
Constraint Programming MapReduce’d

Nikolaos Pothitos
pothitos@di.uoa.gr

Panagiotis Stamatopoulos
takis@di.uoa.gr

Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

Panepistimiopolis, 157 84 Athens, Greece

ABSTRACT
While Constraint Programming (CP) aims to explore effi-
ciently large search trees, MapReduce (MR) is a framework
that focuses on huge databases and text files. In this work,
we try to bridge these two cutting-edge paradigms in or-
der to solve Constraint Satisfaction Problems (CSPs) in dis-
tributed and/or parallel environments. We implement a CP
system that is responsible to distribute the parts of the se-
rial search tree to the workers in order to explore it. MR is
responsible to allocate the physical resources of a cluster and
assigns them to the workers. The CP and MR phases inter-
change and this novel coordination results into significant
speedups while solving CSPs. Empirically, our approach is
applied on common CSPs, such as N Queens and Number
Partitioning.

CCS Concepts
•Theory of computation→ Constraint and logic pro-
gramming; MapReduce algorithms; •Networks→ Cloud
computing;

Keywords
parallelization; distribution; search tree; cloud

1. INTRODUCTION
MapReduce and Constraint Programming can be linked

via the word “huge”. MapReduce targets huge databases,
while Constraint Programming traverses a huge number of
candidate/partial solutions of a problem.

1.1 The MapReduce Framework
In the early Computer Science era, parallelization was

mainly a research topic, because parallel and distributed
infrastructures were available only in data centers and ed-
ucational institutes. About a decade ago, multi-core pro-
cessors were incorporated inside almost every computer and
the parallelization of common sequential processes became

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SETN ’16, May 18-20, 2016, Thessaloniki, Greece
c© 2016 ACM. ISBN 978-1-4503-3734-2/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903220.2903248

crucial. Nowadays, it is common to utilize the resources of
a cloud or even to rent whole cloud infrastructures at an
affordable price [8]. In this direction, MapReduce (MR) is a
capable framework of orchestrating thousands of commodity
PCs to manage huge databases. It was invented by Google
to process the whole internet archives [3].

More prominent MapReduce applications have to do with
the production of large social networks graphs [1, 5] and the
automatic detection of epidemics by processing large statis-
tical data [6].

1.2 Parallelizing CP in Related Work
There is no doubt that there have been developed many

methods to parallelize search in CP. A successful method-
ology is work stealing, in which each worker that has run
out of work (nodes to be searched) asks the other workers
to borrow some work [2]. Another approach is SelfSplit,
in which each worker decides on its own which part of the
search tree it will explore [4]. A more close approach to ours
is decomposing a problem into many subproblems and then
assign each subproblem to a worker. More formally, with
this methodology each CSP is approached as an embarrass-
ingly parallel problem [11, 12].

In our approach, we decompose the search tree into many
parts, we create a file containing these splits and then a
MapReduce system is responsible to distribute these search
tree parts to the workers. There are many benefits of em-
ploying MapReduce.

• A MapReduce system will allocate by itself the CPU
cores and/or the machines in a cluster of computers.

• From the above, it is obvious that MapReduce sup-
ports both parallel and distributed environments.

• It is more easy and secure for a cloud administrator to
provide access to their machines through a MapReduce
interface, instead of allowing the implementation of ad
hoc communication strategies among the machines.

• The no-communication between mappers restriction
makes MapReduce highly scalable and capable of uti-
lizing huge data centers.

These are some of the reasons why we leverage on a plain
MapReduce approach.

2. SPLITTING THE SEARCH TREE
The main objective in this work is to develop a method to

partition an arbitrary search tree into (almost) equal pieces.

http://dx.doi.org/10.1145/2903220.2903248

n1

n2 n8

n3 n5 n9 n11

n4 n6 n7 n10

Figure 1: Labels correspond to the nodes visit order

Table 1: The Time when each visit to a Node was
completed by a serial method

Node n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

Time 2 3 4 7 9 11 12 15 20 21 22

Duration 2 1 1 3 2 2 1 3 5 1 1

Each piece can be then assigned to an independent worker
and the whole search tree will be explored in parallel by the
workers.

2.1 Traversing a Whole Search Tree
A sequential search method traverses one by one the nodes

of the search tree, e.g. in the order they are labeled in Fig. 1.
Note that this figure displays a small search tree that is
incomplete, in the sense that an intermediate node (like n3)
may have less than two children-nodes (n3 has only n4 as a
child).

If the total time needed to traverse the search tree in Fig. 1
is 22 time periods, Table 1 contains the indicative time when
each node was visited by a serial search method.

