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Abstract. Constructive methods obtain solutions to constraint satis-
faction problem instances by iteratively extending consistent partial as-
signments. In this research, we study the solution paths in the search
space of constructive methods and examine their distribution among the
assignments of the search space. By properly employing the entropy of
this distribution, we derive measures of the average amount of choice
available within the search space for constructing a solution. The de-
rived quantities directly reflect both the number and the distribution
of solutions, an “open question” in the phase transition literature. We
show that constrainedness, an acknowledged predictor of computational
cost, is an aggregate measure of choice deficit. This establishes a con-
nection between an algorithm-independent property of the search space,
such as the inherent choice available for constructing a solution, and the
algorithm-dependent amount of resources required to actually construct
a solution.
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1 Introduction

A constraint satisfaction problem consists of a set of variables and a set of con-
straints. A variable which has been given a value is said to be instantiated and
a set of ¢ instantiated variables is an assignment «; of size i. Assignments «;
which satisfy all problem constraints are called consistent and assignments a,
in which all n problem variables are instantiated are called complete. Given an
instance of a constraint satisfaction problem, the goal is to obtain a consistent
complete assignment (a solution) or to prove that none exists. In order to ac-
complish this goal, constructive methods iteratively extend consistent partial
assignments, whereas methods based on repair iteratively transform inconsis-
tent complete assignments. The search spaces explored by methods belonging to
these categories overlap but do not coincide. The focus here is on constructive
methods but the fact remains that any particular search space offers a set of
alternative ways for obtaining a solution, a set of solution paths.

This research is prompted by the observation that both the number and dis-
tribution of solution paths play a significant role. A search space with scarce
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solution paths offers very little choice for constructing a solution: a correct deci-
sion must be made at almost every choice point due to the lack of alternatives.
On the other extreme, a search space with an abundance of solution paths of-
fers ample choice for constructing a solution: decisions made at choice points
are almost inconsequential due to the multitude of alternatives. The aim of this
research is to quantify and investigate the amount of choice inherently available
within the search space of a problem instance for constructing a solution.

In the context of constructive methods, Sect. 2 describes the composition and
size of the search space, along with the notion of paths for constructing assign-
ments. Our view of the search space is similar to the deep structure of [1] and
allows for an abstraction away from problem-specific and algorithm-dependent
features. The structure of the search space, that is the distribution of solution
paths therein, is discussed in Sect. 3. By properly employing the entropy of this
distribution, we derive measures of the average amount of choice inherently avail-
able at each level of the search space for constructing a solution, as explained in
Sects. 3 and 4. Aggregate quantities over the entire search space are discussed in
Sect. 5. Recall that entropy is a measure of information and uncertainty but it
is also a measure of choice [2]. Relevant information-theoretic approaches have
been employed in order to characterize system structure in [3]. The introduced
measures directly reflect not only the number but also the distribution of solu-
tions to a problem instance. In fact, Sect. 6 explains how the average amount of
choice available on each level of the search space is identical only among instances
with isomorphic solution sets. In Sect. 7, the nature of constrainedness [4-6] as
an aggregate measure of choice deficit is elucidated, which serves to explain the
successful application of constrainedness as a generic predictor of computational
cost and yields a number of contributions. Throughout this paper, all proofs
have necessarily been omitted due to space restrictions.

2 The Search Space of Constructive Methods

The search space of a problem instance consists of the complete set of states that
may be explored in the attempt to obtain a solution to the problem instance. In
the case of constructive methods, obtaining a solution is apparently synonymous
to constructing a solution and the set of states constituting the search space is
the set of assignments «;, with size ¢ ranging from 0 (empty assignment) to n
(complete assignments). This is because the process of constructing a solution
is initiated at assignment «, where no variables are instantiated, encounters
a particular assignment «; after the performance of i successive variable in-
stantiations and eventually leads to a complete assignment «,, belonging to the
solution set S. The notion of search space paths is pertinent to this constructive
process: a path is an ordered set of instantiations. There are n! paths towards
any complete assignment a,, corresponding to the n! distinct ways of ordering
the instantiations of problem variables. Each path is essentially a different way of
constructing a complete assignment and therefore all paths are disjoint, although
they may overlap. Figure 1 illustrates the search space for a small problem in-
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Fig. 1. The search space of a constructive method for instances with n = 3 binary
variables. Circles at level ¢ denote assignments of size 7 and lines between them denote
variable instantiations. The n! alternative paths available for constructing a particu-
lar complete assignment are also depicted. The complete assignments in the shaded
rectangle form the search space of a repair method.
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Fig. 2. The search space and solution paths for instances with n = 3 binary variables
and |S| = 2 solutions, with the distance between the solutions being (a) minimal: one
instantiation and (b) maximal: n instantiations. Circle area and line thickness reflect
the distribution of solution paths among assignments and instantiations.

