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Abstract. Mobile Ad Hoc Networks are susceptible to a variety of attacks that 
threaten their operation and the provided services. Intrusion Detection Systems 
may act as defensive mechanisms, since they monitor network activities in 
order to detect malicious actions performed by intruders. Anomaly-based 
detection engines are a topic of ongoing interest in the research community, due 
to their advantage in detecting unknown attacks. However, this advantage is 
offset by a number of limitations such as high rates of false alarms, imposition 
of processing overhead, lack of adaptability under dynamic network conditions 
etc. This paper presents a comprehensive evaluation and comparison of the 
most recent literature in the area of anomaly detection for MANETs. The 
provided weaknesses and limitations, which are thoroughly examined in this 
paper, constitute open issues in the area of MANET security and will drive 
future research steps.  
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1   Introduction 

A mobile ad hoc network (MANET) is a collection of autonomous nodes that form a 
dynamic, purpose-specific, multi-hop radio network in a decentralized and 
cooperative fashion. Their wireless and mobile nature in conjunction with the absence 
of access to a centralized authority makes them susceptible to a variety of attacks [1]. 
An effective way to identify whether an attack occurs in a MANET is the deployment 
of an Intrusion Detection System (IDS). An IDS monitors network activities and 
utilizes one or more detection engines, which determine if the monitored activity 
corresponds to a malicious or legitimate behavior. The detection engines can be 
classified into three main categories [2]: (i) signature-based engines, which rely on a 
predefined set of patterns to identify attacks; (ii) specification-based engines, which 
rely on a set of constrains (i.e., description of the correct operation of 
programs/protocols) and monitor the execution of programs/protocols with respect to 
these constraints; and (iii) anomaly-based engines, which rely on particular models 



(i.e., normal profiles) of nodes’ behavior and mark nodes that deviate from these 
models as malicious.  

In general, anomaly-based detection consists of two phases: the training phase and 
the monitoring phase. During the training phase, which can be performed either 
offline (i.e., the network operation is simulated in a controlled environment, without 
actually deploying a MANET) or online (i.e., during the actual deployment of the 
MANET), the normal profile is created. Subsequently, during the monitoring phase, 
the engine monitors a set of carried activities (i.e., features) and compares them 
against the normal profile. The variation between them (i.e., monitored features and 
normal profile) is usually determined by utilizing statistical analysis, machine 
learning, or data mining techniques.  

The majority of IDS literature in MANETs focuses on anomaly-based detection, 
due to its advantage in detecting unknown attacks. However, this advantage is offset 
by a number of limitations such as high rates of false alarms, imposition of processing 
overhead, lack of adaptability under dynamic network conditions, etc. These 
limitations stem from the fact that these engines were primarily inherited from static 
or mobile networks, which differ radically from MANETs. A number of recent 
publications attempt to address these limitations, through the introduction of several 
new mechanisms. On the other hand, little work has been done in evaluating and 
comparing these new approaches in anomaly detection. Existing surveying papers 
such as [16][17][18][19][20][21], either focus on outdated solutions, or mainly 
examine the architectural part of the studied IDSs and do not provide an analysis or 
evaluation of the deployed detection engines.  

This paper presents a comprehensive analysis and evaluation of the most recent 
literature in the area of anomaly-based detection for MANETs. The works selected for 
evaluation introduce new mechanisms in anomaly-based detection, aiming to resolve 
existing limitations. For each evaluated detection engine, its functionality is 
considered and outlined as well as its advantages and weaknesses are elaborated. 
Furthermore, a comparison of the evaluated engines is performed using some critical 
evaluation metrics. These metrics derive from: (i) the deployment, architectural, and 
operational characteristics of MANETs; (ii) the functionality of anomaly-based 
detection; and (iii) the carried analysis that reveals the most important strengths as 
well as the limitations and weaknesses of the considered engines. The provided 
weaknesses and limitations, which are thoroughly examined in this paper, constitute 
open issues in the area of MANET security and will drive next research steps.  

