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Abstract. Our aim is to investigate the factors which determine the
intrinsic hardness of constructing a solution to any particular constraint
satisfaction problem instance, regardless of the algorithm employed. The
line of reasoning is roughly the following: There exists a set of distinct,
possibly overlapping, trajectories through the states of the search space,
which start at the unique initial state and terminate at complete feasible
assignments. These trajectories are named solution paths. The entropy
of the distribution of solution paths among the states of each level of
the search space provides a measure of the amount of choice available
for selecting a solution path at that level. This measure of choice is
named solution path diversity. Intrinsic instance hardness is identified
with the deficit in solution path diversity and is shown to be linked
to the distribution of instance solutions as well as constrainedness, an
established hardness measure.

1 Introduction

A constraint satisfaction problem consists of a set of variables and a set of con-
straints. A variable which has been given a value is said to be instantiated. A set
of instantiations to i distinct variables is an assignment αi of size i. If the size of
an assignment αn equals the number of problem variables n then it is a complete
assignment. A complete assignment which satisfies all problem constraints is a
feasible solution. The set of solutions to a problem instance is denoted by S.
Given a constraint satisfaction problem instance, the goal is to find a feasible
solution or to prove that none exists. In order to accomplish this, constructive
search methods start from the empty assignment and iteratively extend partial
assignments until a feasible solution is found. Therefore, the complete search
space comprises all distinct assignments of all sizes, partitioned into disjoint lev-
els according to size. An extensive presentation can be found in [1]. In contrast,
repair search methods iteratively transform complete assignments until a feasible
solution is found. Therefore, the complete search space comprises only complete
assignments.

This research aims at investigating the factors which determine the intrin-
sic hardness of constructing a solution to any particular constraint satisfaction
problem instance. Other than the assumption that a constructive algorithm is
employed, instance hardness is treated in a manner independent of the particular
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tree-search method used, hence the use of the term “intrinsic”. In line with [1],
as well as [2], [3], our viewpoint focuses on the structure of the induced search
space, which allows an abstraction away from problem-specific properties.

The line of reasoning is roughly the following: There exists a set of distinct,
possibly overlapping, trajectories through the states of the search space, which
start at the unique initial state (the empty assignment containing no instanti-
ations) and terminate at complete feasible assignments. These trajectories are
named solution paths. See Fig. 1 for an illustration of the search space and so-
lution paths. The entropy of a distribution is a measure of choice in selecting
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Fig. 1. The search space of a constructive method for instances with n = 3 binary
variables. The search space is partitioned into disjoint levels, with each level i containing
the 2iC(n, i) possible instantiations of size i. The n! possible paths to a particular
complete assignment are also depicted. The search space for a repair method comprises
the complete assignments in the shaded rectangle

an event [4]. The entropy of the distribution of solution paths among the states
of each level of the search space provides a measure of the amount of choice
available for selecting a solution path at that level. This measure of choice is
named solution path diversity. Intrinsic instance hardness is identified with the
deficit in solution path diversity: the lower the amount of choice available to any
algorithm for selecting a solution path, the higher the intrinsic instance hard-
ness. Choice is inherent in the search space of the problem instance and thus
independent of the algorithm used to traverse it. In this work, the focus lies on
investigating the choices offered by the search space of instances, not on how
particular algorithms may make use of such choices. Therefore, throughout the
presentation, the reader should bear in mind that the notion of intrinsic instance
hardness is not to be confused with computational cost. The former is invariant
for a problem instance and manifests itself through the latter, the exact value
of which depends on the particular algorithm employed.

To our knowledge, the application of such reasoning in order to characterize
intrinsic instance hardness is novel. Moreover, it uncovers a remarkable link be-
tween intrinsic instance hardness and constrainedness [2]. The latter has been
successfully introduced as an estimator of solution cost for problem ensembles
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but its justification as average information content per variable in [5] is intuitive
rather than theoretical, especially since it provides no link between constrained-
ness and computational cost. Here, it is shown that the constrainedness of an
instance can be regarded as deficit in the total amount of choice available for
selecting a solution path, averaged over all levels of the search tree.