stance, as well as the alternative paths available for constructing a particular
complete assignment. Note how the assignments in the search space are parti-
tioned into disjoint levels according to size: there are C(n, 1) - 2 assignments of
size i, corresponding to the C(n,i) = n!/il(n — ¢)! different ways of selecting i
variables out of n and the 2¢ different instantiations of these i binary variables.

3 Choice in the Search Space

A search space inherently offers choice to any constructive algorithm in the sense
that it contains a set of alternative paths available for constructing a solution.
In the search space of a problem instance with n variables, there are n! paths
towards any complete assignment and a total of n!|S| solution paths. Figure 2
contains the search spaces of two problem instances with n = 3 binary variables
and |S| = 2 solutions, as well as all solution paths contained therein. Evidently,
the solution paths need not be evenly distributed throughout the search space.
The fraction p(«;) of solution paths intersecting assignment «; is:
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where ps(a;) is the number of complete assignments which are solutions of S
and are reachable from «;. This holds because there are i! ways of constructing
a; and (n — 4)! ways of constructing any of the ps(a;) solutions from «;. By
definition, ps(a;) and p(a;) directly reflect the relative distances between the
solutions in S, with increased values indicating solution clustering under «;. The
p(a;) fraction can be interpreted as the probability that an arbitrarily selected
solution is constructed through assignment «;. Provided that a solution exists,
> w, (i) = 1 holds for every level . Essentially, the p(a;) fractions describe
the distribution of solution paths among the assignments of level 7. The entropy
of this distribution, called solution path diversity D;, is a concise quantitative
measure of the average amount of choice inherently available in the search space
for constructing a solution through the assignments of level i:

D; = - plai)logp(a) . (2)

Qg

Assuming the log is base 2, its units are bits, with the intuitive interpretation that
x bits of choice correspond to 2% alternatives. A small set of clustered solutions
induces a search space with scarce solution paths, concentrated around a small
number of assignments. In this case, there is little choice regarding how a solution
may be constructed and D; is relatively low. On the other hand, when solutions
and solution paths are plentiful and evenly distributed, there is ample choice
regarding how a solution may be constructed and D; is relatively high. However,
bear in mind that solution path diversity D; is a relevant quantity: its value
becomes meaningful only when compared to the general path diversity G;, a
measure of the average amount of choice available for constructing any complete
assignment (not necessarily a solution), through the assignments of level i:

G =log [C(n,i)-2"] =i+1logC(n,i) . (3)

The general path diversity reflects the size of the search space (the total number
of paths) and determines the maximal attainable value for the solution path di-
versity. The maximum is observed in the case where all complete assignments are
solutions and all paths are thus solution paths. In every other case, there exists
a choice deficit 'H; in the average amount of choice available for constructing a
solution through the assignments of level i:

Hi=Gi—D;. (4)

The definition of the choice deficit H; can be interpreted as “the difference
between the greatest amount of choice that can possibly be available at level i
and the amount of choice actually available at level ¢”. The deficit rises as the
solution path diversity D; drops. It is maximal when there are no solutions and
minimal when there are no infeasible assignments. It also rises along with the
size of the search space, which manifests itself through the general path diversity
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Gi. The choice deficit ‘H; is a monotonic increasing function with respect to the
search level i, due to the fact that solution paths tend to spread and become
scarce at deeper levels of the search space.

4 Conditional Measures of Choice

A conditional version of solution path diversity D; can be derived using the
distribution of solution paths among the instantiations leading to level i. The
conditional entropy of this distribution is called conditional solution path diver-
sity AD; and is a more refined measure (in bits per level units) of the average
amount of choice inherently available for constructing a solution through the
assignments of level 4, having reached level ¢ — 1. It is a monotonic decreasing
function with respect to i. The direct definition of AD; is straightforward but it
is more convenient to express it in terms of D;, since it can be proved that:

The logi term appears because the search space implicitly contains all possible
variable orderings, offering alternative paths for constructing an assignment.

