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ABSTRACT
Search is not a direct path to a solution. While searching for
a solution to a problem, heuristics consult us to avoid paths
with dead ends, but they are not infallible. Many popular
search methodologies “disobey” them during critical points
of the search. In this work, we found an efficient stochas-
tic methods framework that smoothly combines randomness
with normal heuristics. We consider a factor of disobedience
to the heuristics and we fine-tune it each time, according to
our estimation of heuristic-reliability. We prove mathemat-
ically that while the disobedience factor falls, the stochastic
methods approximate deterministic methods. Our algebraic
evidence is supported by empirical evaluations on real life
problems, such as course scheduling and frequency assign-
ment. In this context, we exploit our proposed heuristic-
reliability semantics in order to produce a piece of pie search
(PoPS) method that can outperform other known construc-
tive search processes in hard optimization problems.

CCS Concepts
•Computing methodologies Ñ Randomized search;
Heuristic function construction; •Mathematics of com-
puting Ñ Optimization with randomized search heuristics;
•Theory of computation Ñ Theory of randomized search
heuristics;

Keywords
randomness; stochastic methods; discrepancy; constructive
search; confidence; CSP

1. INTRODUCTION
Artificial Intelligence (AI) methodologies aim to tackle

with difficult computational and real life problems, such as
scheduling [16], radio frequency assignment [5], other NP-
hard problems, and also problems stemming from various
disciplines, e.g. Bioinformatics [1].
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In these cases, naive algorithms have to explore the whole
candidate solutions spectrum, in order to find a real solu-
tion. The issue here is that the candidate solution range is
exponential in the problem instance parameters, and, as a
consequence, an iteration through the candidate solutions
becomes infeasible as the problem scales.

Heuristics role in this situation is to change the order
of the candidate solutions, so as to favor the “promising”
ones. In other words, heuristics make an estimation of the
possibility of an incomplete or candidate solution being a
real solution, and label it with a priority. A high priority
means that the candidate solution should be examined soon.

This reordering cannot make the search space tractable—
this is most probably impossible [8]—but it is able to dra-
matically decrease the time needed to guide a search method
toward a real solution. In this direction, we study heuristic
properties, such as reliability/confidence, and we propose a
generic framework in order to exploit them by incorporating
a randomness factor into them.

2. BACKGROUND AND RELATED WORK
We focus on constraint satisfaction problems (CSPs) [21]

that can be faced via a plethora of available constraint pro-
gramming (CP) solvers [7, 13].

2.1 Constraint Satisfaction Problems
Every single CSP can be stated using commonplace for-

malizations. It is a triplet of (i) variables X1, . . . , Xn, (ii)
their corresponding domains DX1 , . . . , DXn , which are or-
dinarily finite sets of integers, and (iii) the constraints be-
tween variables; a constraint contains the tuples of all the
valid assignments for a specific pair/set of variables. To put
it differently, a constraint is a relation between the variables,
such as X1   X2.

In the attempt to find a solution to a CSP, we have to
make assignments.

Definition 1. We say that a variable X is assigned a value
v P DX , if its domain is made singleton, i.e. DXø tvu.

A solution is an assignment that involves all variables and
also satisfies all the constraints. The search process leads
a CSP after consecutive assignments into a solution. The
strategic advantage of the overall paradigm is that the CSP
description and search phases are independent [9].

2.2 Map-Coloring Problem
There exists a huge list of interesting CSPs [10]. For ex-

ample, map-coloring is a CSP for assigning colors to each
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Figure 1: The four Thessaly prefectures

prefecture in a given map, so as no neighbouring prefectures
have the same color. Figure 1 illustrates a map of the Greek
region “Thessaly”, containing four prefectures; the colors in
the figure form an indicative solution.

Problem 1. Typically, “Thessaly-coloring” is a CSP with:

1. Four constrained variables: X1, X2, X3, X4. Each one
of them designates the prefecture color.

2. The corresponding domains are DX1 � DX3 � t1, 2u
and DX2 � DX4 � t1, 3u. Numbers 1 2 3 represent
respectively red, green, blue.1

3. The constraints are X1 � X2, X1 � X3, X2 � X3,
and X2 � X4.

The solution in Fig. 1 is represented by the assignment

tX1 Ð 1, X2 Ð 3, X3 Ð 2, X4 Ð 1u . (1)

2.3 Search Tree Exploration
A search tree is a descriptive way to depict every possi-

ble assignment in a CSP, such as map-coloring. Figure 2
displays the search tree for the Thessaly-coloring problem.
The struck out nodes have been pruned as no-goods.