There is substantial relevance between the object of this work and research in
phase transitions as well as other areas. Similarities and deviations are elaborated
upon in Sect. 2. Apart from that, measures of choice are discussed in Sect. 3,
leading to measures of intrinsic instance hardness in Sect. 4. The presentation
is concluded in Sect. 5 which underlines the contributions of this work. The ma-
jority of the propositions to be found herein have short proofs, mostly involving
algebraic manipulations, and have been omitted due to space restrictions.

2 Related Research

Research in phase transitions investigates how problem structure affects the
average computational cost [6]. Although such work deals with ensembles of
instances rather than individual instances, our research is intimately linked to [2]
and [1]. In the former, the number of feasible solutions is used in the definition
of constrainedness, an established predictor of computational cost. In the latter,
the number of partial consistent assignments (goods) at each level of the search
space is also employed. Refining these approaches, we use information-theoretic
measures, similar to those found in [7], to quantify the distribution of solutions
and, consequently, partial consistent assignments. This uncovers an interesting
link between the measures proposed here and constrainedness. There is also a
close connection between our work and [8], which investigates the relationship
between algorithmic complexity and computational cost.

3 Measures of Choice

3.1 Solution Path Diversity

There are n! paths towards any solution αn ∈ S, corresponding to the n! dis-
tinct orderings of the instantiations in αn. The total number of paths towards
the solutions in S is thus n!|S|. The subset of these solution paths containing
a particular assignment αi is i!(n − i)!ρS(αi), where ρS(αi) is the number of
complete assignments which are solutions of S and are reachable from αi. Con-
sequently, the fraction ℘(αi) of solution paths containing partial assignment αi

is:

℘(αi) =
ρS(αi)

|S|C(n, i)
where C(n, i) = n!/(i!(n − i)!). These fractions are not probabilities, although
they can be interpreted as such. Essentially, the fractions ℘(αi) define the dis-
tribution of solution paths among the assignments of level i. Apparently, the
entropy of this distribution provides a measure of choice in selecting a solution
path at level i.
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Definition 1 (Di). The entropy of the distribution of solution paths among the
assignments of level i, as defined by the fractions ℘(αi), is called solution path
diversity at level i:

Di = −
∑

αi

℘(αi) log ℘(αi)

Solution path diversity is a concise quantitative measure of the amount of choice
available to any constructive algorithm for selecting a solution path at level i. It
is measured in bits (assuming the logarithm is base 2). A more refined measure
of choice can be obtained through the fraction ℘(αi−1 · αi) of solution paths
containing consecutive assignments αi−1 and αi, which can be shown to be:

℘(αi−1 · αi) =
σ(αi−1, αi)ρS(αi)

i|S| C(n, i)

The fractions ℘(αi−1 · αi) define the distribution of solution paths among the
instantiations leading to level i.

Definition 2 (∆Di). The conditional entropy of the distribution of solution
paths among the instantiations leading to level i, as defined by the fractions
℘(αi−1 · αi), is called conditional solution path diversity at level i:

∆Di = −
∑

αi−1

∑

αi

℘(αi−1 · αi) log
℘(αi−1 · αi)

℘(αi−1)

Conditional solution path diversity is a measure of the amount of choice available
to any constructive algorithm for selecting a solution path at level i, having
reached level i−1. It is a monotonic decreasing function with respect to i and is
measured in bits per level. Figure 2 depicts the search spaces for two constraint
satisfaction problem instances with three binary variables and two solutions,
along with the distribution of solution paths. It is straightforward to show that
the two forms of solution path diversity are connected in the following manner:

∆Di = Di − Di−1 + log i (1)

Recall that the search space involves all possible partial assignments and there-
fore (implicitly) all possible variable orderings for constructing these assign-
ments. It can be shown that this is the reason for the appearance of the log i
term.

3.2 The Distribution of Solutions

Assume the n problem variables are all binary. There exist 2n distinct complete
assignments which correspond to the 2n vertices of a n-dimensional hypercube.
Let the vertices which correspond to solutions be colored black and let the rest
of the vertices be colored white. This coloring, which essentially reflects the
placement of solutions on the vertices of the hypercube, is the distribution of
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(a) (b)

Fig. 2. The search space and solution paths for instances with n = 3 binary variables
and |S| = 2 solutions, with the distance between the solutions being (a) minimal: one
instantiation and (b) maximal: n instantiations. Circle area and line thickness reflect
the distribution of solution paths among assignments and instantiations

Fig. 3. The distribution of solutions for two non-isomorphic instances of three binary
variables and two solutions. The instances correspond to the search spaces of Fig. 2

solutions. As an example, Fig. 3 contains the distribution of solutions for two
problem instances with three binary variables and two solutions.