The rest of this article is organized as follows. In section 2, the selected anomaly-
based detection engines for MANETs are analyzed and commented. Section 3, 
presents a comparative evaluation of the considered engines and finally, section 4 
contains the conclusions. 

2   Anomaly-based Detection Engines for MANETs 

This section presents and analyses the most recent anomaly-based detection engines 
that have been proposed for MANETs. For each engine, the basic functionality is 
outlined as well as the provided advantages and weaknesses are elaborated.   



2.1   A Dynamic Anomaly Detection Scheme for AODV-Based MANETs 

Nakayama et al. [3] have proposed an anomaly-based engine for detecting malicious 
actions that target the Ad-hoc On-demand Distance Vector (AODV) [14] routing 
protocol. The proposed engine utilizes machine learning in order to generate and 
maintain a normal profile and relies on principal component analysis (PCA) [4] for 
resolving malicious behaviors. PCA has been widely used in image compression and 
pattern recognition. It transforms n correlated random variables into d ≤ n 
uncorrelated variables. The uncorrelated variables (i.e., principal components) are 
linear combinations of the original variables and can be used to express the data in a 
reduced form.  

In the proposed engine, an offline training phase is required to generate the initial 
normal profile. During this phase, N simulated nodes are monitored and a set of 
training data is collected, which subsequently forms the normal profile. Then, during 
the monitoring phase, the engine records a set of features (i.e., monitored data) from 
the network layer (e.g., route control packets, sender and destination information, etc.) 
in fixed-time intervals of five seconds. The recorded data are transformed into a p – 
dimension vector, where p is the number of monitored features. In the sequel, using 
PCA on the normal profile, the first principal component is calculated, which reflects 
an approximate distribution of the normal profile. The first principal component is the 
linear combination of the original variables with the largest variance. On the other 
hand, by applying PCA on the collected data of the first monitored time slot, the 
deviation from the first principal component can be estimated. If this deviation 
exceeds a threshold M, the engine assumes that an attack takes place. Otherwise, the 
recorded data from the monitored time slot becomes the new normal profile. 
According to the authors, the computational complexity of this engine is O(mn × p2), 
where mn represents the training data set for n monitored nodes and p is the number of 
monitored features.  

The most important strength of this engine is the low rate of false positive alarms 
caused by dynamic network changes. This is achieved by dynamically updating the 
normal profile at runtime. However, this strength also causes the most important 
limitation of the engine. If, for example, in a monitored time slot the engine fails to 
detect a malicious behavior, while an attack(s) takes place (i.e., false negative) then, 
the attack(s) will become part of the normal profile. As a result, the attack(s) will 
remain undetected until the normal profile is updated again. In addition, updating the 
normal profile induces extra processing overhead, since the PCA has to be re-applied 
to the new normal profile. Another limitation results from the use of fixed-time 
monitoring slots, since the engine does not take advantage of correlations between 
features at nearby time slots. Finally, the proposed engine cannot be used to detect all 
the types of possible attacks, as it monitors features only at the network layer.  

2.2   Cross-layer Detection of Sinkhole Attacks in MANETs 

J. Felix et al. [5] have proposed an anomaly-based engine for detecting sinking attacks 
(i.e., nodes that do not cooperate in the routing and forwarding operations of a 
network) in MANETs. The proposed engine utilizes a support vector machine (SVM) 



[6] classifier in order to distinguish malicious behaviors. SVM is a non-probabilistic 
binary linear classifier, which, given a training sample, builds a model that decides 
whether a new example falls within the same category as the training sample or not. 
According to the authors, the training process of the SVM has a computational 
complexity of O(N3), where N represents the number of training samples [5].  

During the training phase, which takes place offline at a system with abundant 
resources [5], data are collected from the physical, medium access control (MAC) and 
network layers. Then, the collected training data are pre-processed using a data 
reduction process, which aims at reducing their size in order to be processed by SVM. 
The employed data reduction process includes three steps:  

1. Association: collected data from different layers are correlated for 
associations, so that the number of features can be reduced.  

