
 1

A Specification-based Intrusion Detection Engine for

Infrastructure-less Networks
Christoforos Panos1, Christos Xenakis2, Platon Kotzias2, Ioannis Stavrakakis1

1Department of Informatics & Telecommunications, University of Athens, Greece

{cpanos, ioannis}@di.uoa.gr
2Department of Digital Systems, University of Piraeus, Greece

{xenakis, platon}@unipi.gr

Abstract

The proliferation of mobile computing devices has enabled the utilization of infrastructure-

less networking as commercial solutions. However, the distributed and cooperative nature of

routing in such networks makes them vulnerable to a variety of attacks. This paper proposes

a host-based monitoring mechanism, called SIDE that safeguards the operation of the AODV

routing protocol. SIDE encompasses two complementary functionalities: (i) a specification-

based detection engine for the AODV routing protocol, and (ii) a remote attestation

procedure that ensures the integrity of a running SIDE instance. The proposed mechanism

operates on a trusted computing platform that provides hardware-based root of trust and

cryptographic acceleration, used by the remote attestation procedure, as well as protection

against runtime attacks. A key advantage of the proposed mechanism is its ability to

effectively detect both known and unknown attacks, in real time. Performance analysis shows

that attacks are resolved with high detection accuracy, even under conditions of high network

volatility. Moreover, SIDE induces the least amount of control packet overhead in

comparison with a number of other proposed IDS schemes.

Keywords: MANET, IDS, AODV, detection engine, attestation.

1 Introduction
Infrastructure-less networks comprise a wide range of networking paradigms such as mesh

networks, mobile ad hoc networks (MANETs), vehicular ad hoc networks (VANETs), delay

tolerant networks (DTN), opportunistic and sensor networks, as well as various overlay

networks. A common characteristic of these networks is the absence of any fixed architectural

component such as routers, access points, etc., supporting and serving dynamic topologies

and behaviors. These unique properties, empowered by the proliferation of mobile devices

(i.e., smartphones, tablets, etc.) and the advent of ad-hoc networking standards, such as Wi-Fi

direct [1], enable the materialization of infrastructure-less networks for providing

communication and cooperation solutions, such as the extension of networking environments

(i.e., cellular networks, personal or corporate wireless networks, etc.) in areas where network

coverage is limited [3] (i.e., metropolitan areas, indoor environments, etc.).

 2

A widely accepted implementation of an infrastructure-less network is based on a

dynamic and adaptive routing protocol, named ad hoc on demand distance vector (AODV)

[2], which, initially, was designed for MANETs and later has been adopted by DTN [4],

opportunistic [5], mesh [6], and sensor [7] networks. AODV operates with the assumption

that all participating nodes are well-behaved, and thus, it does not include any security

mechanism. Considering also the deployment characteristics of infrastructure-less networks

(i.e., wireless shared access, dynamic topologies, cooperative routing, etc.), it can be realized

that AODV faces a wide set of security threats [11]. More specifically, any malicious network

node may easily exploit critical protocol fields such as hop count, sequence numbers, source

and destination address, etc., causing a variety of attacks, such as route disruption, resource

consumption, denial of services, etc. [9].

Since the protection of the protocol’s fields and functionality is not possible by default,

an effective way to address these inherent vulnerabilities is through the deployment of a

detection mechanism. However, the design of an intrusion detection system (IDS) for AODV

has been proven a challenging task, considering the limitations of the existing IDS [8][23]

(i.e., analyzed in sect. 2.2 of this paper). The majority of them capture, store, and,

subsequently, process the whole traffic (i.e., control and payload) within the radio range of a

monitoring node, in order to collect as much audit data as possible and then assess the

behavior of the neighboring nodes. Consequently, monitoring nodes bear additional

computational and storage burdens, while energy consumption is increased. In addition,

during the collection of audit data, malicious activities are not detected. Finally, in cases of

high nodes’ mobility or continuous changes in network topology, the collected audit data

might lead to inconclusive or erroneous assessments, resulting in false positives/negatives.

The limitations and weaknesses of current IDSs may be addressed by a host-based IDS

that monitors the behavior of its own host node. A host-based IDS alleviates the need for

collecting audit data that may be malicious, incomplete, or outdated, providing an accurate

and real time view of the host node’s protocol operations. Thus, malicious behaviors can be

detected immediately, with low false positives/negatives, and without the associated

overheads of audit data collection. However, such an approach has been unfeasible in the

past, mainly, because of the fact that a host-based IDS operating on a malicious node, could

not be considered as trusted. The emergence of trusted computing [20] may address this

uncertainty and make host-based IDS a viable security solution for infrastructure-less

networks. Trusted computing provides hardware-based root of trust, accompanied by a set of

primitive functions that propagates trust from hardware to the application software. At the

core of this technology resides the process of remote attestation with which a computer can

prove the integrity of a platform (e.g., hardware and software) to a remote party [38].

 3

This paper proposes a novel host-based monitoring mechanism, called SIDE (i.e.,

Specification-based Intrusion Detection), which relies on trusted computing in order to

provide a resilient, specification-based IDS. More specifically, each network node

implements an instance of SIDE, which unlike existing IDSs, is responsible for monitoring its

own host node. This approach enables SIDE’s detection engine to monitor local information

and ascertain an accurate view of protocol operations, in real time. SIDE’s detection engine is

based on a comprehensive set of specifications that defines the legitimate functionality of the

AODV protocol. As a result, any malicious activity (i.e., known or unknown) that violates the

legitimate functionality of AODV can be identified. To defend against malicious host nodes

that may attempt to modify or even disable SIDE, the proposed mechanism encompasses a

remote attestation procedure that verifies the integrity of running SIDE instances in the

network. Moreover, SIDE operates on a trusted computing platform that provides hardware-

based root of trust and cryptographic acceleration, used by the remote attestation procedure,

as well as protection against runtime attacks. The proposed mechanism utilizes a TrustZone

[42] enabled ARM processor, which constitutes a trusted computing platform included in the

vast majority of mobile and embedded devices. The performance of SIDE is evaluated

through an extensive set of simulations. The numerical results show that SIDE resolves

attacks in real time with high detection accuracy, while imposing limited overheads in the

operation of AODV.

The rest of this paper is organized as follows. Section 2 analyzes the functionality of

the AODV routing protocol; briefly evaluates existing security schemes that have been

proposed for AODV; and provides an analysis of remote attestation techniques. In section 3

the proposed mechanism is introduced and its functionality is elaborated. In section 4, we

perform an in-depth evaluation of SIDE, which includes: (i) an outline of its advantages over

previously proposed detection engines; (ii) a security evaluation of its robustness against a

variety of attacks; iii) the computational cost and memory requirements, and, (iv) a

comparative evaluation of its performance based on simulations. Finally, section 5 contains

the conclusions.

