one generally finds that DCGs are 
significantly smaller. Typically, the DCG is only around halt" the size of the ATN. 

DCGs are more concise than ATNs for the same reasons that logic programs 
are in general more concise than programs in conventional languages. The main 
factor is the use of pattern matching instead of explicit operations for setting and 
testing registers and building structures. 

As has been seen, DCGs are a natural generalisation of context-free grammars. 
Woods (1970) states that "a major advantage of the transition network model over 
the usual context-free grammar model is the ability to merge the common parts of 
many context-free rules, thus allowing greater efficiency of representation". Here 
Woods is claiming an advantage for the ATN formalism over CFGs, and his 
subsequent argument to support the claim clearly also applies when comparing 
ATNs with DCGs. However, we do not think that Woods's argument is correct. 

The ability to merge the common parts of many context-free rules is not unique 
to transition networks, but can be achieved without even going beyond the forma- 
lism of context-free rules. For example, the sample grammar which Woods uses to 
illustrate his argument: 

s --, np,vp. 
s - ,  q,np,vp. 
s - ,  neg,np,vp. 
s --, q,neg,np,vp. 

is better re-expressed as: 

s - ,  q,sl. 
s - ,  s l .  

sl -~ neg, s2. 
sl --, s2. 

s2 -~ np,vp. 

and this is not so very different from (and in fact it is far more concise than) the 
textual form of the transition network: 

Q NEG 

s l  s2 
NP VP 
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i .e. ,  

(S 
(PUSH Q T (TO S1)) 
(JUMP SI T)) 

(Sl 
(PUSH NEG T (TO $2)) 
(JUMP $2 T)) 

(S2 
(PUSH NP T (TO $3))) 

(S3 
(PUSH VP T (TO $4))) 

(S4 
(POP NIL T)) 

If one allows, as we do, alternatives to be given in a rule, then the grammar reduces 
to a single rule, very close to the original regular expression: 

s --, (q;[]),(neg;[l),np,vp. 

Woods makes much of the ability in ATNs to merge similar parts of a network 
by recording and testing extra information in registers. There is a direct counterpart 
of this in DCGs, where similar rules can be coalesced by attaching extra arguments 
to non-terminals. Whereas Woods seems to favour such merging for ATNs, we 
think it encourages an intricate and low-level style of language description. More- 
over it does not necessarily produce a more concise result. In the case of ATNs, 
for example, information which was previously explicit in the network is now 
encoded in Lisp as more complex tests and actions. 

The modularity of DCGs encourages the grammar writer to keep separate what 
are conceptually distinct parts of the grammar, and not to indulge in merging of 
parts which are superficially similar. 

5.4. Efficiency 
The operational efficiency of a formalism for language analysis is a matter of 
crucial importance for applications, such as LUNAR, intended to be genuinely 
useful. Hence we discuss efficiency at length in this section. 

First, let us recall that executing a DCG with Prolog gives a parsing mechanism 
which can be described as "top-down, left-to-right, depth-first (i.e. one alternative 
at a time)". Now this is precisely the parsing mechanism used in the majority of 
ATN applications. Moreover, it is the required mode of operation for recent ATN 
implementations (Burton and Woods, 1976; Finin and Hadden, 1977) which 
compile the ATN into low-level code (using Lisp as an intermediary). Accordingly, 
we shall restrict our discussion of efficiency to Prolog implementations of DCGs 
and to such comparable ATN implementations. 
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A key property of DCGs, as regards their efficiency, is that a DCG is expressed 
directly in a general purpose programming language, Prolog. Apart from optional 
"syntactic sugar", a DCG is a Prolog program. DCGs do not need a special 
interpreter or compiler. To discuss DCG efficiency, therefore, is to discuss Prolog 
efficiency. 

Now Warren, Pereira and Pereira (1977) have described how Prolog can be 
compiled directly into efficient machine code. They put forward simple reasons 
why one might expect the speed of the code produced to be comparable with that 
for more conventional high-level languages, such as Lisp, and argue in particular 
that pattern matching encourages a better implementation of operations on 
structured data than the conventional use of selector and constructor functions 
(such as ear, cdr and cons). A practical implementation exists for the DECsystem-10 
machine and actual timing data (Warren, 1977a) supports these conclusions. On 
the basis of this evidence, one can therefore say that a DCG is expressed directly 
in a general purpose programming language which has an efficiency comparable 
with Lisp. 