Problem instances are isomorphic if the corresponding distributions of solu-
tions (colored hypercubes) are isomorphic. If the solution sets S and T of two
distinct instances of n variables are isomorphic, then for every level i of the
search space, it holds that:

DS
i = DT

i

There is currently no available proof for the inverse (that equal entropy implies
isomorphism) although it is our strong belief that it is also true. This entails
that solution path diversity Di directly reflects the distribution of solutions and
is both necessary and sufficient for discriminating between instances with non-
isomorphic solution sets. It is not uncommon for entropy to be an invariant of
isomorphic structures (see [9]).
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3.3 The Sum Property

An accumulated measure of choice is obtained by summing (1) over all levels i of
the search space. This is acceptable since the conditional solution path diversity
∆Di pertains exclusively to level i of the search space.

Proposition 1 (Dn). The sum of the conditional solution path diversities ∆Di

over all levels i of the search space is the total solution path diversity Dn and is
identical among all problem instances with the same number of variables n and
the same number of solutions |S|.

Dn(S) =
n∑

i=1

∆Di = log(n!|S|)

Not surprisingly, Dn(S) depends upon n!|S|, the number of solution paths.
Proposition 1 holds even though the individual ∆Di’s which make up Dn need
not be identical among all such instances. This will be referred to as the sum
property.

3.4 General Path Diversity

Solution path diversity cannot, by itself, serve as a measure of hardness because
it is a relevant quantity. It measures the amount of choice available in selecting
a solution path and therefore becomes meaningful only when compared to the
total amount of choice available in selecting any path. This is computed using
the entropy of the uniform distribution of all possible paths among all possible
assignments. For the sake of simplicity, it will be assumed that variables are
binary.

Definition 3 (Gi). The entropy of the uniform distribution of the n!2n distinct
possible paths among the 2iC(n, i) distinct possible assignments of level i is called
general path diversity at level i:

Gi = log
[
2iC(n, i)

]
= i + log C(n, i)

General path diversity is a measure of the amount of choice available in selecting
any path at level i. It essentially reflects the size of the search space.

Definition 4 (∆Gi). The conditional entropy of the uniform distribution of the
n!2n distinct possible paths among the C(n, i)2ii distinct possible instantiations
leading to level i is called conditional general path diversity at level i.

∆Gi = Gi − Gi−1 + log i = 1 + log(n − i + 1)

Conditional general path diversity is a measure of the amount of choice available
in selecting any path at level i, having reached level i − 1. It is a monotonic
decreasing function with respect to i.

In a sense, the (conditional) general path diversity defines the maximal at-
tainable value for the (conditional) solution path diversity. If all paths of a search
space were solution paths, then the solution path diversity would be equal to
the general path diversity.
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Proposition 2 (Gn). The sum of the conditional general path diversities ∆Gi

over all levels i of the search space is the total general path diversity Gn and is
identical among all problem instances with the same number of variables n.

Gn =
n∑

i=1

∆Gi = log(n!2n)

4 Measures of Intrinsic Hardness

The easiest possible problem instance arises when all assignments are feasible
and every path is thus a solution path. In this case, the solution path diversity
Di is maximized and equal to the general path diversity Gi at every level i.
In every other case, there is a deficit in the amount of choice available for se-
lecting a solution path. The magnitude of this deficit identifies intrinsic instance
hardness.

Definition 5 (Hi). The difference between the general path diversity Gi and the
solution path diversity Di is called the intrinsic instance hardness at level i.

Hi = Gi − Di

Definition 6 (∆Hi). The difference between the conditional general path diver-
sity ∆Gi and the conditional solution path diversity ∆Di is called the conditional
intrinsic instance hardness at level i:

∆Hi = ∆Gi − ∆Di = Hi − Hi−1

The intrinsic instance hardness Hi and ∆Hi rises as the solution path diversity
Di and ∆Di drops. It is maximal when there are no solutions and minimal when
there are no infeasible assignments. It also rises along with the size of the search
space, which manifests itself through the general path diversity Gi and ∆Gi. An
illustration can be found in Fig. 4.