2. Feedback-Based Filtering: uninformative and redundant features are 
removed.  

3. Feedback-Based Sampling: data are further reduced by randomly selecting a 
subset of the original training data.  

The training phase concludes with the application of SVM classifier on the reduced 
training data set. This produces a linear decision function, which is then used during 
the monitoring phase to resolve if a monitored event is legitimate or the result of a 
sinking attack.  

The most important strength of this engine is the use of features from multiple 
layers, which may lead to increased detection accuracy. However, the application of 
data reduction process outweighs this advantage, since only 5 – 9 % of the original 
data features are used for training [5]. Usually, data reduction is used in engines that 
include online training, in order to conserve resources. On the contrary, the proposed 
engine uses offline training, which means that there are no limitations of resources. 
During training, the considered engine employs data reduction in order to make 
computationally feasible the use of the SVM classifier in MANETs, limiting in that 
way the information gain from the collected multi-layer data and thus, the associated 
advantages.    

2.3   A Two-stage Anomaly Detection Engine for MANETs 

Adrian Lauf et al. [7] have proposed a two-stage, anomaly-based detection engine that 
aims at operating in resource-constrained environments such as MANETs. The 
proposed engine can be divided into two stages: in the first stage detection is 
performed by the maxima detection system (MDS), while in the second by the cross-
correlative detection system (CCDS). MDS is used to rapidly identify a potential 
threat as well as to calibrate a threshold for CCDS, while CCDS is used to accurately 
detect the source(s) of threat, as well as to detect multiple attacks simultaneously.  

During the training phase, a normal profile is created offline. The monitored set of 
features consists of a set of application-level interactions, each of which corresponds 
to a specific function or behavior of the normal network operation. In the monitoring 
phase, MDS is deployed initially, which monitors and logs all application interactions 
in a history table. Then, MDS performs an analysis of global and local maxima in the 
probability density functions (PDF) of the monitored behaviors to isolate deviations 



from the normal profile. If a deviation is detected, MDS traverses the history table to 
locate the node that statistically has the greatest contribution to the local maximum in 
the PDF and then calls CCDS.  

CCDS performs detection by calculating individual PDFs for each node (based on 
data from the history log) and comparing them to a threshold. However, the threshold 
must be first calibrated through a transition period, before accurate detection can be 
performed. Initially, (transition period) the threshold of CCDS is set up to represent 
100% deviation and then, both MDS and CCDS run simultaneously. If a suspected 
node is detected by MDS, CCDS check whether this node is included in the set of 
deviant nodes it detects too. If it is not, the corresponding threshold for the CCDS is 
reduced. This calibration procedure (i.e., indication of malicious behaviors, check 
MDS and CCDS results, and threshold adjustments) is repeated until there is a match 
between MDS and CCDS. If this is the case, the transition period (threshold 
calibration) ends, and the CCDS, properly calibrated, starts operating as described by 
the engine’s specifications.  

The proposed engine minimizes the consumption of resource, as it mainly employs 
the lightweight MDS detection mechanism, while the more computationally 
demanding CCDS is only executed when needed. It may also provide increased 
detection accuracy, compared to other single detection engines, because the two 
employed detection mechanisms supplement each other. However, the MDS feedback 
in the calibration of the CCDS threshold may result in improper threshold’s tuning 
and thus, reduced overall detection accuracy. This is due to the fact that different 
attacks may present different application-level behaviors and thus, a single attack 
detected by MDS cannot be used to set up a generic/cumulative threshold in CCDS. 
Finally, the proposed engine is prone to high rates of false positives in cases that 
dynamic changes on the network occur, since the normal profile of MDS is static.  

2.4   Anomaly Detection Engine with Optimal Features 

P. Kabiri et al. [8] have proposed an anomaly-based engine that focuses on detecting 
denial of service attacks (DoS). The proposed engine shares a number of similarities 
with [3] analyzed in sect. 2.1. More specifically, it utilizes machine learning to 
generate and maintain a normal profile, and relies on PCA for resolving malicious 
behaviors. However, in the considered engine, the training phase (which takes place 
online) builds one normal profile for each neighboring node. Furthermore, the 
monitored features used by the engine are selected after evaluation, which reveals the 
features with the highest information gain in detecting DoS attacks.  