2 Background
In this section, we first provide an overview of the AODV protocol’s functionality. This

overview covers only the most critical aspects of the protocol’s operations, since a more

throughout analysis of AODV exists in [2]. In section 2.2, we provide an evaluation of several

security solutions that have been proposed for AODV. A comprehensive analysis of all the

related literature requires an extensive review, which is outside the scope of this paper.

Instead, we have selected a representative set of security solutions that covers the majority of

utilized security mechanisms and encompasses: (i) extensions to the AODV protocol that

 4

incorporate cryptography and (ii) intrusion detection mechanisms that use either anomaly-

based or specification-based detection. Finally, in section 2.3, we evaluate existing remote

attestation procedures.

2.1 Overview of the AODV routing protocol
AODV is an on demand routing protocol, which maintains routes as long they are needed by

source nodes. It is scalable and offers low processing, memory, and communication

overheads to the underlying network. It utilizes three control messages to achieve route

discovery: route request (RREQ), route reply (RREP), and route error (RERR). It also

provides an optional fourth control message (i.e., Hello message), which is used for

preserving connectivity between neighboring nodes. When a node wishes the establishment of

a route, it initiates a route discovery process by broadcasting a RREQ message that includes

the: source IP address, source sequence number, destination IP address, destination sequence

number, RREQ id (i.e., an incremented identifier), and hop count field. Each RREQ message

is, uniquely, identified by the pair of source IP address and RREQ id. The intermediate nodes

that receive the RREQ may either reply to it (i.e., possess an updated route to the destination)

or forward it (i.e., do not possess a route to the destination and the time to live (TTL) field is

greater than one). In case that multiple copies of the same RREQ are received by an

intermediate node, the duplicates are discarded. The destination node or an intermediate node

that has a fresh route to the destination replies to a RREQ, by generating an RREP message

that contains the: source IP address, source sequence number, destination IP address,

destination sequence number (i.e., an increasing counter denoting the most recent route),

lifetime field (i.e., indicates the time for which the route is considered valid), and hop count

field (i.e., denotes the distance in hops from the source to the destination). Intermediate nodes

receiving the RREP update their routing tables, only, if the destination sequence number in

the message is higher from the stored value in their routing tables, or the destination sequence

numbers are equal, but the hop count field in the RREP is smaller than the stored value. If a

link breaks, an intermediate node initiates a local repair mechanism attempting to discover a

new route to the destination by transmitting a RREQ message. If the repair mechanism fails to

discover a route, the node generates a RERR message that includes the IP addresses and the

last known destination sequence numbers of the unreachable destinations, informing the

receiving nodes that they should restart the routing discovery process, if they want to

communicate with them.

A node offers connectivity information by broadcasting local Hello messages, if this

feature is enabled. Every time-period of hello interval, the node broadcasts a Hello message,

which contains the: destination IP address, destination sequence number, lifetime field, and

hop count field. The lifetime field is assigned the value allowed hello loss * hello interval,

 5

while the hop count is set equal to zero. The allowed hello loss parameter is used by network

administrators to determine the time frame (i.e., in multiples of the hello interval), where the

routes are considered valid. Nodes perceive connectivity by listening to the packets

transmitted by their neighbors. If a node does not receive any packet from a neighbor for a

time period greater than allowed hello loss * hello interval, it assumes that the link to this

node is currently lost.

2.2 Related work
The Secure AODV (SAODV) [36] is one of the first security mechanisms proposed for the

AODV protocol. It constitutes a security-enhanced version of AODV that aims at protecting

the routing messages of AODV, through the use of cryptography. It uses digital signatures to

authenticate the non-mutable fields of messages and hash chains to authenticate the hop-count

field, in both RREQ and RREP messages. However, this functionality requires extensive

modifications to the original AODV protocol, raising compatibility issues. Furthermore, the

authors assume that the key pairs used for the production of digital signatures cannot be

compromised and thus, do not incorporate any self-protecting mechanisms. Finally, SAODV

is unable to protect against blackhole, wormhole, rushing, and DoS attacks [17].

Trying to limit the required modifications and attempting to protect from a wider set of

threats, the majority of AODV security mechanisms uses detection techniques. Particularly,

[29] proposes an anomaly-based engine that employs machine learning to generate a normal

profile and relies on principal component analysis (PCA) [47] for detecting denial of service

(DoS) attacks. However, the generated normal profile is static, including only the network

conditions of the time that it was created. Therefore, in case of network changes during time,

the engine considers them as results of malicious behaviors, presenting high rates of false

positives. To address this, the use of dynamically updated normal profiles has been proposed

in [25][26][30], where monitoring data during a period of time in which no malicious

behavior was detected, is used to update the normal profile. The first [25] of these adaptive

solutions uses PCA for resolving malicious behaviors; the second [26] utilizes a support

vector machine classifier (SVM) [27] for detecting sinking attacks (i.e., nodes that do not

cooperate in routing and forwarding); and the third one [30] relies on statistical analysis of

malicious RREQ flooding (MRF1) for detecting DoS attacks. Although the use of dynamic

profiles may reduce the rate of false positives in volatile networks; on the other hand, it is

prone to false negatives, if within a monitoring time-period the engine fails to detect a

malicious behavior, while an attack(s) takes place. In this case, the carried attack(s) becomes

part of the normal profile, remaining undetected. Moreover, in order to limit the associated

overheads of capturing, storing, and processing audit data, the aforementioned engines are

 6

configured to monitor, only, a limited set of features, which enable the detection of a

restricted set of possible attacks [25][26][29].

Another approach that attempts to address the limitation of static normal profiles is

through the use of dynamic thresholds. In [28], the authors have proposed a two-stage

anomaly-based detection. During the first stage, a node is considered a potential threat if its

observed behavior results in the highest statistical deviation from a pre-computed normal

profile; while a threshold is generated (i.e., used during the second stage) by averaging the

scores of all the observed nodes. In the second stage, the observed behavior of nodes is

compared for statistical deviation from the generated threshold. Using this approach, any

periodic symptom of suspicious behavior, caused mainly by network volatility, may lead to

an improperly generated threshold, and consequently, to either false positives (i.e., if the

generated threshold is too low) or false negatives (i.e., if the threshold is set too high).