Both forms Hi and ∆Hi of intrinsic instance hardness are monotonic in-
creasing functions with respect to the search level i, which is due to the fact
that solution paths tend to spread at deeper levels of the search space. This is
not in conflict with the intuition that subproblems encountered by search algo-
rithms become easier as the search progresses into deeper levels. Both Hi and
∆Hi involve averages over all the assignments or instantiations of a level and
thus contain no information about the hardness of the subproblems that may
be encountered during search by a particular search algorithm (a subject of vast
practical significance discussed in [10], [5]).

4.1 The Sum Property and Constrainedness

Using Props. 1 and 2, it follows that the sum property also holds for the total
intrinsic instance hardness:
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(c)(b)(a)
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Fig. 4. (a) Hardness is eradicated when the entire search space consists of solution
paths: Gi = Di. (b) Hardness arises as the deficit in the solution path diversity: Hi =
Gi −Di. (c) Hardness is maximized when no solution paths exist: Hi = Gi. In all cases,
the entire search space is taken into account when computing Gi, i.e. there is no pruning
of nogoods

Proposition 3 (Hn). The sum of the conditional intrinsic instance hardness
∆Hi over all levels i of the search space is the total intrinsic instance hard-
ness Hn and is identical among all problem instances with the same number of
variables n and the same number of solutions |S|.

Hn(S) = Gn(S) − Dn(S) =
n∑

i=1

∆Hi = n − log |S|

This is especially intriguing. According to Proposition 3, all instances with the
same number of variables n and the same number of solutions |S| have the same
amount of total intrinsic hardness Hn. However, bear in mind that the individ-
ual ∆Hi’s which make up Hn are not necessarily identical for all such instances
(only isomorphic instances have equal ∆Hi’s for all levels). What this essentially
entails is that, among instances with equal n and |S|, the equal total intrinsic
hardness Hn is expended at different levels of the search space. A relevant discus-
sion in Sect. 4.2 will show that instances with a uniform distribution of solutions
have low ∆Hi for low values of i. On the other hand, instances with clustered
solutions have a uniform distribution of the intrinsic hardness ∆Hi among all
levels of the search space.

Proposition 3 also serves to obviate the intimate connection between the total
intrinsic instance hardness Hn and the constrainedness κ of a single instance:

κ = 1 − log |S|
n

=
Hn(S)

n
(2)

Under this light, κ can be understood as the average instance hardness over all
levels of the search space or, alternatively, as average deficit in the amount of
choice available for selecting a solution path, throughout the search space. This
development provides well-founded justification for the establishment of κ as
a hardness predictor and verifies the following claim from [2]:
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Our definition of κ generalizes a number of parameters introduced in a
variety of problem classes. This suggests that constrainedness is a fun-
damental property of problem ensembles.

Unfortunately, both Hn and κ suffer from the same deficiency in character-
izing instance hardness: they fail to discriminate between instances with non-
isomorphic solution sets. This is due to the fact that Hn and κ are, respectively,
a sum and an average over the levels of the search space and thus fail to re-
tain any information about the behavior of the individual ∆Hi’s. Recall that in
Sect. 3.2 it was argued that the individual ∆Hi’s directly reflect the distribution
of solutions and that they are necessary and sufficient for discriminating between
non-isomorphic solution sets.

This provides an additional explanation as to the reason why there is sig-
nificant variance in computational cost among problem instances belonging to
the same ensemble: since κ depends only upon the number of solutions |S| and
not their distribution, it is possible for non-isomorphic instances with different
intrinsic instance hardness ∆Hi per level to belong to the same ensemble.

The question then naturally arises: which hardness measure is not so crude
as to be able to discriminate between instances with non-isomorphic solution
sets? It can be argued, along the lines of [7], that a quantity such as the sum of
Hi’s can be employed in order to capture additional information about problem
instances. In such a case, drawing from Sect. 4.2, the most difficult instances
(among all instances with the same number of solutions |S|) are the ones in
which the solutions are clustered. This is in complete accordance with [11], [3]
but further exploration is required. Note that approximate entropy, another in-
formation theoretic measure, is applied on problem structure in [12] in order to
distinguish among ensemble instances with different distributions of solutions.