Each path from the root (i.e. the uppermost node) rep-
resents an assignment. If the path from the root ends up
into a leaf (lowest node), we have a complete assignment.
E.g., the dotted path in Fig. 2 is an alternative form of the
solution assignment in (1).

2.4 Heuristic Estimation as a Real Number
A heuristic function maps every possible choice in the

search tree to a number that corresponds to the estimation
that it will eventually guide us toward a solution.

Definition 2. For a specific search tree node, let Choices
be the set with the alternative assignments that one may
follow. The heuristic function hi maps each alternative
assignment i P Choices to a positive number or zero, i.e.
h : ChoicesÑ R�.

Example 1. In Fig. 2 uppermost right node, there are two
alternative assignments in Choices � tX2 Ð 1, X2 Ð 3u.
One heuristic function may provide the estimations, e.g.
hX2Ð1 � 0.7 and hX2Ð3 � 2.8; that is, the assignment
X2 Ð 3 is more promising.
1We could initially set all the domains equal to t1, 2, 3u. We
used smaller initial domains just to simplify the problem.
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Figure 2: The search tree for Thessaly-coloring

The above example is almost ideal, as the heuristic function
h favours the assignment X2 Ð 3 over X2 Ð 1. Besides, the
latter leads to a dead end, as its two descendants are struck
out in Fig. 2, because they violate the constraints.

Unfortunately, this is not always the case, i.e. the heuristic
value for an assignment that leads to a dead end (sayX2 Ð 1
in Fig. 2) may be overestimated or, even worse, may be
greater than the heuristic estimation for an assignment that
really leads to a solution (e.g. X2 Ð 3).

A heuristic value hi is actually a prediction whether a
specific assignment will ultimately guide us to a solution or
not. Being a prediction, it implies an inherent reliability/
confidence level.

2.5 Heuristics Exploitation in Related Work
In constructive search, one can build a solution either with

a deterministic/systematic search method, or by making
one-by-one random assignments. Do these methods exploit
heuristics and how?

2.5.1 Deterministic Search Methods
To our knowledge, existing search methods such as lim-

ited discrepancy search (LDS) use heuristics only to order
the possible assignments and do not exploit the difference
of the one heuristic estimation to another, but only their
rank [19]. For example, the iterative broadening method
explores only a limited children’s number for each search
tree node [11]. Of course, it chooses to visit only the chil-
dren with the highest ranks. Credit search [2] and limited
assignment number (LAN) [3] are other deterministic meth-
ods that also take into account the rank of the heuristic
estimations and not the heuristic values themselves.

Last but not least, there are also methods that make the
assumption that the heuristic function is more reliable as
the search tree node depth increases. E.g., depth-bounded
discrepancy search (DDS) allows to override a heuristic esti-
mation, only when we have not yet reached a specific search
tree depth [22]. Finally, there are some methodologies that
take into account two or more heuristic functions and learn
as the search proceeds, which heuristic is the best to use [23].

2.5.2 Random Search Methods
On the other hand, stochastic search methods completely

ignore heuristics, as they choose to make an assignment at
random [14]. For example, depth first search with restarts
traverses the search tree making random choices, and when a
specific time limit is reached, it re-starts from the beginning.
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2.5.3 Heuristics and Probabilities
Thus, the well-known search methods either use heuris-

tics as Choices ranks, or completely ignore them. In 1996,
Bresina transformed the heuristic ranks into probabilities via
the so-called heuristic-biased stochastic sampling (HBSS) [4].
He provided a set of various decreasing functions biasprq,
e.g. 1

r
or e�r etc., that take a specific integer choice rank

r P t1, 2, . . .u and return a number that corresponds to the
probability of the choice to be selected. Cicirello and Smith
improved HBSS by introducing the value-biased stochastic
sampling (VBSS). The bias function now takes as argument
the heuristic value itself [6].

On the other hand, Gomes et al. exploit the so-called
heuristic-equivalence to equate the choices with the high-
est heuristic values. In this way, we can exclude the choices
with the lower heuristic values and select at random amongst
the choices with the most prevailing values [12].

3. NEW PROBABILISTIC HEURISTICS
Our contribution lies in the mathematical foundation of a

framework that covers the above heuristic categories. In con-
trast to existing methodologies, we leverage on the smooth
transition from the total randomness to determinism.
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Figure 5: Systematic search favours the highest hi
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Figure 6: As conf rises, the effect to P piq is greater

3.1 Heuristics Probabilistic Foundations
Probabilities are a more precise way to depict heuristics

than orderings, because heuristics are actually estimations
whether a choice will guide us to a solution; they are not a
strict quality rank.