If Table 1 was known a priori, it would have been easy to
split the traversal from n1 to n11, into three streams, e.g. n1–
n4, n5–n8, and n9–n11, which have three almost equivalent
total durations 2 + 1 + 1 + 3 = 7, 2 + 2 + 1 + 3 = 8, and
5 + 1 + 1 = 7.

Each range nbegin–nend can be traversed independently by
a worker in parallel. Hence, if we have three workers, we can
traverse the search tree in almost 22/3 time periods, which
is the total serial time divided by the number of the workers.

The symbol nbegin actually describes a path. I.e., it is a
string with numbers like “2 1 5 3”, which means “begin with
the root, go to its second child (branch), then follow its first
child, then follow the fifth child and reach the third child”.

The above almost optimal way of splitting the search tree
into equal parts and then distribute the nbegin–nend ranges
to independent workers has obviously a serious drawback:
We must initially traverse the whole search tree to get the
ranges; but what we initially wanted was to parallelize this
process.

2.2 Search Tree Nodes Random Sampling
Instead of exploring the whole search tree and then split

it, we can traverse a proportion of it. Our partial traversal
does not need to know anything a priori about the search
tree. It does not need to know its size, height, etc. It will
simply traverse a part of it.

This can be accomplished by overriding (“deleting”) a pro-
portion of the search tree nodes and by constructing a table
like Table 1, that will contain fewer nodes than the original
one. Sampling is not a straightforward process as it raises
two critical issues:

1. If a node ni is overridden (passed by), how its time
slice is replaced?

For example, if we override n6 in Table 1, what would
be the visit time for n7? Overriding n6 does not mean
to completely ignore n6; its corresponding duration
should be added to the visit time of n7, because the
new reduced table visit times should be as close to
Table 1 times as possible.

2. Deciding to override a node ni leads us inevitably to
override all of its offspring too. E.g., the decision to
override let’s say n9 in Fig. 1 is in fact a tough one:
By overriding n9 we override its offspring/descendant
n10 too.

But let’s start sampling without considering the above issues
initially.

Case 1. Let Ri be a randomly generated real number,
uniformly distributed in the range [0, 1]. Let ni be a tree
node without descendants and p the simulation factor, i.e.
the minimum proportion of the nodes we want to override.
Then, ni is overridden if Ri ≤ p.

This means that a node with no descendants is overridden
with probability at least p. We say “at least”, because the
precise probability to override ni must additionally include
the probability that one of ni’s ancestors is overridden.

Now we should consider what happens if the node ni has,
let’s say, d descendants. Note that the term “descendants”
refers not only to the nodes (children) directly connected
to ni, but also to all the nodes that belong to the sub-tree
rooted in ni (the children of the children etc.). In this case
if we override ni with probability p, this will override its
descendants too. However, what we initially wanted was to
override each separate node with probability p. Therefore,
the probability to override ni and its d descendants should
be:

Pr[ni overrid.] · Pr[1st desc. overrid.] · · ·Pr[dth desc. overrid.] (1)

This is at least p · pd = p1+d.

Case 2. Let Ri be a randomly generated real number,
uniformly distributed in the range [0, 1]. Let ni be a tree
node with d descendants and p the minimum proportion of
the nodes we want to override. Then, ni is overridden if
Ri ≤ p1+d.

This is a simple workaround for the 2nd issue above that also
guarantees that the average proportion of the overridden
nodes will be at least p.

2.3 Pre-estimating the Descendants of a Node
Case 2 does not completely resolve the 2nd issue. When we

are about to decide if a node will be overridden or not, with
probability p1+d, we should know the descendants number
d. But this is not possible a priori, because we have not yet
traversed the very node itself!

The solution is to make a pre-estimation of d, based on
the previous history. In order to step forward in CP-MR,
we make the following general assumption.

Assumption. Each node is expected to have a
similar descendants number and a similar time
duration to the other nodes that belong to the

t1 t2 t3

Figure 2: The third leaf-node will be simulated

n1

n2 n8

n3 n5 n9 n11

n4 n6 n7

Figure 3: The tree simulation “pruned” some nodes

same tree level. In other words, the nodes that
have equal distance from the root are expected
to have similar number of descendants and dura-
tion.

Take for example the lowest leaf nodes in Fig. 2. The node
with the label t3 is examined on whether is going to be
simulated. At first, we need to pre-estimate its descendants
number d. According to the above Assumption, t3 node will
have a similar d with the other nodes in the same level (t1
and t2). Each of these has zero descendants. Consequently,
the average d is also (0 + 0)/2 = 0.

The Assumption is not always valid and the nodes of the
same level may have fluctuations regarding their descendants
number. To make a better estimation for d we also take into
account the respective standard deviation σ:

d = d+ σ. (2)

With the above equation we expect that d will be less than
at about 84% of the existing descendants values, according
to the 68–95–99.7 statistics rule.