An ATN, on the other hand, needs a special interpreter or compiler. Since the 
ATN formalism relies so heavily on Lisp constructions for expressing tests etc., it 
is difficult to imagine an ATN compiler which did not generate Lisp code as an 
intermediary. Therefore it is probably fair to say that ATN efficiency is limited by, 
and necessarily somewhat inferior to, the efficiency of Lisp for writing grammars. 

A disadvantage of ATNs, or at least of the implementations described, is that 
the system does not have immediate access to the value of a registerQthe GETR 
function has to search down an association list of register-value pairs. In Prolog 
implementations, on the other hand, each variable's value is stored at a known 
location. This is achieved without any overheads of copying information into or 
out of variable value cells at procedure call and exit (as happens, for example, in 
"shallow binding" implementations of Lisp). 

The only significant overhead of this kind in Prolog is attributable to its non- 
determinacy. In certain circumstances when instantiating a variable, the variable's 
address is remembered on a push-down list, so that the variable can be reset to 
"uninstantiated" on backtracking. In the DECsystem-10 implementation, these 
operations are implemented very efficiently at the machine-code level, and only 
account for a small proportion of the time spent in a typical Prolog computation. 
Note that the non-determinacy of ATNs has to be achieved using what facilities 
are provided by the higher level language Lisp, which, unlike Prolog, does not 
itself incorporate any machinery for non-determinate computation. 

A discussion in Warren et al. (1977) attributes much of Prolog's surprisingly 
competitive speed, compared with Lisp, to the use of "structure sharing" (Boyer 
and Moore, 1972; Warren, 1977a) to build new data structures. The argument 
applies afortiori if we compare with the structure building operations of ATNs. 
Essentially structure sharing enables arbitrarily large data structures to be con- 



DEFINITE CLAUSE GRAMMARS FOR LANGUAGE ANALYSIS 267 

structed with virtually no time cost. Constructing the new object merely involves 
bringing together two pointers. One is a pointer to a "skeleton" structure, created 
at compile-time, which corresponds to a term of the source program. The other 
pointer is to an already existing vector of value cells, called a "frame", which 
contains the values of variables occurring in the skeleton. 

Now compare this one trivial operation with what is involved in the BUILDQ 
of ATNs. There, space for the new st"ucture has to be allocated from Lisp's 
"heap" storage (and ultimately garbage-collected), and all the information corres- 
ponding to the skeleton structure and the values of its variables has to be copied 
over into the newly allocated space. It is interesting to note a comment by Woods 
(1973, p. 133), which, while acknowledging the inefficiencies of register access in 
ATNs, appears to foresee the advantages of structure sharing: "if the structure 
returned by the POP arc were merely the list of register contents themselves, then 
the process of searching for registers by names could be almost totally eliminated". 

A feature of the DECsystem-10 Prolog implementation which can make a very 
significant contribution to the speed of operation of a DCG is the automatic 
indexing provided for the clauses of each predicate (Warren et al., 1977; Warren, 
1977a). When trying to execute a goal, the relevant clauses from the corresponding 
predicate are accessed through a hash table keyed on the principal functor of the 
first argument of the goal. In suitable circumstances, the indexing provides for the 
immediate selection of an appropriate grammar rule from amongst a set of alter- 
natives. This is instead of having to try all the alternatives one by one. A com- 
parable facility does not appear to be available in ATN implementations. In- 
cidentally, the same indexing makes it practicable to implement "dictionary" 
predicates as sets of unit clauses (cf. many of our examples), since the indexing 
ensures that the time to look up an individual word in the dictionary is (generally 
speaking) independent of the number of words in the dictionary. 

To recapitulate, we have described a number of aspects in which (compiled) 
Prolog implementations of DCGs might be expected to be more efficient than 
current (compiled) ATN implementations: 

(1) Compilation of a DCG is only a one stage process, and does not involve an 
intermediate high level language (Lisp). 

(2) Access to variable values is immediate and the overheads attributable to 
non-determinacy are minimal. 

(3) Structure building is done "on the fly", by "structure sharing", at almost no 
extra cost. 

(4) Automatic indexing provides for the immediate selection of appropriate 
alte[natives in the grammar. 

Above all, a DCG is merely a particular kind of program in an efficient and 
general purpose programming language, whereas an ATN is a special purpose 

formalism. 