The most important strength of this engine is that it limits the overhead of 
gathering and processing data, by using a set of optimal features, since it performs the 
training process online. However, the authors do not clarify how those data, which are 
collected during the training process, represent a node’s normal operation. If dynamic 
changes in the network occur, the engine is prone to high rates of false positives (or 
even no detection at all) as well as presents increased processing and memory 
overhead. This is because the list of neighbors constantly changes, forcing the 
detection engine to build a new normal profile for each new neighboring node, 
without enough time to complete the training phase. Another limitation results from 



the use of fixed-time monitoring slots, and thus, the engine does not take advantage of 
correlations between features at nearby time slots.  

2.5   Adaptive Anomaly Detection of Denial of Service Attacks 

A. Nadeem and M. Howarth [9] have proposed an anomaly-based engine for 
detecting DoS attacks in MANETs. The proposed engine utilizes a dynamic normal 
profile and relies on statistical analysis for resolving malicious behaviors. In the 
training phase, which takes place after network initialization, the engine counts 
incoming route request packets and calculates the probability distribution of the 
collected data. The authors assume that during training the behavior of a newly 
created network is free of anomalies. Subsequently, during the monitoring phase, the 
engine: (a) logs incoming route request packets, in five-second intervals; (b) 
calculates the probability distribution of the collected data; and (c) compares it with 
that of the normal profile, using the chi-square test [10]. If the distribution of the 
collected data does not fit the normal profile then, the observed behavior is considered 
suspicious. Whenever a suspicious behavior is detected, a counter is incremented and 
the node responsible for the symptom is marked as suspicious. If the incident repeats 
and the counter exceeds a threshold value within a fixed time window, the node from 
where the incident originates is labeled as malicious. Finally, if no suspicious 
behavior is detected within the monitored time interval, the collected data become the 
new normal profile.  

The most important strength of this engine is the low rate of false positive alarms 
caused by dynamic network changes. This is achieved by dynamically updating the 
normal profile at runtime and employing a threshold mechanism in which only 
recurring malicious behaviors are considered as attacks. However, similarly to [3] 
(see sect. 2.1), if in a monitored time slot the detection engine fails to detect a 
malicious behavior, while an attack(s) takes place (i.e., false negative) then, the 
attack(s) will become part of the normal profile. As a result, the attack(s) will remain 
undetected until the normal profile is updated again. The authors assume that during 
initialization the network is free of attacks, but this assumption can be considered 
misleading. Furthermore, the online execution of the training phase induces extra 
processing overhead. Malicious nodes may attempt to exploit the threshold 
mechanism by performing sporadic attacks considering not exceeding the threshold 
values and raising alarms. Another limitation arises from the use of a fixed-time 
monitoring slot, since the engine does not take advantage of correlations between 
features at nearby time slots. Finally, the proposed engine is only capable of detecting 
DoS attacks.  

3   Comparative Evaluation 

This section provides a comparative evaluation of the studied anomaly-based 
detection engines for MANETS using some critical evaluation metrics. These metrics 
derive from: (i) the deployment, architectural, and operational characteristics of 
MANETs; (ii) the functionality of anomaly-based detection; and (iii) the carried 



analysis that reveals the most important strengths, weaknesses and limitations of the 
latest anomaly-based detection engines for MANETs (see table 1).  

MANETs retain a number of differences from traditional wireless networks. First, 
MANET nodes can be a variety of mobile devices (such as laptops, handheld devices, 
or mobile phones), which typically rely on the use of battery power and present 
various computational, memory, and bandwidth capabilities. The mobile nature of 
those nodes creates dynamic network topologies, in which nodes may independently 
join, leave or change their position. Moreover, the absence of access points that 
connect the nodes to any centralized authority does not leave much room for a clear 
line of defense or for a high level of trust between nodes. As a result, MANET nodes 
are susceptible to a variety of attacks, which mainly target the transport, network and 
data-link layers of the protocol stack, since these layers are responsible for the most 
critical functionality of MANETs (i.e., one-hop/multi-hop communication, routing, 
etc.) [2].  