Definition 3. A function P : Choices Ñ r0 , 1s , namely a
heuristic distribution function, maps each available choice
to a corresponding probability, i.e. P piq.

Property 1. It should hold that
°

i P piq � 1, as P denotes
a probability for each i P Choices.

Regarding random search methods (Section 2.5.2), the prob-
ability is distributed uniformly along the Choices. Conclu-
sively,

Proposition 1. The heuristic distribution for a random
method is always P piq � 1

|Choices|
, @ i.

Example 2. Say that Choices � tv1, v2, . . . , v5u. Every
vi denotes a possible assignment. Furthermore, in a specific
search tree node we can make five different assignments, and
their corresponding heuristic estimations hi are 1, 5, 2, 4, 3
respectively, as in Fig. 3.

Figure 4 depicts the corresponding heuristic distribution
function for a random method, that is P piq � 1{5, @ i.

On the other extreme, deterministic search methods (Sec-
tion 2.5.1) always select the choice vi that corresponds to
the hi with the highest rank.

Proposition 2. Formally, in deterministic search meth-
ods, if i � arg maxj hj, then P piq � 1, otherwise P piq � 0.

Example 3. The greatest heuristic value in Example 2 is
h2 � 5. Hence, a deterministic search method would select
v2 with a certain probability P pv2q � 1. Consequently, the
rest of the probabilities are zero, as in Fig. 5.

If there is more than one maximum heuristic value, deter-
ministic methods arbitrarily concern only one of them as
maximum. To simplify the following equations we will make
the assumption that there is only one maximum. Without
loss of generality, we also assume that heuristic values are
non-zero.



3.2 Bridging the Two Opposites
We extend our previous formulation of the heuristic distri-

bution function (Definition 3) in order to compromise ran-
dom and deterministic methods. We introduce a parameter
conf P R�, that signifies how much the heuristic estimations
will be taken into account; it is the heuristic confidence. This
confidence pararameter is the basis to define the condition
when a heuristic distribution function is “balanced”.

Definition 4. A parameterized heuristic distribution func-
tion Pconfpiq is balanced if and only if:

1. @ i, lim
confÑ0

Pconfpiq �
1

|Choices|
, and

2a. if i � arg maxj hj , lim
confÑ8

Pconfpiq � 1,

2b. otherwise, lim
confÑ8

Pconfpiq � 0 .

Moreover, the function Pconfpiq must be monotonic and con-
tinuous with respect to conf and for fixed i.

Intuitively, conf is the link between random and determin-
istic search methods, as the above definition covers both
Proposition 1 when conf Ñ 0 and Proposition 2 when conf Ñ
8. In other words, conf is the position along the random-
deterministic axis.

What happens for intermediate conf values? This depends
on the precise parameterized heuristic distribution function
instance. We define the following function that gently scales
randomness.

Lemma 1. The function Pconfpiq �
hconf
i°

j hconf
j

is balanced.2

Proof. We prove Definition 4 three requirements.

1. lim
confÑ0

Pconfpiq �
h0
i°

jPChoices
h0
j
� 1°

jPChoices
1
� 1

|Choices|
.

2a. Let n � |Choices|. This number is bounded as the
possible assignments in a CSP are a finite set. Thus,
the distribution function can be analyzed as

Pconfpiq �
hconf
i°

j hconf
j

�
hconf
i

hconf
1 �hconf

2 �����hconf
max�����hconf

n
.

Let hmax be the maximum hi. If we divide by hconf
max

both the nominator and denominator, we have

Pconfpiq �

�
hi

hmax

	conf
�

h1
hmax

	conf
�����1�����

�
hn

hmax

	conf

�

�
hi

hmax

	conf

1�
°

j�max

�
hj

hmax


conf . (2)

Here, max is an abbreviation for arg maxi hi. There-
fore, @ j � max,

hj   hmax ùñ
hj

hmax
  1 ùñ

lim
confÑ8

�
hj

hmax


conf

� 0 . (3)

2For conf � 1, the function P1piq �
hi°
j hj

is equivalent

to the fitness proportionate selection function—resembling
a roulette wheel—that is used in Genetic Algorithms [20].