19 
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The decisive test of efficiency is, of course, to compare actual performance data. 
For the comparison to be meaningful, one must compare equivalent grammars, 
expressed in equivalent ways, building equivalent structures. The difficulty here is 
that none of the ATNs for which times have been quoted in the literature has 
actually been listed in full detail, and these ATNs are in any case unnecessarily big 
for the purpose simply of making an exact comparison with an equivalent DCG. 

Our experience with DCGs, which probably applies equally to ATNs, is that the 
speed of a grammar depends predominantly on whether the grammar writer 
chooses to aim at efficiency, or at maximal conciseness and simplicity. The physical 
size of the grammar (number of rules, or arcs, say) is not, alone, a reliable indicator 
of the likely parsing times. 

In Appendix 2, we give some timing figures for a DCG translation of an early 
specimen ATN, given by Woods (1970), and also data for a DCG of some com- 
plexity covering a sizable subset of English. For what it is worth, bearing in mind 
our previous remarks: this latter DCG running on a DEC KI10 takes approxi- 
mately 8 msec. per word to parse an English sentence, while figures quoted for a 
compiled version of LUNAR on a KAI0 (generally reckoned to be only half as 
fast as a KII0) are of the order of 34 msec. per word on superficially similar 
sentences. 

5.5. Flexibility 

In providing a framework for language analysis, a formalism should not be so 
restrictive that it prevents experimentation with new and diverging ideas. Necessary 
flexibility of this kind is available in ATNs by virtue of the open-ended use which 
can be made of Lisp--to build diverse struc*ures, to express special conditions 
on arcs, etc. 

In an exactly analogous way, DCGs have a~-cess to the full power of the definite 
clause subset of logic as a general purpose programming language. As in ATNs, 
there is wide scope for building different kinds of structures to represent the result 
of the analysis. Also, by using explicit calls to separately defined procedures, one 
may easily incorporate into the grammar arbitrarily complex tests, and these tests 
may depend on auxiliary information passed as extra arguments to non-terminals. 
As mentioned previously, within the basic DCG formalism one can simulate the 
effects ofspecial purpose ATN facilities such as the "hold list". 

The DCG formalism is more flexible than ATNs in that, as previously discussed, 
it is in no.way tied to a particular parsing or execution mechanism (although the 
style in which the grammar is written will usually be optimised towards some 
particular parsing mechanism). Thus writing a grammar as a DCG makes it much 
easier to experiment with radically different parsing strategies, such as were tried 
out in the BBN Speech Understanding System (Woods et al., 1976). 

5.6. Suitability for theoretical work 

In this section we argue that, unlike ATNs, DCGs can also be a useful formalism 
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for theoretical studies of language, and that, as a consequence, they potentially 
provide a bridge between the work of theoretical linguists and philosophers, such 
as Chomsky and Montague, and the work of those, such as Woods, concerned 
with engineering practical natural language systems. To fully justify these claims 
would call for another paper, so here we merely outline the key points of the 
argument. 

The theorists have (properly) concentrated on describing what natural language 
is, in a clear and elegant way. In this context, details of how natural language is 
actually recognised or generated need not be relevant, and indeed should probably 
not be allowed to obscure the language definition. This concern with the "what" 
rather than the "how" of language analysis is reflected in the kinds of formalism 
developed by the theorists. At the time ATNs were developed, it was not clear how 
such formalisms could be used as a basis for practical systems to actually carry out 
language analysis, and the need to achieve workable systems necessitated the more 
machine-oriented formalism of ATNs. 

In consequence, the ATN formalism is fundamentally different from any used 
in theoretical work. As has already been discussed under "Perspicuity", an ATN 
is a description of a process for recognising a langaage, rather than a description 
of the language itself. A symptom of the ATN's process orientation is the use of 
the assignment operation--a concept virtually unknown outside computing, and 
one which does not naturally enter into formal descriptions in mathematics or other 
fields. For these reasons, the ATN formalism is not really suitable for theoretical 
purposes (except in so far as it is more precise than other semi-formal methods for 
describing language). 

Because of this major difference between the ATN formalism and those normally 
used by theorists, it has been difficult for the ATN writer to draw directly on 
theoretical work, and difficult for the outsider to relate what is going on inside an 
ATN with the kind of language analysis proposed by theorists. 