Hence, t3 node will be overridden with probability p1+0 =
p. And here comes the 1st issue: If the node is indeed over-
ridden, how its simulated duration t3 will be computed?

The duration is computed exactly in the way that we com-
puted d: as the average of the existing non-simulated nodes
in the same level: t3 =

∑2
i=1 ti/2.

Case 3. If we want to override a node nj , its virtual time

duration is estimated as tj =
∑j−1

i=1 ti
j−1

. The sum refers to
the nodes ni in the same level with nj that have not been
simulated themselves. The descendants number dj of nj can

be pre-estimated exactly in the same way: dj =
∑j−1

i=1 di
j−1

.

Returning to our example, the overall goal was to “prune”
some nodes while traversing the search tree, as in Fig. 3.
Again, in this case, pruning does not mean ignoring a node,
but estimating its real duration. The estimation is then used
to construct a virtual table like Table 2 that will be used to
split the search tree nodes into almost equal parts, without
having to traverse all the nodes at first.

Table 2: The virtual time when each node is visited
if we override n7 and n9

Node n1 n2 n3 n4 n5 n6 n8 n11

Time visited 2 3 4 7 9 11 14 + t3 15 + t3 + T3

Duration 2 1 1 3 2 2 3 1

2.4 Sampling and Exploration Interchange
In the attempt to solve a CSP, the sampling (simula-

tion) and exploration (solution) phases can be interchanged.
Firstly, a primary simulation of the search space is made.
The splits of the search space are passed to the mappers-
solvers. When the solution phase of some solvers takes long
time, they stop it and restart the simulation phase for the
search space that remains to be explored. All the splits from
the mappers are then collected and another MR round be-
gins. The input for the new MR round is the new splits.
Each time there is a delay (timeout) to some mappers, new
splits are produced and a new MR round is launched. A
timeout can happen e.g. when the real time needed to search
a tree part is a multiple of ten of the expected time.

3. EXPERIMENTAL EVALUATION
Our CP-MR framework was employed to solve the N

Queens problem. The goal in this problem is to place N
queens on a N × N chessboard so that they do not attack
each other. For each N Queens instance we found all the
solutions.

In the same context, we solved the N Number Partitioning
problem too. In this CSP, given a set with the first N num-
bers, we try to collect all the disjoint subset pairs S1 and S2,
that satisfy the conditions |S1| = |S2|,

∑
i∈S1

i =
∑

i∈S2
i,

and
∑

i∈S1
i2 =

∑
i∈S2

i2.
The sequential search methods for these problems can be

found in Naxos Solver, a CP library written in C++ [10].
The sequential approaches were modified to read the input
which is lines in the form: nbegin–nend. The Solver starts
exploring the search tree from the node nbegin until it reaches
nend. The source code is freely available at http://di.uoa.
gr/˜pothitos/CPMR

The Naxos Solver’s executable that reads nbegin–nend

from its input was provided to Hadoop Streaming 2.7.1,
which is a MapReduce system. Each Naxos Solver’s ex-
ecutable plays the role of a Hadoop mapper-worker. The
reducers do not play actually any role: They simply echo
the solutions they get.

Hadoop was installed on a cloud infrastructure [9] that
consists of 8 Ubuntu Linux 14.04 virtual machines with 8-
core processors at 2 GHz and 8 GB memory. The exact CPU
specifications are unknown due to the so-called cloud virtual-
ization. The first machine (the Hadoop master) has a 60 GB
hard disk and the other seven machines (the Hadoop slaves)
have a 40 GB disk each.

In order to produce the search tree partitions for each N ,
we used a simulation factor equal to 99.9%. The created file
with the partitions was the input for the CP-MR system.

Figure 4 illustrates the speedups gained while producing
all the N Queens solutions versus the mappers-workers em-
ployed by the CP-MR system. In our time measurements we
included all the CP-MR steps and, of course, the simulation
process.

http://di.uoa.gr/~pothitos/CPMR
http://di.uoa.gr/~pothitos/CPMR

4

5

6

7

32 64 128 256 512

15 Queens

8
10
12
14
16
18

32 64 128 256 512

16 Queens

12
16
20
24
28
32

32 64 128 256 512

17 Queens

4

6

8

32 64 128 256 512

N=40 Partitioning

8
12
16
20
24

32 64 128 256 512

N=44 Partitioning

12
18
24
30
36

32 64 128 256 512

N=48 Partitioning

S
p

ee
d
u
p

Mappers

Figure 4: The speedup gained vs. the number of the mappers employed

We repeated our experiments three times and recorded the
standard error (SE) between the runs initiated with differ-
ent random seeds. The standard error (SE) is defined as the
ratio of the standard deviation (SD) of the recorded times to
the square root of the number of samples, i.e. SE = SD/

√
n,

where n = 3 repetitions. The standard error is depicted
as an “I” on top of each measurement in the following fig-
ures, just to get an idea of the possible variance between the
samples. The standard error is not visible in most figures
because it is small.