In [37], a distributed cooperative mechanism (DCM) is proposed to resolve blackhole

attacks, by monitoring data packets transmitted by neighboring nodes. If a node has not

routed any data packets during a fixed time-threshold, then the monitoring node will transmit

a “test packet” through the suspicious node, destined for another cooperating detection node.

If the later receives the “test packet,” then the suspicious node is legitimate, otherwise it is

considered malicious. The primary disadvantage of this scheme is that malicious nodes may

attempt to exploit this mechanism, by analyzing the duration of time before a malicious node

is detected (i.e., estimate the threshold value), and subsequently, the routing of at least one

packet within this time-frame.

The inconstant detection accuracy of anomaly-based detection, which is extrapolated

by network volatility, can be addressed using specification-based detection. However, the

existing specification engines for AODV present some serious design limitations. Specially,

the engines presented in [13][15][16] rely on distributed monitoring, by setting the nodes into

promiscuous mode and observing the exchanged RREQ and RREP control messages.

However, an attacker is able to generate and then forward forged RERR messages, disrupting

in this way the routing process, while remaining undetected. Moreover, high nodes’ mobility

has an impact on the delay of RREP messages, resulting in false positives. To address such

limitations, both works presented in [14] and [18] propose two engines relying on more

comprehensive sets of specifications, based on the known AODV attacks. However, attacks

that do not violate these specifications remain undetected. Having recognized this, the authors

of [14] have proposed the operation of a supplementary anomaly-based engine, which on the

other hand eliminates all the advantages of employing specification-based detection.

Regardless of the detection approach (i.e., specification or anomaly-based), all of the

aforementioned schemes do not take into account any security vulnerabilities that may arise

in relation to the proposed security mechanism itself. A security mechanism, such as an IDS,

 7

should not only be capable of detecting malicious behavior, but also avoid introducing new

vulnerabilities and be resilient to attacks that target the mechanism itself. Adversaries trying

to avoid detection may attempt to target the employed IDS, aiming at hindering its operation,

disabling it or tampering its functionality. Furthermore, a compromised IDS can be used to

launch additional attacks, such as providing erroneous detection results in order to falsely

accuse legitimate nodes as malicious.

In our previous work [10], we introduced the concept of combining host-based

monitoring and specification-based detection as a means for addressing the aforementioned

limitations of present IDSs, as well as proposed a set of specifications that covers the

functionality of the 802.11 MAC protocol. In this paper, we significantly expand that work

by: (i) proposing a comprehensive set of specifications that covers the critical functionality of

the AODV protocol, (ii) enhancing the resilience of SIDE through the utilization of a trusted

computing platform (i.e., TrustZone), (iii) proposing a remote attestation procedure that

facilitates trust between monitoring entities, (iv) providing a security evaluation, identifying

possible attacks and vulnerabilities of SIDE and outlining how these are addressed, and (v)

carrying out a performance evaluation, in order to evaluate the induced overheads associated

with SIDE.

2.3 Remote attestation
Remote attestation may ensure the integrity of a software object such as a detection engine,

by employing software or hardware techniques. In software techniques, the attester issues a

challenge to the target node, requesting the verification of software hosted by the later. This

challenge comes in the form of a verification procedure incorporating obfuscation or code

optimality techniques [22], which should be executed within a predetermined time-period.

Obfuscation attempts to transform the verification procedure into an equivalent, which is hard

to be reversed engineered. Code optimality, on the other hand, relies on the assumption that

the verification procedure cannot be further optimized in order to be executed faster, and thus,

any attempt to reverse-engineer it will add noticeable delays. The target node hashes the

memory location in which the verified software resides at and completes the procedure by

returning the hashed results to the attester. The limitations of such a technique are

summarized below: (i) it cannot be deployed in infrastructure-less networks (especially

DTN), since any network-induced latency may lead to false positives; (ii) it cannot detect

runtime attacks, such as buffer overflow; and (iii) it induces latency by disabling interrupts

and blocking the execution of other software/applications during the verification procedure

[32].

Hardware-based attestation can be achieved based on trusted computing platforms. One

such platform relies on a special hardware component, called trust platform module (TPM), to

 8

establish a chain of trust through the basic input/output system (BIOS) to the operating

system (OS), where load-time integrity is ensured using hash values stored in a sealed storage

memory within TPM. Currently, several manufacturers such as Broadcom and Toshiba

produce TPM microcontrollers, based on the latest TPM specifications [20]. However, this

approach presents some significant limitations: (i) it increases the cost of devices due to the

additional hardware; (ii) it cannot be deployed on legacy devices; (iii) it does not protect

against runtime attacks; (iv) it relies on the assumption that a TPM cannot be tampered; and

(v) in case of a TPM compromise, the trusted hardware must be physically replaced. Dynamic

software integrity mechanisms [38][40] have also been designed to complement hardware-

based attestation, supporting runtime verification. They employ additional integrity

measurements, at runtime, by monitoring data structures, system calls, memory stack, etc.,

but this binary analysis induces significant computational overhead, resulting in an execution

slowdown of 3000% to 5000%.
ARM Corporation offers an alternative trusted computing platform, known as

TrustZone [42], suitable for ARM processor cores and system on chip (SoC) components. It

provides two virtual processing cores with different privileges and a strictly controlled

communication interface, enabling the creation of two distinct execution environments,

encapsulated by hardware. It does not include a remote attestation procedure, but it offers all

the required services to create one (i.e., secure storage, cryptographic primitives, etc.). Other

vendors, such as Intel and AMD also provide similar platforms (i.e., Intel’s TXT, and AMD’s

secure execution environment), but ARM equips the majority of mobile and embedded

computing devices.

3 The proposed mechanism
In this section, we analyze the proposed mechanism’s operation. In particular, section 3.1

provides an architectural overview of all the components utilized by each network node in

order to deploy the proposed mechanism. In section 3.2, we propose a comprehensive set of

specifications that defines the legitimate functionality of the AODV protocol. The detection

engine relies on this set to resolve if the behavior of the host node is legitimate or malicious.

It is important to mention that although we focus on the AODV protocol, the proposed

mechanism can be also applied to any infrastructure-less routing protocol, such as the

Dynamic Source Routing (DSR) [48] and the Destination Sequence Distance Vector (DSDV)

[49], by establishing a corresponding set of specifications. Finally, in section 3.3, we propose

a remote attestation procedure that enables each instance of SIDE to attest its valid and un-

tampered operation to its neighboring entities.