In the years since ATNs were developed, the discovery that logic can be used as 
a programming language has given us a formalism, DCGs, which can serve both 
as a description of a language, and, by virtue of the procedural interpretation of 
logic, as a description of a process for analysing that language. For practical 
purposes, DCGs, while being less overtly machine-oriented than ATNs, can 
nevertheless be implemented as efficiently and are a powerful tool for implementing 
working natural language systems. Furthermore, DCGs seem eminently suitable 
as a formalism for theoretical work~they are a natural and sufficiently powerful 
generalisation of CFGs, and they have a clear declarative semantics independent 
of any execution mechanism. Unlike ATNs, DCGs do not incorporate the concept 
of assignment. 

Indeed it could be argued that DCGs are more suitable as a formalism for 
theoretical purposes than those in current use. It appears that current theoretical 
formalisms are either less powerful than DCGs, or else, through being biased 
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towards the process of language generation, incorporate unnecessary notions of 
execution order. 

6. Conclusion 

On both practical and philosophical grounds, we believe DCGs represent a 
significant advance over ATNs. 

Considered as practical tools for implementing language analysers, DCGs are 
in a real sense more powerful than ATNs, since, in a DCG, the structure returned 
from the analysis of a phrase may depend on items which have not yet been 
encountered in the course of parsing the sentence. Such use of the power of the 
"logical variable" is well illustrated by the "Sophisticated Example" of Section 3.6, 
which we do not believe can be directly mimicked in an ATN. 

Also on the practical side, the greater clarity and modularity of DCGs is a vital 
aid in the actual development of systems of the size and complexity necessary for 
real natural language analysis. Because the DCG consists of small independent 
rules with a declarative reading, it is much easier to extend the system with new 
linguistic constructions, or to modify the kind of structures which are built. Our 
own experience of just these kinds of problems came from adapting a natural 
language system written by Veronica Dahl (cf. Appendix 2). The modifications 
involved substituting English for Spanish as the discourse language, and com- 
pletely changing the domain of discourse. We found it quite straightforward to 
make these substantial alterations, and doubt whether this would have been so, 
had the system not been implemented as a DCG. 

Finally, on the philosophical side, DCGs are significant because they potentially 
provide a common formalism for theoretical work and for writing efficient natural 
language systems. Note that we are NOT claiming that a DCG formulated as a 
clear theoretical description of a language is likely to be suitable for execution as a 
practical language analyser. We have argued only that a common formalism is 
feasible for both. Normally a substantial transformation would be necessary to 
turn a DCG conceived as a theoretical description of a language into a practical 
implementation. It is an interesting problem for future research to see whether 
such transformations can be performed systematically, possibly by generalising 
known results on parsing with context-free grammars. 

Appendix 1. A Full Example 

The ATN from Woods (1970), as amended in Burton and Woods (1976), is listed 
here, together with a DCG translation of a slightly modified network. The modi- 
fications were mainly to prevent the acceptance of ungrammatical sequences of 
verbs at node Q3/of  the original ATN. 

After the DCG proper, there is listed an extract from the dictionary of the DCG; 
just one clause for each predicate is illustrated. Because of the indexing provided 
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Q 1 /  V V 

s / ~  " ' ~ J '  ~ ' f ' T T " ~  o 41 by 

VP/ O 5 / -  -- ~ O 6/ 

",ao, 
NP/- 

NPR 

NP/3 

,ao, 

OET 
J, NP/1 ADJ 

NP/2 

FIG. 3. Diagram of the ATN. 

by the DECsystem-10 Prolog implementation, the speed of operation of the DCG 
is not affected by the size of the dictionary (i.e., by the number of clauses provided 
for each predicate). 

Note the mutually exclusive nature of the three rules for the non-terminal 
'complement' in the DCG proper. The Prolog indexing also serves to automatically 
select the correct alternative from among these three rules. 

Listiag of the ATN 
(s/ 

(CAT AUX T 
• (SETR V ,) 
(SETR TNS (LIST (GETF • TENSE))) 
(SETRQ TYPE Q) 
(TO Ql/)) 

(PUSH NP/T 
(SETR SUBJ ,) 
(SETRQ TYPE DCL) 
(TO Q2/))) 

(Q1/ 
(PUSH NP/T 

(SETR SUBJ ,) 
(TO Q3/))) 
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(Q2/ 
(CAT V T 

(SETR V ,) 
(SETR TNS (LIST (GETF • TENSE))) 
(TO Q3/))) 

(Q3/ 
(CAT V (AND (GETF • PPRT) 

(EQ (GETR V) 
(QUOTE BE))) 