As the mappers number increases until 128, the improve-
ments in time and speedup are more dramatic than the im-
provements gained until we reach 512. An important reason
for this is that we have only 64 cores available every mo-
ment. Even if we employ 512 mappers, only 64 of them will
run simultaneously.

It is also worth to note that for the smaller N values
the speedups are lower. This has to do with the signifi-
cant Hadoop overhead when the sequential time to solve the
CSP is relatively small. On the other hand, the speedups
for the larger CSP instances almost reach 35.

4. CONCLUSIONS AND FUTURE WORK
This work is an attempt to bridge two different but com-

monplace paradigms: CP and MR. To accomplish this con-
nection, we partitioned the search tree, we recorded the par-
titions into a text file, and we forwarded these partitions to
a MR system. The MR system invoked many mappers that
played the role of a CP solver. Each CP solver was assigned
by the MR system different search tree partitions to explore.

The future directions for this hybrid approach are many.
Most notably, we can employ multiple MR rounds to solve
optimization problems. In these problems, the goal is not
to find all the solutions, but to get the best solution accord-
ing to specific criteria. In this case, the reducers’ role will
be more active, as they should gather all the solutions and
output the best one.

5. ACKNOWLEDGMENTS
This research was partially funded by the University of

Athens Special Account of Research Grants no 10812.
In this work we used the ~okeanos [7] cloud infrastruc-

ture provided by the Greek Research and Education Net-
work http://okeanos.grnet.gr

6. REFERENCES
[1] F. Afrati, D. Fotakis, and J. D. Ullman. Enumerating

subgraph instances using Map-Reduce. In ICDE 2013,

pages 62–73, Los Alamitos, CA, USA, 2013. IEEE
Computer Society.

[2] G. Chu, C. Schulte, and P. J. Stuckey.
Confidence-based work stealing in parallel constraint
programming. In I. P. Gent, editor, CP 2009, volume
5732 of LNCS, pages 226–241. Springer, Berlin
Heidelberg, 2009.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI 2004, pages
137–149, 2004.

[4] M. Fischetti, M. Monaci, and D. Salvagnin.
Self-splitting of workload in parallel computation. In
H. Simonis, editor, CPAIOR 2014, volume 8451 of
LNCS, pages 394–404. Springer International
Publishing, Switzerland, 2014.

[5] M. Gergatsoulis, C. Nomikos, E. Kalogeros, and
M. Damigos. An algorithm for querying linked data
using Map-Reduce. In 6th International Conference,
Globe 2013: Data Management in Cloud, Grid and
P2P Systems, Prague, volume 8059 of LNCS, pages
51–62. Springer, 2013.

[6] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer,
M. S. Smolinski, and L. Brilliant. Detecting influenza
epidemics using search engine query data. Nature,
457(7232):1012–1014, 2009.

[7] E. Koukis and P. Louridas. ~okeanos IaaS. In
Proceedings of Science EGICF12-EMITC2: EGI
Community Forum 2012/EMI Second Technical
Conference, Munich, Germany, 2012.

[8] V. Koukis, C. Venetsanopoulos, and N. Koziris.
∼okeanos: Building a cloud, cluster by cluster. IEEE
Internet Computing, 17(3):67–71, 2013.

[9] V. Koukis, C. Venetsanopoulos, and N. Koziris.
Synnefo: A complete cloud stack over Ganeti.
USENIX ;login:, 38(5):6–10, October 2013.

[10] N. Pothitos. Naxos Solver.
http://di.uoa.gr/˜pothitos/naxos, 2015.

[11] J.-C. Régin, M. Rezgui, and A. Malapert.
Embarrassingly parallel search. In C. Schulte, editor,
CP 2013, volume 8124 of LNCS, pages 596–610.
Springer, Berlin Heidelberg, 2013.

[12] J.-C. Régin, M. Rezgui, and A. Malapert.
Improvement of the embarrassingly parallel search for
data centers. In B. O’Sullivan, editor, CP 2014,
volume 8656 of LNCS, pages 622–635. Springer
International Publishing, Switzerland, 2014.

http://okeanos.grnet.gr
http://di.uoa.gr/~pothitos/naxos

	Introduction
	The MapReduce Framework
	Parallelizing CP in Related Work

	Splitting the Search Tree
	Traversing a Whole Search Tree
	Search Tree Nodes Random Sampling
	Pre-estimating the Descendants of a Node
	Sampling and Exploration Interchange

	Experimental Evaluation
	Conclusions and Future Work
	Acknowledgments
	References