As a result from (2) and (3),

lim
confÑ8

Pconfpiq �
limconfÑ8

�
hi

hmax

	conf

1�
°

j�max limconfÑ8

�
hj

hmax


conf

� lim
confÑ8

�
hi

hmax

	conf

. (4)

A direct derivation is that for i � max � arg maxj hj ,
we have limconfÑ8 Pconfpmaxq � 1, which is the second
prerequisite for a balanced function.

2b. Finally, the last prerequisite of Definition 4 involves
i � max ñ hi   hmax ñ

hi
hmax

  1, which, combined

with (4), gives limconfÑ8 Pconfpiq � 0, which had to be
demonstrated.

The above function (in Lemma 1) is balanced and it also
moves smoothly from the random extreme to the determin-
istic one, because it is a continuous function, with regard to
conf P R�.

Hence, the overall function is a transition from the total
randomness to the almost total determinism. This is illus-
trated in the three-dimensional Fig. 6, which for conf � 0, is
equivalent to the two-dimensional Fig. 4, and when conf Ñ
8, it is equivalent to Fig. 5.

4. PIECE OF PIE SEARCH
The probabilistic framework founded in the previous sec-

tion, naturally complies with existing search methods; it af-
fects only the heuristic function and not the methods them-
selves. But in order to fully exploit the introduced heuris-
tics framework, we built the new constructive search method
Piece of Pie Search (PoPS).

4.1 The Algorithm Core
Figure 7 describes PopsSample, which is the PoPS core.

It is called inside PoPS in order to solve a CSP by provid-
ing a complete and valid Assignments set, which is initially
empty.

In each PopsSample call we get an unassigned variable
returned by the function VariablesOrderHeuristic(X ),
where X is the set of all the constrained variables. Then,
it stores its domain DX , in order to restore it in a future
backtrack. All the above steps are common in constructive
search methods.

The crucial and novel part of this function is inside the
while iteration where we iterate through the different val-
ues in DX . The call ValuesOrderHeuristic(DX , conf)
returns the best value out of DX , according to the heuristic
estimation, using the heuristic function in Lemma 1.

Normal search methods, like Depth First Search (DFS),
Limited Discrepancy Search (LDS), and other known de-
terministic methods explore in their steps a specific num-
ber of values in DX or every value in it (cf. Section 2.5.1).
In PopsSample, we explore a specific subset D1

X of DX ,
which corresponds to a proportion of the heuristics pie. The
proportion is the argument PieceToCover P r0, 1s. When
PieceToCover becomes 1, then PopsSample is a complete
search method as it explores all the DX set values.

Example 4. Figure 8 demonstrates the heuristics pie for
the Example 2: Each hi corresponds to a value vi in DX .
In this case, a PopsSamplep0.5, 1q invocation would explore



function PopsSample(PieceToCover, conf)
if Assignments violate any constraint then

return failure
else if Assignments include every variable then

Record Assignments as solution
return success

end if
X Ð VariablesOrderHeuristicpX q
DXinit Ð DX

CoveredPiece Ð 0
while CoveredPiece ¤ PieceToCover do

value Ð ValuesOrderHeuristicpDX , confq

CoveredPiece Ð CoveredPiece �
hconf
XÐvalue°

vPDXinit
hconf
XÐv

Assign value to X and add it to Assignments
PopsSample(PieceToCover, conf� 100�conf

|X |
)

Undo the assignment
DX Ð DX � tvalueu

end while
DX Ð DXinit � Restores initial domain
return failure � All alternative values are exhausted

end function

Figure 7: The recursive PopsSample called by PoPS

h1
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h3
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Figure 8: The heuristics pie chart for Example 2

half the pie. E.g., the choices that correspond to the heuris-
tics h1

1 � h1
2 � h1

3 or h1
2 � h1

5 make half the pie and more.

The exponent in the heuristic values has to do with the
confidence semantics in our framework.

4.2 Heuristic Confidence vs. Node Level
An important detail in PopsSample appearing in Fig. 7,

is the increase in conf as the current search tree node level
deepens.

When we make the first recursive PopsSample call (inside
while), we have already made an assignment. Hence, the
current tree level will be augmented by 1 and conf will be
increased by 100�conf

|X |
.