On the other hand, anomaly-based detection requires the execution of: (i) a training 
phase in which the normal profile is created; and (ii) a monitoring phase in which 
malicious behaviors are resolved. The training phase can take place either online or 
offline and the resulting normal profile can be static or dynamic. During the 
monitoring phase, the features, collected in fixed-time intervals, indicate the type and 
range of malicious behaviors and actions, detected by the engine.  

It is evident that anomaly-based detection engines for MANETs have to be 
adaptable to dynamic network changes, which means that their normal profile should 
always represent the normal network operation. However, in [7] and [9] the normal 
profile is static including only the initial conditions of the network when the normal 
profile is created. This may lead to high rates of false positives when dynamic 
changes on the network occur, since these changes are not incorporated into the 
normal profile and therefore, are falsely considered as results of malicious behaviors. 
In order to address this limitation, several detection engines [3][5][8] utilize 
dynamically updated normal profiles, which attempt to reduce the rate of false 
positive alarms, caused by dynamic network changes. However, this approach also 
creates an important limitation: if in a monitored time slot the detection engine fails to 
detect a malicious behavior, while an attack(s) takes place (i.e., false negative) then, 
the attack(s) will become part of the normal profile. Thus, these attack(s) will be 
undetected.  

 
Table 1. A summary of the studied anomaly-based detection engines 

IDS engine  Methodology Strengths Weaknesses 

Dynamic 
detection for 

AODV 

Dynamic profile using 
PCA analysis 

Adaptability to network 
changes 

False negatives become part 
of the normal profile 

Induces extra processing 
overhead 

Monitors a fixed time slot 

Cannot detect all possible 
attacks 

Cross‐layer 
detection of 

Cross‐layer  
data reduction and 

Cross‐layer monitoring 
No benefits from the data 
reduction process 



sinkhole 
attacks 

use of SVM classifier Can only detect sinking 
attacks 

Two‐stage IDS 
Scalable use of two 
detection engines 
(MDS and CCDS) 

Increased detection 
accuracy by employing two 

detection engines 

The ratio of false positives 
and detection accuracy are 
negatively affected by high 

nodes’ mobility 
Scalability 

There is no way to adjust an 
improperly tuned threshold 

Incurs less processing 
overhead 

Optimal 
feature based 

IDS 

Dynamic profile using 
PCA analysis 

Uses an optimal set of 
features 

The ratio of false positives 
and detection accuracy are 
negatively affected by high 

nodes’ mobility 

Incurs less processing 
overhead 

Monitors a fixed time slot 

Can only detect DoS attacks 

Adaptive IDS 
Dynamic profile using 
statistical analysis 

Adaptability to network 
changes 

False negatives become part 
of the normal profile 

Monitors a fixed time slot 

Malicious nodes may attempt 
to exploit the threshold 

mechanism 

Incurs extra processing 
overhead 

Can only detect DoS 
attacks 

 
Another approach to address the limitation of the static normal profiles is through 

the use of thresholds [7][9]. In this approach, periodic symptoms of suspicious 
behaviors, mainly caused by network topology changes, remain under the detection 
thresholds; while malicious behaviors that are constant exceed the thresholds 
indicating the occurrence of attacks. Nevertheless, the use of thresholds introduces 
new security weaknesses, since malicious nodes may exploit this mechanism by 
performing an attack(s) considering not exceeding the threshold values and raising 
alarms. 

Since MANETs are typically formed by devices with limited processing and 
communication capabilities, the processing overhead imposed by the detection 
engines to the underlying network nodes should be kept to a minimum. However, the 
majority of the evaluated detection engines induce computational overhead of 
approximately polynomial-time complexity [3][5][8]. Therefore, their deployment is 
computationally feasible only if the set of monitored features is extensively reduced. 
As a result, the detection engines are only capable of detecting a limited set of 
possible attacks, and thus, do not constitute comprehensive security solutions. An 



exception is the two-stage detection engine [7], which attempts to minimize the 
processing overhead through a scalable detection mechanism. Finally, an approach to 
further reduce the computational overhead of the detection engine is proposed in [8]. 
In this approach, the set of monitored features is reduced through an evaluation 
process, which reveals the features with the highest information gain in detecting DoS 
attacks.  