 9

3.1 General architecture
Each network node, where the proposed mechanism can be applied, should consist of a

TrustZone enabled SoC, which provides two virtual cores that execute two OSs: the un-

trusted and the trusted (see Figure 1). The un-trusted OS holds the user’s applications and

data, including the instance of the AODV protocol that enables the host-node to communicate

with other network nodes. Its kernel performs the basic functions such as application

execution, memory management, device driver installation and maintenance, etc. Software

executed in the un-trusted OS may also perform malicious actions that require escalated

privileges (i.e., “root” rights). On the other hand, the trusted OS provides a protected

execution environment for SIDE (i.e., both the detection engine and the remote attestation

procedure), which is not accessible by the un-trusted OS (i.e., any code or data contained in

SIDE cannot be inspected or modified by applications/software executed within the un-

trusted OS).

Un-Trusted OS Trusted OS

applications

Kernel

Crypto
co-processor

Detection engine

TrustZone enabled SoC

TrustZone API

CPU Memory System Bus

AODV Routing protocol

Monitor mode service

applications

PROMCo-processor
registers

Open Virtualization Kernel

Remote attestation
procedure

SIDE

MMU

Storage

TRM

Figure 1: Architecture of a network node operating SIDE

The TrustZone SoC provides both the underlying hardware in which a node operates

on, as well as hardware support for enforcing access control of hardware resources between

the trusted and un-trusted OS. It encompasses the central processing unit (CPU), a set of co-

processor registers, the volatile memory (i.e., RAM), the memory management unit (MMU),

the system’s bus, a cryptographic co-processor, the one-time programmable memory (i.e.,

PROM), the storage unit, and the trusted region mapping unit (TRM). MMU, the system’s

bus, and the TRM include a non-secure (NS) flag that instructs the CPU whether the

underlying resources are used by the un-trusted or the trusted OS, respectively. For example,

for every RAM storage read/write request, the CPU checks the respective NS field for the

particular memory address (i.e., MMU responsible for mapping virtual addresses to physical

addresses) or partition (i.e, TRMs responsible for partitioning storage) and decides whether it

belongs to the un-trusted or trusted OS. Access to the system bus (i.e., responsible for

interconnecting all of the SoC’s hardware components) is controlled in a similar fashion. The

 10

co-processor registers, MMU, the cryptographic co-processor, PROM, TRM and NS flags are

neither visible, nor accessible from the un-trusted OS.

PROM is used to store an SHA256 hash of a pre-distributed public key (i.e., NAPuK),

which is stored in the host node’s storage. Since this hash value cannot be tampered or

overwritten, it can be used to infallibly verify the public key NAPuK, which in turn can be used

to authenticate nodes during the remote attestation procedure (see section 3.3 for more detail).

The crypto co-processor provides basic crypto functionality, including key generation,

encryption and decryption, using industry standard encryption algorithms such as RSA, AES,

SHA2, etc. The goal behind this is to alleviate the CPU from computationally intensive

cryptographic calculations, providing silicon that is specifically designed for this

functionality. This approach increases the speed of cryptographic algorithms (i.e.,

throughput), while limiting their respective resources and battery consumption, making them

feasible for resource constrained devices.

The trusted OS is implemented using the open virtualization kernel [43], (i.e., the first

open source implementation of a trusted OS kernel), which provides the basic OS

functionality (i.e., task, storage, and memory management), the monitor mode service, and

the TrustZone API [44]. The monitor mode service handles context switching between the

two virtual processor cores (i.e trusted and un-trusted), facilitated by the co-processor

registers that are used to store the state of the currently executing virtual core. This

functionality is similar to a traditional OS context switch, ensuring that the state of the world

that the CPU is leaving is safely saved, and the state of the world the CPU is switching to is

correctly restored. Prior to the execution of SIDE, the monitor mode service will always

perform a switch to the trusted OS (i.e., the trusted execution environment), and thus, the

subsequent execution of SIDE will be isolated from the un-trusted OS though the

aforementioned hardware restrictions, imposed by the TrustZone enabled CPU. The

TrustZone API provides a standardized software interface to the TrustZone security services

(i.e., cryptographic implementations using the cryptographic co-processor), which are

employed by the remote attestation procedure of SIDE.

SIDE consists of a remote attestation procedure, which provides a framework for

installing trust between SIDE entities, as well as an engine that monitors AODV operation,

indicating any malicious behavior - activity. The remote attestation procedure (elaborated

further in sect. 3.3) utilizes the TrustZone API’s cryptographic primitives to verify software

integrity on a target node, as well as to provide authentication and confidentiality between the

communicating nodes. On the other hand, the detection engine (elaborated further in sect. 3.2)

monitors the host node’s AODV protocol operations in real time, and resolves whether some

AODV operation constitutes a malicious behavior, based on a comprehensive set of

specifications that accurately define the legitimate operation of AODV.

 11

3.2 The detection engine
The set of specifications utilized by the detection engine to resolve malicious behavior is

expressed through the use of a finite state machine (FSM). FSM states are characterized as

legitimate or malignant, and a transition from one state to another is triggered by the node's

operation or actions. The engine monitors the protocol’s execution and maps it to the

appropriate state (i.e., legitimate or malignant). States that have not been specified are also

considered as malignant. The developed specifications are divided into three sets, based on

the host-node's communication condition: (a) idle, (b) transmitting, and (c) receiving states.

Nevertheless, the detection engine can be expressed as one inclusive FSM. In the following

sections, the FSM states of the proposed specification-based detection engine are presented

and analyzed.

3.2.1 Idle specifications
The first set of specifications is presented only for the sake of completeness, since in this

condition the protocol is awaiting either for a transmission or reception of packets, and thus, it

does not include any final state designating a malicious behavior. The engine is initialized at

state S0 and begins monitoring the host node for the following conditions: (i) a new packet is

ready for transmission, (ii) an incoming data packet has arrived, or (iii) the reception of a

control message. In the first two cases, the engine moves to states S1 (see sect. 3.2.2) and S2

(see sect. 3.2.3), respectively; while in the third case it moves to state S3 (see sect. 3.2.3). A

host node may receive three types of control messages: (i) a RREQ message, (i.e., as part of a

route discovery process) and the engine moves to state S4 (see sect. 3.2.3), (ii) a RREP

message (i.e., as a reply to a route discovery) and the engine moves to S5 (see sect. 3.2.3), or

(iii) a RERR message (i.e., as a consequence of a link breakage) and the engine moves to S6

(see sect. 3.2.2). Finally, if the host node has enabled the Hello message exchange (i.e.,

connectivity information), it may either generate a Hello message, where the engine monitors

its generation (see sect. 3.2.2, state S7), or receive one from a neighboring node, where the

engine monitors the routing table update process (see sect. 3.2.3, state S8).