Each subsequent recursive call deepens search by 1, until
the current depth reaches |X |, which means that every vari-
able in X has been assigned a value. For a specific depth
k the conf value is increased by k � 100�conf

|X |
. Finally, when

k � |X |, the conf argument of PopsSample will become

function PoPS
for i from 1 to SamplesNum do

Samplei is activated
Coveri Ð 0
confi Ð 100 � i�1

SamplesNum�1
end for
while the available time is not exhausted do

for each active Samplei do
if PopsSample(Coveri, confi)

did not return a solution then
Samplei is deactivated

end if
Coveri Ð Coveri �

1
d

end for
if every Samplei is deactivated then

Activate every Samplei � to keep searching.
end if

end while
end function

Figure 9: Piece of Pie Search (PoPS) Method

equal to the marginal value 100.
In the deepest node levels, heuristics are usually more ac-

curate, because even more variables have been instantiated
and we have a clearer picture of the problem. In our frame-
work, more accuracy means more confidence, that’s why we
increase conf as the search method proceeds with the assign-
ments.

4.3 POPSSAMPLE: Average Complexity
The PopsSample complexity depends on PieceToCover

argument and the heuristic function distribution.

Lemma 2. Let n be the constrained variables number and
let d be the average domain size. Then, the average complex-
ity of a PopsSamplepPieceToCover, confq call equals Opdn �
PieceToCovernq.

Proof. An initial PopsSamplepPieceToCover, confq call,
iterates through the values of, let’s say, the first variable
X1. If the heuristic function numbers for the values in DX1

are uniformly distributed, the expected value for hX1Ðvalue

would be µ �

°
vPDX1

hXÐv

|DX1
|

.

Thus, to reach the pie proportion A � PieceToCover �°
vPDX

hXÐv, we need A{µ � PieceToCover � |DX1 | itera-

tions, i.e. OpPieceToCover � dq loops.
The total time needed is T1 � OpPieceToCover � dq � T2,

where T2 is the time for the PopsSample call inside the
loop. It also holds that T2 � OpPieceToCover � dq � T3, etc.,
and finally Tn � OpPieceToCover � dq. In conclusion, the
aggregate complexity is OpPieceToCovern �dnq for the initial
call.

We can observe that PopsSamplep1, confq is equivalent to a
complete search space exploration, which has an Opdnq time
complexity.

4.4 The Motivation Behind POPS
Finding the best conf is the motivation behind PoPS.

Unfortunately, we do not know a priori which conf is the
best parameter for PopsSample. However, we can find it
by trial and error. In Fig. 9, the PoPS function invokes
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PopsSample for SamplesNum different confi values, includ-
ing the marginal values 0 and 100.

Each different confi is used in turn. Initially, the Coveri
parameter in the PoPS algorithm is zero for every confi.
When a specific confi has been examined, the corresponding
Coveri is increased by 1

d
, where d is the average domain size.

When the second iteration over a specific confi ends, the
Coveri is increased again by 1

d
and so on.

In this way, each confi is given the same opportunity
(search space) to find a solution. If some confi does not
produce a solution, it is deactivated. It is reactivated only
if all other confi’s fail to produce a solution.

5. EMPIRICAL EVALUATIONS
The gradual switch from randomness to determinism can

boost search in demanding CSPs, such as course scheduling
and the radio frequency assignment problems. With the
help of our free constraint programming C++ library Naxos
Solver [17], we solved official instances of these problems
for different heuristic distribution configurations.

The source code for our evaluations is freely available
at http://di.uoa.gr/˜pothitos/PoPS including the problem
datasets. The experiments were conducted on an HP com-
puter with an Intel dual-core E6750 processor clocked at
2.66 GHz with 2 GB of memory and a Xubuntu Linux 12.04
operating system.

For the following first three subsections, our confidence
framework was used to randomize only the variables order-
ing heuristic (minimum remaining values and degree used
for tie breaking), whereas in the last subsection, which refers
to PoPS, the randomization affects only the ValuesOrder-
Heuristic (least constraining value), called by PopsSam-
ple inside PoPS.

5.1 University Course Scheduling
Automated timetabling is nowadays a crucial application,

as many educational institutes still use ad hoc manual pro-
cesses to schedule their courses. The International Time-
tabling Competition (ITC) is an attempt to unify all these
processes. We borrowed the fourteen instances of the latest
contest track concerning universities [15].

In these problems, we have to assign valid teaching periods
and rooms to the curriculum lectures. The objective is to
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Figure 11: Solutions for the rest of the ITC instances

distribute them evenly during the week but without having
gaps between them, if scheduled on the same day; each gap
increases the solution cost [18].

Due to ITC specifications, we had 333 seconds in our ma-
chine to solve each instance and minimize the solution cost
as much as we could. Figures 10 and 11 display the mini-
mum solution costs found per instance by PopsSample for
various conf values. We observe that as conf increases the
costs tend to a specific number, whilst for small conf values
we have fluctuations because search becomes more random.