The conditional general path diversity AG; at level i, is a measure of the av-
erage amount of choice available for constructing a complete assignment through
the assignments of level ¢, having reached level ¢ — 1, and is a monotonic decreas-
ing function with respect to :

AG =G, —Gi_1+1logi=1+1log(n —i+1). (6)

This finally leads to the definition of the conditional choice deficit AH;, a mono-
tonic increasing function with respect to ¢:

AH; = AG; — AD; = H; — M1 . (7)

It is interesting to read (5), (6) and (7) as: “choice (or deficit) at level ¢ minus
choice (or deficit) removed having reached level i — 1,” which offers an intuitive
explanation as to why these conditional measures are refined enough to measure
choice (or deficit) at a single level.

5 The Sum Property

Conditional measures of choice pertain exclusively to a single level of the search
space. It is therefore acceptable to sum such conditional measures over all lev-
els, obtaining aggregate quantities. Summing (5) over all levels yields the total
solution path diversity D™, which is the total amount of choice available for con-
structing a solution. Not surprisingly, D™ depends upon n!|S|, the number of
solution paths:

D"(S) = > AD; = log(n!|S]) . (8)
i=1
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Table 1. Conditional and aggregate measures of choice and deficit for the two instances
of Fig. 2. The total amounts of choice D™ and deficit H", which are identical for both
instances, are expended in a different manner among the individual search space levels,
due to the difference between the two instances in the distribution of solutions.

2(a) 2(b) || 2(a) 2(b)
2.58 1 1.92 2.58 || 0.67 0.00
2.00 | 1.33 1.00 {| 0.67 1.00
1.00 | 0.33 0.00 || 0.67 1.00
sum || 5.58 | 3.58 3.58 || 2.00 2.00

w N =

Note that D" exhibits the sum property: it remains invariant among problem
instances with the same number of variables n and the same number of solutions
|S|, even though it is an aggregate quantity comprising individual, per-level
amounts of choice AD; which need not be identical among all such instances. In
the same manner, summing (7) over all levels yields the total choice deficit H",
for which the sum property also holds:

H"(S) :ZR:AHi = Zn:Agi —i:ADi =n—logl|S| . (9)
=1 =1 1=1

To provide a concrete example, conditional and aggregate measures of choice and
deficit for the instances in Fig. 2 have been computed and included in Table 1.
Interpreting the numbers in Table 1 using Fig. 2 is instructive. Notice how there
is no choice deficit AH; for instance 2(b) since there are no instantiations at that
level not included in a solution path. Note also how, for the same instance, there
is no choice AD5 since, having reached an assignment at the second level, there
is only one instantiation in each case leading to a solution. Finally, notice how
one bit of choice for AD;y corresponds to exactly two alternative instantiations
extending each assignment at the first level. This is half of the instantiations
generally available for extending each assignment at this level and this is why
the choice deficit AHs is equal to AD, and half of AGs.

6 The Distribution of Solutions

The search spaces in Fig. 2 both correspond to instances with n = 3 variables and
|S| = 2 solutions. The number of solution paths is identical for the two instances
and so is the aggregate amount of choice D™ available for constructing a solution.
It is only the relative distance between the solutions in & which differentiates
the two instances and yet the distribution of solution paths in the search space is
notably dissimilar. The values of D; for these instances are also dissimilar since
D; is, by definition, sensitive to the relative distances between the solutions
and the distribution of solution paths (this carries on to AD;, H; and AH,; as
well). It turns out that the aggregate amount of choice D™ and the way this
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Fig. 3. The distribution of solutions for the two example instances of Fig. 2, with the
distance between the solutions being (a) minimal: one instantiation and (b) maximal:
n instantiations.

is distributed among the search space levels through the AD;’s coincides only
among isomorphic instances. In order to obtain a definition of isomorphism, map
the 2™ complete assignments of a n-variable problem instance to the 2™ vertices
of a n-hypercube. To map the solution set S, let the vertices which correspond
to solutions be colored black and the rest of the vertices be colored white. Such
a colored hypercube reflects the distribution of solutions, the relative distances
between them. For example, Fig. 3 contains the distribution of solutions for the
two example instances of Fig. 2, with the distance between the solutions being
(a) minimal: one instantiation and (b) maximal: n instantiations. Two problem
instances are isomorphic iff the corresponding distributions of solutions (colored
hypercubes) are isomorphic. It is straightforward to show that if two instances
S and T are isomorphic, then for every level ¢ of the search space it holds that
AD? = ADI. In addition, the inverse has also been invariably observed (no
formal proof is currently available): given two instances S and T, if for every level
i of the search space it holds that AD? = ADY then S and T are isomorphic. It
is not uncommon for entropy to be an invariant of isomorphic structures [7]. The
point is that solution path diversity, the measure of the average amount of choice
available in a level of the search space for constructing a solution, is necessary
and sufficient for discriminating between mnon-isomorphic instances. In contrast
to cruder aggregate measures which only reflect the number of solutions, it is a
refined indicator of their distribution. This is a significant development in itself
and will also prove useful in the following section.