3.2.2 Transmitter specifications
In case that the host node has a packet to transmit to another node (i.e., state S1), the engine

moves to state S9, (if the node has already an active route to the destination); otherwise, it

moves to S10. In state S9, the protocol retrieves from the routing table the route to the

destination and attempts to transmit the packet (i.e., the engine moves to state S11 – see Figure

2). If the transmission is successful, the engine moves to the initial state S0; otherwise, if a

local link breakage occurs, AODV initiates the local repair mechanism attempting to discover

a new route to the destination by transmitting a RREQ message, and the engine moves to state

 12

S10. In case that the local repair is successful and the packet is transmitted, the engine returns

to S11; otherwise, the protocol generates a RERR control message and the engine goes to S6

(see Figure 5).

S9 S11

Transmit packet End of packet
transmission

S10

Link breakage detected
and local repair

mechanism initiated

Route repair was
successful and

packet transmitted

Local repair failed
RERR generation

Packet to
transmit

{From state S1}

{To state S6}

{To state S0}

No active route
to destination

{From states
S1, S37}

Figure 2: Transmission of a data packet having a route to the destination

In S10 (i.e., no active route to the destination exists – see Figure 3), AODV prepares a

RREQ control message and the engine moves to state S12, where the following message fields

are inspected: (i) the destination sequence number field should be equal to the last one stored

in the routing table, and if no value is stored the unknown sequence number flag must be set

up; (ii) the originator sequence number field must be set up equal to the host’s sequence

number incremented by one; (iii) the RREQ id field should be also incremented by one; iv)

the originator IP address field should be equal to the source address of the host node; and v)

the hop count field should be set equal to zero. If any mismatch occurs, the engine moves to

the final state S13; otherwise, the host node broadcasts the RREQ and the engine moves to

state S14. If AODV produces more RREQs per second than the RREQ rate limit, then the

engine moves to the final state S15, indicating a flooding attack. At state S14, AODV awaits

for a RREP message containing an active route to the destination. In case that the host node

receives a RREP before the net traversal timer expires, the engine moves to state S16 and the

host node transmits the packet. After the transmission of the packet, the engine moves to state

S11 (see Figure 2). Otherwise, if the timer expires before the reception of a RREP, the engine

moves to state S17, the protocol initiates the backoff mechanism and then the engine moves to

state S18 (see Figure 4). If the node attempts to initiate the backoff mechanism before the

timer expires, the engine moves to the final state S15.

 13

S10 S12

RREQ Preparation

S14

RREQ Broadcast

S17S13

Malicious RREQ
packet formation RREP not received within

Net Traversal Time

S15

-Malicious behavior

- malicious behavior

#RREQ generated > #RREQ Rate limit
or backoff before Net Traversal Time

expires

RREP received

Backoff mechanism
Initiation

S16

No route to
destination

{From states
S1, S11, S37}

{To state S18}

Packet transmission

{To state S11}Wait until
Net Traversal Time

expires

Figure 3: Transmission of a data packet without a route to the destination

The backoff mechanism, which is initiated in cases that the host node does not receive

a RREP within a net traversal time period, manages how the host node generates RREQs,

protecting the network from RREQ flooding. As illustrated in Figure 4, the monitoring phase

of this mechanism begins with state S18, in which AODV makes the first RREQ rebroadcast

and the engine moves to state S19. At this state, the host node is expected to wait for twice the

previous net traversal time, before attempting to rebroadcast the RREQ. If the host node

transmits it before the timer expires, the engine moves to the final state S20, designating a

rushing attack. If a RREP is received before the timer expires, the engine moves to state S21

and the host node transmits the packet. After the transmission of the packet, the engine moves

to state S11 (see Figure 2). Otherwise, (i.e., the host node does not receive any RREP message

after RREQ retries attempts within a TTL max timeframe), it stops the broadcasting of

RREQs and drops the packet await for transmission. If it does not drop it, the engine moves to

the final state S23 (i.e., malicious behavior). Finally, if the route request was initiated by a

local repair (i.e., states S10 and S37 in Figure 2 and Figure 7, respectively), the protocol must

generate a RERR message and the engine moves to state S6, else, it returns to the initial state

S0.

Based on the AODV specifications [2], a RERR message is generated if one of the

following occurs:

a. The host node, while transmitting data, detects a link breakage for the next hop of an

active route and the route repair attempt has failed (see state S10, Figure 2).

b. The host node receives a data packet destined to a node for which it does not have an

active route and the initiated local repair mechanism has failed (see state S10, Figure 7).

c. The host node receives a RERR from a neighbor for one or more active routes.

 14

S18

Backoff mechanism
initiation S19

Rebroadcast
RREQ

RREP not received after waiting for
 2 x Previous Net Traversal Time

And rebroadcasts RREQ RREP received before
timers expired

S22

No RREP received
after RREQ Replies at

TTL max

S23

- Malicious Behaviour

Node does not
drop data packet

S20

- Rushing attack

Node transmits before
2 x Previous Net Traversal Time

period Node drops
data packet

{From state S17}

S21

Packet transmission

{To state S11}

{To state S0, S6}

Figure 4: Backoff mechanism

In case that one of the above conditions occurs, the detection engine moves to state S6 (see

Figure 5), where AODV updates the affected entries of the host node's routing table and

provides a list of the unreachable destinations. For case (a) and (c) this list consists of the

unreachable neighbors as well as the destination nodes in the local routing table of the host

that use them as next hop; while in case (b) the list includes only the destination of the data

packet that cannot be delivered. After these, the engine moves to state S24 and validates the

modifications to the routing table’s field, allowing only the following: (i) for every

unreachable destination, the destination sequence number of its routing entry (if such exists

and is valid), in case (a) and (b) is incremented by one, while in case (c) it is copied from the

received RERR message; (ii) the route entry is marked as invalid; and (iii) the lifetime field is

updated to current time plus the delete period. If any deviation from the above takes place,

then the engine moves to the final state S25; otherwise, after the generation of the RERR

messages, it moves to state S26. At this state, the engine checks the following RERR message

fields: i) the destination IP address and the destination sequence number should match the

corresponding fields of the unreachable destination included in the routing table; and ii) the

no delete flag should be set, only, if the node has initiated the local repair mechanism. If any

deviation takes place or the rate of generated RERR messages is greater than RERR rate limit,

(i.e., a parameter included in AODV), the engine moves to the final state S27; otherwise, the

host node broadcasts the RERR and the engine moves to state S28. After the completion of the

transmission, the engine returns to the initial state S0.