Summarizing, we can deduce that that the considered anomaly-based detection 
engines for MANETs share a number of limitations (see table 1). In particular, the 
majority of them have not resolved the issue of high rates of false positives under 
conditions of high nodes’ mobility. Furthermore, in all of them (except for [7]) it is 
computationally infeasible to process a broad set of features, and thus, they are only 
capable of detecting a limited type and range of attacks. Finally, the engines that 
employ online training impose computational overhead to the network nodes.  

In future work, more research effort should be given in the optimization of existing 
anomaly detection algorithms, as well as the introduction of new ones, which will 
enable the monitoring of larger sets of features. Furthermore, a number of limitations 
presented in detection engines might be addressed by utilizing the characteristics of 
the employed IDS architectures. For example, in a signature-based detection engine, 
the distribution and maintenance of a signature database under a MANET 
environment is a difficult task, due to the network’s unique characteristics. However, 
Sterne et al. [22] have proposed an IDS, based on a hierarchical architecture, that 
addresses this limitation. In the proposed scheme, the detection engine takes 
advantage of the hierarchical IDS architecture in order to efficiently distribute and 
update signatures.  

Specification-based detection engines constitute another promising alternative to 
anomaly-based detection. They are capable of detecting both known and unknown 
attacks, and they avoid high rates of false alarms, since they do not rely on normal 
profiles, as happens in anomaly detection. However, the development of 
specifications for an engine might be a lengthy and convoluted process, since the 
developer has to determine what is the expected behavior of each individual 
application and protocol, and then, develop constrains that characterize this behavior. 
Therefore, specification-based engines for MANETs have seen limited use, as they 
are employed to monitor only the network layer for routing attacks [11][12][13]. 
Nevertheless, the required overhead of developing specification can be reduced, since 
the un-hindered operation of MANETs relies on a specific set of protocols at the 
transport, network and data-link layer, where the majority of security attacks occur 
[1]. Moreover, aggregated specifications may be developed exploiting cross-layer 
features among the transport, network and link layer that provide the main 
functionality of MANETs. Finally, another possibility that should be explored is the 
development of hybrid detection engines that combine the advantages of more than 
one type of engines, aiming to eliminate the related drawbacks. This will be facilitated 
if we consider the special deployment and operational characteristics of MANETs, as 
well as the attacks that target them.  



4  Conclusions 

Intrusion detection algorithms for MANETs have attracted much attention recently 
and thus, there are many publications that propose new IDS solutions or 
improvements to the existing. This paper presented a comprehensive evaluation of the 
most recent literature in the area of anomaly detection for MANETs. For each of the 
considered engines, its functionality was outlined as well as its advantages and 
weaknesses were elaborated. Furthermore, the studied detection engines were 
comparatively evaluated based on the following evaluation metrics: (i) the 
adaptability to dynamic network changes, (ii) the imposition of processing overhead, 
and (iii) the type and range of possible attacks that they detect. These metrics were 
derived from the deployment, architectural, and operational characteristics of 
MANETs; the functionality of anomaly detection; and the carried analysis. The 
evaluation revealed that the most recent anomaly-based detection engines for 
MANETs still present significant limitations and weaknesses. In particular, the 
majority of them rely on a limited set of features in order to make their deployment 
computationally feasible on MANETs. Therefore, they detect a limited type and range 
of attacks. The detection accuracy of several proposed engines is negatively affected 
by nodes’ mobility, encountered in MANETs. This can be addressed through the use 
of dynamic normal profiles and thresholds. However, these solutions may be 
exploited by malicious nodes allowing for attacks to remain undetected. Future 
research endeavors might address these limitations if they achieve a reduction in the 
computational complexity of anomaly detection algorithms. Other directions that can 
be followed include the utilization of the employed IDS architectures, the shift of 
development to other promising detection approaches (such as specification-based 
detection), and the use of hybrid detection schemes that attempt to combine the 
advantages of different detection engines.  
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