7 Constrainedness

The constrainedness k of an ensemble of problem instances is defined as:

n
where (|S]) is the average number of solutions over all instances of the ensemble
and n is the number of variables in each instance [4]. Ensemble constrainedness
has been successfully employed in a variety of problem classes as a predictor of
computational cost. Its wide applicability is due to the fact that the parameters
it involves, that is number of variables n and average number of solutions (|S]),
are problem-independent. However, there exists no formal justification as to
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why constrainedness is defined the way it is and therefore no formal explanation
for its successful application. The interpretation of constrainedness as “average
information content per variable” in [8] offers no enlightenment regarding the
connection between constrainedness and computational cost. Nevertheless, us-
ing (9) and the constrainedness k, of a single instance p, an interpretation in
terms of the total choice deficit H™ is provided.

_ log |Sp| _n- log |Sp| _ H"(S,)

Kp =1
P n n n

(11)

Evidently, instance constrainedness &, is the average choice deficit per search
space level or, in other words, the deficit of choice available in the search space
for constructing a solution, averaged over all levels of the search space. When
it comes to ensemble constrainedness x, choice deficit is also averaged over all
instances in the ensemble. This result reveals that constrainedness is a reliable
and widely applicable predictor of computational cost because it reflects an
intrinsic property of search spaces: deficit in the amount of choice available for
constructing a solution. This verifies the claim in [4] about constrainedness being
“a fundamental property of problem ensembles”. Note that the amount of choice
offered in the search space of an instance is independent of the manner in which
a particular algorithm may make use of such choice. Choice deficit characterizes
the search space of an instance and is insufficient, by itself, for determining the
exact value of computational cost. However, there is logic to comparing the choice
deficit among instances: the lower the amount of choice available for constructing
a solution path, the higher the amount of resources an algorithm is expected to
expend in order to obtain such a path and vice versa.

Unfortunately, both H™ and « suffer from the same deficiency: they are not
refined enough to distinguish between instances with non-isomorphic solution
sets. They are aggregate quantities which depend only on the number of solutions
while failing to retain any information about their distribution. According to [9],
it is an important “open question” to derive a “better specification of the number
and location of solutions”. Having introduced the individual quantities AD;’s
and AH,;’s, a direct reflection of the distribution of solutions is now available.
Moreover, it can be argued along the lines of [3], that a single aggregate quantity
such as the sum of ‘H;’s can capture additional information about the distribution
of solutions. In such a case, the instances offering the least amount of choice
(among all instances with the same number of solutions |S|) and are expected
to require increased computational effort are the ones in which the solutions are
clustered, which is in accordance with [10].

8 Conclusions

The solution set S of a n-variable constraint satisfaction problem instance in-
duces a search space common to all constructive methods. This search space
contains n!|S| solution paths, distinct alternative instantiation orderings which
lead to solutions in S. The structure of the solution set S directly determines the
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structure of the search space, that is the distribution of solution paths among
the assignments of each search space level. The entropy of this distribution yields
a measure of the average amount of choice available at each search space level
for constructing a solution. Aggregate measures of choice for the entire search
space, as well as measures of choice deficit are also defined. Such application
of entropy as a means to study the structure of problem instance search spaces
is completely novel and so is the notion of choice which is inherently available
within the search space for constructing solutions. All the derived quantities
directly reflect not only the number but also the distribution of solutions and
are, in fact, refined enough to distinguish between instances with non-isomorphic
solution sets. This is a contribution to research in phase transitions, where struc-
tural parameters of problem instances are investigated in order to predict the
expected computational cost of solving them [11] and the “better specification of
the number and location of solutions” is considered to be an “open question” [9].
Another contribution of this work is the interpretation of constrainedness, an ac-
knowledged predictor of computational cost [4-6], as an aggregate measure of
choice deficit. This establishes a connection between an algorithm-independent
property of the search space, such as the inherent choice available for construct-
ing a solution, and the algorithm-dependent amount of resources required to
actually construct a solution. It also underlines how the simplicity of a measure
such as constrainedness incurs certain limitations and explains how these can be
alleviated using the introduced measures of inherent choice.
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