(HOLD (OETR SUBJ)) 
(SETR SUBJ (BUILDQ (NP (PRO SOMEONE)))) 
(SETR AOFLAG T) 
(SETR V ,) 
-(TO Q3/)) 

(CA T V (AND (GETF • PPRT) 
(EQ (GETR V) 

(QUOTE HAVE))) 
(SETR TNS (APPEND (GETR TNS) 

(QUOTE (PERFECT)))) 
(SETR V ,) 
(TO Q3/)) 

(PUSH NP/(TRANS (GETR V)) 
(SETR OBJ ,) 
(TO Q4/)) 

(VIR NP (TRANS (GETR V)) 
(SETR OBJ ,) 
(TO Q4/)) 

(POP (BUILDQ (S + -6 (TNS -6) (VP (V -6))) 
TYPE suBJ TNS V) 

(INTRANS (GETR V)))) 
(Q4/ 

(WRD BY (GETR AGFLAG) 
(SETR AGFLAG NIL) 
(TO Q7/)) 

(WRD TO (S-TRANS (GETR 3I)) 
(TO Q5/)) 

(POp (BUILDQ (S + + (TNS +) (VP (V +) +)) 
TYPE SUBJ TNS V OBJ) 

33) 
(Q5/ 

(PUSH VP/T 
(SENDR SUBJ (GETR OBJ)) 
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(SENDR TNS (GETR TINS)) 
(SENDRQ TYPE DCL) 
(SETR OBJ ,) 
(TO Q6/))) 

(Q6/ 
(WRD BY (GETR AGFLAG) 

(SETR AGFLAG NIL) 
(TO Q7/)) 

(POP (BUILDQ (S + + (THIS +) (VP (V +) +)) 
TYPE SUBJ TNS V OBJ) 

T)) 
(QT/ 

(PUSH NP/T 
(SETR SUBJ ,) 
(TO Q6/))) 

(VP/ 
(CAT V (GETF • UNTENSED) 

(SETR V ,) 
(TO Q3/))) 

(NP/ 
(CAT DET T 

(SETR DET ,) 
(TO NP/I)) 

(CAT NPR T 
(SETR NPR ,) 
(TO NP/3))) 

(NP/I 
(CAT ADJ T 

(ADDL ADJS ,) 
(TO NP/1)) 

(CAT N T 
(SETR N ,) 
(TO NP/2))) 

(NP/2 
(POP (BUILDQ (NP (DET +) (AOJ +) (hi +)) 

DET ADJS IN) 
T)) 

fNP/3 
(POP (BUILOQ (NP (NPR +)) 

NPR) 
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The DCG Proper 
s e n t e n c e ( S )  - ~  

[W], {aux_verb0V, Verb,Tense)}, 
nonn_phrase(G_Subj), 
rest_sentence(q,G_Subj,Verb,Tense, S). 

sentence(S) - ,  

noun_phrase(G_.Subj), 
[W], {verb(W, Verb,Tense)}, 
rest_sentence(dcl,G-Subj,Verb,Tense, S). 

rest_sentence(Type,G_Subj,Verb,Tense, 
s(Type, L_Subj,tns(Tense 1),VP) ) --, 

rest_verb(Verb,Tense,Verbl,Tensel), 
{verbtype(Verbl,VType)}, 
complement(VType, Verbl,G_Subj,L_Subj,VP). 

rest_verb(have,Tense,Verb,(Tense,perfect)) --, 
[W], {past_participle(W,Verb)}. 

rest_verb(Verb,Tense,Verb,Tense) - ,  []. 
complement(copula,be,Obj,Snbj, vp(v(Verb),Objl) ) --, 

[W], {past_participle(W,Verb), transitive(Verb)}, 
rest_object(Obj,Verb,Obj 1), 
agent(Subj). 

complement(transitive,Verb,Subj,Subj, vp(v(Verb),Objl) ) - ,  
noun_phrase(Obj), 
rest_object(Obj,Verb,Objl). 

complement(intransitive,Verb,Subj,Subj, vp(v(Verb)) ) - ,  [1. 
rest_object(Obj,Verb,S) --, 

{s_transitive(Verb)}, 
[to,Verb 1 ], {infinitive(Verb 1)}, 
rest _sentence(dcl,Obj,Verb 1 ,present, S). 