 15

S6
S24

Update routing
table entries

S26

Generate RERR
message S27

- Malicious behavior

- Malicious behavior

Node generates
unnecessary or
forged RERR

S25

Invalid modification
of the routing table

RERR
generation

{From states
S0, S10, S32}

Broadcast RERR
message

S28

RERR
generation
completed

{To state S0}

Figure 5: Generation of a RERR

The generation of a Hello message is a periodic process that takes place every hello

interval. In S7 (see Figure 6), the engine monitors the hello interval and when the timer

expires, it moves to state S29. The generation of a message before the timer’s expiration, will

lead to the final state S30, designating malicious behavior. At state S29, the engine validates the

following fields of the Hello message: (i) the destination IP address and destination sequence

number should be equal to the IP address and latest sequence number of the host node; (ii) the

hop count have to be equal to 0; and (iii) the lifetime must be set equal to the product allowed

hello loss * hello interval. If any of these fields holds an invalid value, then the engine moves

to the final state S30; otherwise, it moves to S31 and monitors the transmission of the newly

created message. In case that the host node drops the message (i.e., instead of broadcasting it),

the engine moves to the final state S32.

S7

Wait until
hello_Interval expires

S29

Hello message
preparation

S30Malicious Hello
message
formation

- Malicious
Behavior

S31

Broadcast Hello
message

Node does not
broadcast a Hello

message S32

- Malicous Behavior

Node broadcasts a
Hello message

Generation of a Hello
message before

hello_interval elapses

Hello
generation

{From state
S0}

Figure 6: Transmission of a Hello message

3.2.3 Receiver specifications
In case of data reception (i.e., data packet or control message), the engine based on the

packet’s type moves from the idle state S0 to either S2 (i.e., data packet) or S3 (i.e., control

message). At state S2 (see Figure 7), the engine checks if the host node is the final destination

of the received data packet, and moves to state S33; otherwise (i.e., if the host node is an

 16

intermediate destination), it moves to state S34. At S33, the only licit action for the host node is

to process the packet and the engine returns to the initial state S0. If the received packet is

dropped or forwarded, the engine identifies a malicious behavior and moves to the final state

S35. In case that the host node is an intermediate destination (S34), the engine examines

whether there is an active route to the final destination, and if such a route exists, it moves to

state S36; otherwise (i.e., if not), it moves to state S37.

At state S36, the expected (i.e., normal) behavior of the host node is to update the

routing table entry, while the engine validates the respective modifications: the lifetime field

of the source, destination, and the next hops (i.e., in both directions) is set up equal to current

time + active route timeout. After this, the engine moves to state S38. If the host node

forwards the data packet, then the engine moves to the state S11 (see sect. 3.2.2); otherwise, if

the host node drops the packet or the update of routing table deviates from the above, the

engine moves to the final state S39. At state S37 (i.e., unknown or inactive route to

destination), the host node should initiate the local repair mechanism to find an active route

by generating a RREQ message, and the engine moves to state S10 (see section 3.2.2). If the

local repair is successful, the detection engine moves to state S36. In case that the local repair

fails, the engine moves to state S6 and monitors the generation of a RERR message (see

Figure 5). Finally, if the host node does not initiate the local repair, the detection engine

moves to the final state S40, designating malicious behavior.

S2

S33

S34

Detination node

Intermediate node

Process
Data

S36

Node possess
active route

to destination
S38

Forward Data

S37

Uknown or
inactive route to

destination

Update
Routing Table

S39

S10

Initiate Local
Repair

Successful
repair

S6

Local Repair failed
RERR generation

No Local Repair
Initiated

- Malicious behavior

S40

S35

- Malicious behavior
Packet dropped or

forwarded

Data
transmission

Data
Dropped or invalid
modification of the

routing table

- Malicious behavior

Packet
reception

{From state
S0}

{To state S0}

{To state S0}

{To state S6}

Figure 7: Reception of a data packet

In case that a control message is received (see Figure 8), the engine moves to state S3. If

the received message is a RERR, the engine moves to state S6, where the AODV protocol

updates the affected entries of the host node's routing table and provides a list of the

 17

unreachable destinations. This list consists of the unreachable neighbors as well as the

destination nodes in the local routing table of the host that use them as next hop. After these,

the engine validates the modifications to the routing table’s fields, allowing only the

following: (i) for every unreachable destination, the destination sequence number of its

routing entry is set equal to the value of the received RERR message; (ii) the route entry is

marked as invalid; and (iii) the lifetime field is updated to current time plus the delete period.
Otherwise (i.e., not a RERR), in S3 the engine, first, checks that a new routing table

entry is created, only, if there is no corresponding entry for the node generating the message.

If the received message is a Hello, the routing table entry is always updated, while if it is a

RREQ or RREP, the routing table entry is updated, only, under the condition that the received

sequence number is either higher than the destination sequence number in the routing table

entry, or are equal, but the received hop count incremented by one is smaller than the existing

in the routing table. If an update to the routing table takes place (based on the conditions

above), the engine validates the modifications to the routing table’s fields, allowing only the

following: (i) the destination sequence number is set equal to the value of the received

message; (ii) the route entry is marked as valid; (iii) the lifetime field in the routing table

entry is set equal to the value of the received message (if the message is a RREQ or RREP) or

to the value allowed hello loss * hello interval (if the message is a Hello); and iv) the next hop

field in the respective routing entry depicts the neighbor node from which the message was

received. If any deviation from the above takes place, then the engine moves to the final state

S41; otherwise, based on the packet’s type it: (i) moves to S4 (i.e., RREQ message); (ii) moves

to S5 (i.e., RREP message); or (iii) remains at S3 and starts monitoring the lifetime timer (i.e.,

Hello message). At S3, if the host node receives a new Hello message for the considered route

entry within the lifetime interval, then the engine resets the timer and remains at S3; otherwise,

it moves to state S42 and marks the route entry as expired.

S3

S42

Update
Routing Table

Received new
Hello message
within Lifetime

timer Lifetime timer
expired

S41

- Malicous Behavior
Invalid modification
of the Routing Table

- Mark route as
expired

S6

S5

S4

RREP packet

RERR packet

RREQ packet
Control message

reception

{From state S0}

Figure 8: Reception of a control message

 18

Upon a reception of a RREQ (see Figure 9), the engine moves to state S7 and decides

whether the message is to be discarded, based on the following conditions: (i) the neighboring

node from which the RREQ was received is blacklisted; or (ii) the host node has already

received the same RREQ. If one of the conditions holds, then the engine moves to state S43;

otherwise, it moves to S44. At state S43, the engine checks whether the host node discards the

RREQ, and if not, it moves to the final state S45 (i.e., malicious behavior). In a similar

fashion, at state S44, the engine checks whether the host node retain the RREQ, and then shifts

to either state S47 (i.e., the host node is the final destination) or S48 (i.e., the host node is an

intermediate node).