4.2 Bounds

The upper bound for solution path diversity Di corresponds to the case when
the solution paths are uniformly distributed among the assignments of level i.
The lower bound corresponds to the case when the solutions form a cluster
of diameter c, thereby resulting in the greatest possible non-uniformity in the
distribution of solution paths among the assignments of level i. The derivation
of the lower bound is somewhat involved.

Proposition 4 (Di Bounds). If |S|=2c, 0 ≤ c ≤ n, then the following holds
for solution path diversity Di at level i:

ci

n
+ log C(n, i) ≤ Di ≤ min{i, c} + log C(n, i)

Using Proposition 4 and Defs. 5 and 6 it is trivial to compute bounds for the
intrinsic instance hardness Hi and ∆Hi.
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Proposition 5 (Hi, ∆Hi Bounds). If |S|=2c, 0 ≤ c ≤ n, then the following
holds for Hi and ∆Hi at level i:

max{0, i − c} ≤ Hi ≤
(

n − c

n

)
i

0 ≤ ∆Hi ≤ 1

Note that both bounds pertain exclusively to instances with non-empty solution
sets and no pruning of nogoods. The case when the solution set is empty is trivial:
intrinsic hardness Hi coincides with the general path diversity Gi. Illustrations
are to be found in Fig. 5 for problem instances with 10 variables and 24 solutions.
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Fig. 5. Intrinsic instance hardness Hi bounds and conditional intrinsic instance hard-
ness ∆Hi bounds vs. search level i, for problem instances with 10 variables and 24

solutions. Additional values for Hi and ∆Hi computed for two specific instances are
included

The bound for ∆Hi reveals how informative a quantity it is and how it
conveys information by mere inspection. Notice also how ∆Hi remains constant
at all levels in the case when the solutions are organized in a single cluster.
Bearing in mind that ∆Hi reflects an average over the instantiations of level
i, this entails that the subproblems encountered throughout the search space
are persistently versatile: there is ample margin for both error and success and
algorithmic choices play the decisive part. On the other hand, when the solutions
are as far apart as possible, there is such uniformity in the distribution of solution
paths that the hardness ∆Hi remains zero up to level c: algorithmic choices are
inconsequential since all choices to be made are equally beneficial. However, the
hardness ∆Hi reaches its maximum beyond level c, with all choices being equally
critical because of the spread and scarcity of solution paths.

Approximating Instance Hardness. The form of Hi and ∆Hi for specific in-
stances (as depicted in Fig. 5) is especially intriguing. It becomes apparent that
these quantities can be approximated by simple functions involving a control
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parameter µ, which characterizes the uniformity of solution distribution in the
set S. This behavior is due to the direct association between the distribution
of solution paths among consecutive levels and is also in accordance with very
similar observations made in [7]. An initial attempt was to employ the sigmoid:

∆Hi ≈ 1
1 + ( c

n−c )2−µ(i−c)

For values µ → 0 (uniform solution distribution) and µ → ∞ (perfect cluster-
ing), the approximation coincides with the derived bounds. Unfortunately, for
0 < µ < 1, the approximation is unsatisfactory. This remains a stimulating open
issue.

5 Conclusions

An insightful hint in [13] provides a condensed explanation of what this research
has to offer:

In addition to the number of solutions, their clustering also contributes
to the variance in the search cost. [. . . ] It thus remains an open question
whether additional parameters will be required to specify the clustering
sufficiently tightly even if the number of solutions were well specified.
[. . . ] A better specification of the number and location of solutions re-
quires more information about the structure of the problems, but is inde-
pendent of the search method used. However, search methods themselves
can differ in how well they avoid unproductive choices [. . . ].

This is exactly the gap that is now bridged by intrinsic instance hardness. It
is an intuitively appealing, algorithm-independent measure of instance hardness
which directly reflects the clustering of solutions. At the same time, it justi-
fies and supersedes constrainedness, which ignores the distribution of solutions
and pertains only to their number. Novel issues are raised regarding construc-
tive search and the constituents of hardness, especially with the bounds and
rudimentary approximation results of section 4.2 in mind.
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