rest_object(Obj,Verb,Obj) - ,  []. 
agent(Subj) - ,  [by], noun_phrase(Subj). 
agent(np(pro(someone))) - ,  []. 
noun_phrase(np(Det, adj(Adjs),n(Noun))) --, 

[Det], {determiner(Det)}, 
adjectives(Adjs), 
[Noun], {noun(Noun)}. 

noun_phrase(np(npr(PN))) - ,  [PN], {proper_noun(PN)}. 
adjectives([Adj [ Adjs]) - ,  

[Adj], {adjective(Adj)}, 
adjectives(Adjs). 

adjectives([]) --, []. 
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Extract from the Dictionary of the DCG 
aux_verb(W,V,T) :- verb(W,V,T),auxiliary(V). 
auxiliary(be). 
verb(is,be,present). 
proper_noun(john). 
determiner(the). 
adjective(nice). 
noun(book). 
verbtype(be,copula). 
verbtype(V,transitive) :- transitive(V). 
verbtype(V,intransitive) :- intransitive(V). 
transitive(shoot). 
intransitive(sleep). 
s_transitive(believe). 
infinitive(be). 
past _participle(been,be). 

Appendix 2. Performance Data 

The DCG timing data which follows is for compiled code produced by the 
DECsystem-10 Prolog implementation, running on a KI-10 processor. We list the 
CPU times in milliseconds, averaged over 100 tests for examples in Part 1, and over 
10 tests for examples in Part 2. 

Part 1 

The DCG is that listed in Appendix 1. For each example, there is listed the time to 
obtain the first parse, followed by the time to exhaust all parses and the total 
number of parses. For reference, the parse tree(s) obtained are also listed in 
selected cases. 

Observe thet in those cases where there is a unique parse, the overhead of going 
on to seek alternative parses is very low. This is a result of the efficient implemen- 
tation of backtracking, and of the generally highly determinate nature of this 
particular grammar for top-down, left-to-right parsing. 

(l) fred shot john---3 words 
3.0 msec. 3.2 msec. 1 parse 
s(dcl,np(npr(fred)),tns(past),vp(v(shoot),np(npr(john)))) 

(2) mary was liked by jolm--5 words 
3.9 msec. 4.1 msec. 1 parse 

(3) fred told mary to shoot john--6 words 
5.1 msec. 5.7 msec. 1 parse 
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(4) 

(5) 

john was believed to have been shot by fredm9 words 
5.7 msec. 8.3 msec. 2 parses 
s(dcl,np(pro(someone)),tns(past),vp(v(believe, s(dcl,np(npr(fred)), 

tns((present, perfect)),vp(v(shoot),np(npr0ohn)))))) 
s(dcl,np(npr(fred)),tns(past),vp(v(believe),s(dcl,np(pro(someone)), 

tns((present, perfect)),vp(v(shoot),np(npr0ohn)))))) 

was dave believed to have told mary to tell fred to buy the book by john- -  
16 words 

9.6 msec. 12.1 msec. 1 parse 

Part 2 

Here we attempt to offer some kind of a comparison with the only available pub- 
lished ATN timing data. We list five examples taken from Burton (1976) of sen- 
tences with their CPU times for parsing by the compiled LUNAR system running 
on a DEC KA-10 processor. Each of these examples is followed, for comparison, 
by a superficially similar sentence accepted by a DCG based on the parsing 
component of a natural language question-answering system written by Veronica 
Dahl (1977). This system treats a sizable subset of natural language, approaching 
in scale that of LUNAR. 

All times are to obtain the first pars,: only. One structure produced as the result 
of the DCG analysis is listed for reference. Note particularly that the DEC KI-10 
processor used for the DCG times is generally reckoned to be nearly twice as fast 
as a KA-10. 

(l) Give me all analyses of S10046. 
245 msec. 

What are the files of David ? 
78 msec. 

(2) 

(4) 

How many breccias contain olivine ? 
175 msec. 

How many files date from Monday? 
39 msec. 
how_many(X:[] & file, 

and(and(pr(file(X)),and(true,true)), 
pr(dateof(X, [monday ])))) 

List modal plag analysis for lunar samples that contain olivine. 
265 msec. 

Which people are owners of small files that date from Monday ? 
98 msec. 
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(7) 

What is the average composition of olivine ? 
275 msec. 

What is the size of PLC ? 
40 msec. 

How many breccias do not contain Europium? 
240 msec. 

How many files do not date from Friday ? 
38 msec. 
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