S4

S43

Received
RREQ

Discard
RREQ

RREQ
discarded

S44

Keep
RREQ

S45
Node does not

discard the RREQ

Destination
node

Intermediate
node

- Malicious behavior

S46
Node keeps
the RREQ

Node discards the RREQ
{From state S0}

{To state S0}

{To state S48}

{To state S47}

Figure 9: Reception of a RREQ

At state S47 (i.e., RREQ reaches the final destination), the engine monitors the

generation of a RREP message (see Figure 10) and moves to state S49, where it checks the

followings: (i) the host node increments its sequence number by one in case that the sequence

number of the RREQ message is equal to the incremented value, otherwise, the sequence

number value remains the same; (ii) the destination IP address and the originator sequence

number of the RREP message match to the corresponding fields of the received RREQ

message; (iii) the destination sequence number field of the RREP message is equal to the host

node’s sequence number; (iv) the hop count field is set equal to zero; and (v) the lifetime field

is set equal to my route timeout. At least one invalid value shifts the engine to the final state

S50 (i.e., malicious behavior), while valid ones to state S51. At S51, the engine monitors

whether the host node unicasts the RREP back to the originating node, and if not, it moves to

the final state S52. In case that the host node attempts to transmit the RREP, but the

neighboring node fails to accept it, the later is added to the host node’s blacklist (S53). If not,

the detection engine moves to the final state S54.

 19

At state S48 (i.e., RREQ reaches an intermediate destination), the engine checks

whether the host node has a fresh route to the final destination (see Figure 11) and, if yes, it

moves to state S55; otherwise it moves to S56. At S55, the engine checks if the destination-only

flag ('D' flag) is set (i.e., means that only the destination node is allowed to generate a RREP),

and if so, the engine moves to state S56, monitoring the host node to re-broadcast the RREQ.

Any attempt by the host node to generate a RREP will lead to the final state S57. If the 'D' flag

is not set, then the detection engine moves to state S58, and, subsequently, checks if the 'G'

flag is set (i.e., indicates whether a gratuitous RREP should be sent to the destination node of

the RREQ) in the received RREQ packet. If it is, the expected behavior of the host node is to

unicast a RREP (i.e., gratuitous RREP) to the RREQ’s destination node as well as a RREP

message back to the RREQ’s originator; otherwise, only the RREP message to the RREQ’s

originator is expected to be transmitted. If the host node does not transmit the generated

RREP message (and the gratuitous RREP if needed), then the engine moves to the final state

S59. A successful transmission will move the engine to state S60. Finally, if the host node

attempts to transmit the RREP, but the neighboring node fails to accept it, the expected

behavior is the inclusion of the neighboring node to the host node’s blacklist (S61). If the host

node does not include the neighboring node to its blacklist, then the detection engine moves

to the final state S62.

S47 S49

RREP
Preparation

S51

RREP
unicasts to
originator

S52

- Malicious Behavior

Node does not
respond with a

RREP

S53

RREP
transmission

failed

S50

- Malicious Behavior

Malicious RREP
Preparation

Node does not add
the next node to

blacklist

S54

- Malicious Behavior

Destination
node

{From state
S46}

RREP
transmitted

{To state S0}

Next-hop
added to
blacklist

{To state S0}

 Figure 10: RREQ reaches the final destination

At state S56 (i.e., the host node does not possess a fresh route to the destination), AODV

modifies the received RREQ message and the engine moves to state S63, allowing only the

following changes: (i) the time to live is decreased by one, (ii) the hop count is incremented

by one, and (iii) the destination sequence number is set up with the maximum value of the

corresponding field of the received RREQ and the one maintained by the node. If the carried

modifications are legitimate, the considered message is broadcasted (S64); otherwise the

engine moves to the final states: S65 (i.e., illegal modifications) or S45 (the host node drops the

packet).

 20

S48

S55
S58

RREP unicasts
to originator

- Malicious Behavior

Node does not respond
with a RREP or a
gratuitous RREP if

needed

Node does not possess
a fresh or active route to

destination

S56 S63

Prepare
RREQ

S64Broadcast
RREQ

S65

- Malicious BehaviorMalicious
alteration of

RREQ

Node does not
rebroadcast

RREQ

Node possess an active
and fresh route to

destination

S61

RREP and
gratuitous RREP if
needed (‘G’ flag) S60

RREP transmission
failed

Node does not add
the next node to

blacklist

RREP
Preparation

‘Destination only
(‘D’ flag) set on

RREQ

S57

- Malicious Behavior

Node tries to generate a
RREP when ‘D’ flag is

set in the RREQ

S59

- Malicious behavior

S62

Intermediate
node

{From state S46}
RREQ

transmitted

{To state S0}

RREP
transmitted

{To state S0}

Next-hop added
in blacklist

{To state S0}

Figure 11: RREQ reaches an intermediate destination

Upon a reception of a RREP message (see Figure 12), the engine moves to state S5 and

shifts either to state: (i) S9 (i.e., final destination), where the host node is expected to initiate

data transfer (see sect. 3.2.2), or (ii) S66 (i.e., intermediate), where AODV modifies the

received RREP message and the engine moves to state S67. At this state, the engine verifies

that the fields of the modified RREP message match to these of the received message except

for the hop count field, which should be incremented by one. If any of the above is not true,

then the engine moves to the final state S68; otherwise, it moves to state S69, monitoring

whether the host node, actually, forwards the RREP towards the destination. In cases that the

RREP is dropped, the engine moves to the final state S70, otherwise, the RREP transmission is

complete and the engine returns to the initial state S0.