It was expected that for high conf values the results would
be more stable, as the search process approximates the de-
fault depth-first-search (DFS). For the marginal low values,
e.g. conf � 0, search is completely stochastic and the re-
sults are worse on overage, as we have higher solution costs.
However, the evaluations for intermediate conf values, e.g.
conf � 20, are more promising, but the automatic selection
of the best conf is an open question here; in the last sections,
PoPS finds automatically appropriate conf values.

In practice, as shown in Fig. 10 and 11, a conf value
around 100 actually represents infinity, because search tends
to produce the same solutions for conf ¥ 100.

It is worth to mention that in Fig. 11 the only solution
found for the Let0405-1 instance, depicted with an asterisk �,
was for conf � 10.

5.2 Radio Link Frequency Assignment
Another important real problem is the frequency assign-

ment, in which we have to assign a frequency to each radio
transmitter with the objective to minimize the interference.
The interference is minimized by assigning different frequen-
cies to every two transmitters that are close to each other.

The Centre Electronique de l’Armement (CELAR) pro-
vides a set of real datasets for this NP-hard problem [5]. We
chose to solve the five so-called “MAX” problem instances,
namely SCEN06–SCEN10, in which, generally speaking, we
try to maximize the number of the satisfied soft constraints.

For each of these instances, we had 15 minutes to explore
the search space. We recorded the best (lowest) solution
costs found so far in Fig. 12 for several conf values. Approx-
imately the same as in course scheduling, the lowest solution
costs occur around conf � 10, which gives better results on
average than the marginal conf values.

http://di.uoa.gr/~pothitos/PoPS
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5.3 POPSSAMPLE during Hard Optimization
The conf parameter can refine any search method that

adopts our heuristic framework. The PopsSample method
goes a step further: it incorporates our heuristic confidence
semantics into its search engine.

In order to solve the first university course timetabling
instance (Fis0506-1 of Section 5.1), we invoked PopsSample
for various PieceToCover and conf values and we plotted the
best solution costs found in Figure 13. The third dimension
is the cost of the solutions found: the lower the solution cost
is, the more qualitative timetable is produced.

In the same graphs we include some of the well-known
search methods results, such as DFS, LDS, and Iterative
Broadening, implementesd in the same solver, with only
their best solution cost depicted as a plane grid, in order
to make comparisons easily.
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Figure 13: PopsSample for the first ITC instance

Table 1: Solution costs for fourteen ITC instances
Instance PoPS LDS DFS It. Broad.

Fis0506-1 105 171 345 286
Ing0203-2 241 288 698 321
Ing0304-1 279 307 578 353
Ing0405-3 195 215 817 235
Let0405-1 655 627 X X
Ing0506-1 307 311 812 342
Ing0607-2 282 283 1184 328
Ing0607-3 223 239 635 262
Ing0304-3 288 294 675 370
Ing0405-2 265 284 877 344
Fis0506-2 12 33 486 34
Let0506-2 713 783 1621 937
Ing0506-3 231 256 660 280
Ing0708-1 223 227 660 264

5.4 POPS vs. Other Search Methods
In the above sections, it was not easy to figure out which

is the best PieceToCover and conf combination. That is why
we employed PoPS to solve the fourteen course timetabling
instances. As described in Section 4.4, PoPS uses several
conf values and favours the most fruitful ones. We used
five conf samples, i.e. 0, 25, 50, 75, and 100, by setting
SamplesNum equal to 5. In this way, PoPS constructed
solutions with lower costs than the other methods, except
for the fifth instance, as illustrated in Table 1. The time
limit for all the methods was set to 15 minutes.

6. CONCLUSIONS AND PERSPECTIVES
We presented a well-founded framework to exploit both

stochastic and deterministic heuristics. Empirical evalua-
tions showed that our hybrid approach can produce better
results than fully random or fully deterministic methodolo-
gies.

In order to achieve this, we approached and used heuristics
as a confidence and reliability measure. By exploiting these
heuristic semantics, we were able to produce a new efficient
search method, namely PoPS, that can outperform other
methodologies. In general, our proposed framework gives
the opportunity to exploit “on the fly” whichever heuristic
confidence fluctuations occur.

In future, it will be challenging to parallelize it, as it
supports a whole grid of strategies, by concurrently invok-
ing PopsSample with several PieceToCover and conf argu-
ments.
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