S5

Received RREP

S66
Intermediate

node

Destination
node S67

Modify RREP
S68

Malicious RREP
modification

- Malicious Behavior

S69Forward RREP

Node does not
forward RREP S70

- Malicious behavior

{From state S3} {To state S9}

RREP
transmitted

{To state S9}

Figure 12: Reception of a RREP

 21

3.3 Remote attestation
The remote attestation procedure enables a node to verify that a particular neighboring node

operates an un-tampered version of SIDE. As a prerequisite, each node in the network should

store: (i) a 2048bit RSA key pair (NPrK, NPuK); (ii) the network administrator’s 2048bit RSA

public key (i.e., NAPuK); (iii) an SHA256 hash of NAPuK; (iv) its own digital certificate Certn

signed by the network administrator; and (v) SIDE’s executable (i.e., the binary code of the

detection engine and the remote attestation procedure) in its storage. The “network

administrator” may represent a variety of entities ranging from the hardware manufacturer to

the network’s institutor, depending on the network’s deployment objectives, which are out of

the scope of this paper. For the sake of simplicity, we assume that all nodes run the same

version of SIDE. The node initiating a remote attestation procedure is referred as the

“attester” (denoted as N1), while the recipient of the attestation request is the “target node”

(denoted as N2). The proposed attestation procedure (illustrated in Figure 13) includes the

following steps:

1. Within node N1, SIDE generates a random waiting time (from 0 to 2 x hello interval),

before issuing an attestation request to a neighboring node. Subsequently, SIDE keeps

track when the random waiting time has elapsed. The interval between attestation

requests is based on the hello interval parameter because the latter is AODV’s optimal

parameter for 1-hop control message exchange.

2. Once the waiting timer expires, SIDE randomly selects one of the attester node’s

neighbors as the target (i.e., node N2) and generates a 128bit random nonce (RN) (i.e.,

utilized to alleviate replay attacks). It then transmits an attestation request message (i.e.,

message 1) to the target, which contains the attester’s digital certificate CertN1 and the

non-predictable RN, as well as generates a SHA256 hash of SIDE’s executable residing in

N1’s storage concatenated with RN (see eq. (1) below).

Message 1: CertN1, RN

3. Upon the reception of the attestation request, node N2 first verifies the authenticity of

N1’s public key N1PuK, using the accompanied certificate CertN1 and the network

administrators public key NAPuK. If the public key is authentic, it generates a SHA256

hash of SIDE’s executable residing in N2’s storage concatenated with RN (see eq. (1)

below), and a 128bit AES session key KN1N2.

HashSIDE = SHA256 {RN || BinarySIDE} (1)

4. The target node N2 then generates an attestation reply message (i.e., message 2), which

includes: (i) the target’s certificate CertN2; (ii) the generated session key KN1N2 as well as

 22

the received RN encrypted, first, by the target’s private key N2PrK and, subsequently, by

the attester’s public key N1PuK; and (iii) finally, the hash of SIDE’s executable and RN

(i.e., HashSIDE) encrypted by the session key KN1N2.

Message 2: CertN2, N1PuK{N2PrK(KN1N2, RN)}, KN1N2{HashSIDE}

5. Upon the reception of the attestation reply, the attester node N1, first, verifies the

authenticity of N2’s public key N2PuK, using the accompanied certificate CertN2 and the

network administrators public key NAPuK. If it is authentic, it uses its private key N1PrK

and N2’s public key N2PuK to decrypt the session key KN1N2 and RN. It then compares the

received RN with the previously generated one, in order to verify that the reply message

is legitimate and not a replay attack. Finally, it uses the session key KN1N2 to decrypt

SIDE’s digest HashSIDE and compares it with its own generated hash. If the target node

N2 runs an un-tampered version of SIDE, then the two hashes should match, considering

that: (i) all nodes run the same version of SIDE, (ii) SIDE’s executable is compiled for

the same OS (i.e., the open virtualization kernel), and (iii) both nodes used the same RN

value in the computation of (1). If the two hashes do not match, then the target node is

considered untrustworthy.

Since nodes N1 and N2 have already established a shared secret session key KN1N2 (i.e.,

known only to nodes N1 and N2), any subsequent attestation requests between them can be

performed using this key. The attester node N1 may submit an attestation request to the target

node N2, by generating and transmitting RN, while N2’s reply encompasses the hash of

SIDE’s executable concatenated with RN and encrypted with the session key (i.e.,

KN1N2{HashSIDE, RN}). Finally, the session key KN1N2 is utilized for as long as nodes N1 and

N2 remain neighbors (i.e., while the AODV lifetime timer does not expire).

Attester node (N1) Target node (N2)Communication channel

Request
attestation

Decrypt and
compare HashSIDE

Generate
KN1N2Compute

HashSIDE

Open Virtualization
Kernel

Open Virtualization
Kernel

Compute
HashSIDE

Binary
executable

of SIDE

Encrypt HashSIDE
and generate reply

SoCSoC

Message 1: CertN1, RN

Message 2: CertN2, N1PuK{N2PrK(KN1N2, RN)},

KN1N2{HashSIDE }Generate waiting
time

#NAPuK#NAPuK
NAPrK, CertN1, N1PrK,

N1PuK

Secure Storage PROMSecure Storage PROM

NAPrK, CertN2, N2PrK,
N2PuK

Generate
RN

Wait

Binary
executable

of SIDE

RN

Figure 13: Remote attestation procedure

 23

4 Evaluation of the proposed detection mechanism
In this section, we thoroughly evaluate SIDE focusing on: (i) the advantages over previously

proposed mechanisms (see section 4.1); (ii) the robustness of the proposed mechanism against

attacks (see section 4.2); (iii) the computational cost and memory requirements (see section

4.3); and (iv) the performance of SIDE compared to other state-of-the-art solutions (see

section 4.4).

4.1 Advantages over previously proposed detection mechanisms
SIDE introduces a number of significant advantages over existing detection mechanisms

designed for AODV. First off, the employment of the remote attestation procedure enables

the engine's deployment in host nodes that may also include suspicious/malicious software,

allowing monitoring local information and thus ascertain an accurate view of the protocol

operations. Every protocol action is monitored by the employed engine and any deviation or

malicious behavior from the protocol specifications is detected, in real-time, minimizing the

time in which a malicious activity may induce damage into the network. On the other hand,

anomaly-based detection engines, typically, resolve attacks in non-real time, since they have

to collect audit data for some predefined time frame, preprocess them, run the detection

algorithm, and then, resolve if a malicious activity took place [23]. Therefore, the detection of

an attack takes at least:

detection time = TF + P + D (2),

where TF is the time frame for collecting audit data, P the preprocessing time, and D the time

it takes for the engine to analyze the audit data and provide a decision.

SIDE may also effectively detect every possible attack (i.e., currently known or

unknown) that targets the operation of AODV, as long as the attack is expressed as a violation

of the protocol's specifications. This is achieved by relying on operational rules developed

following the legitimate protocol operation, instructed by the protocol’s specifications, rather

than attack patterns (i.e., signature-based detection) or statistical behavioral models (i.e.,

anomaly-based detection). These operational rules, accurately, express the expected protocol

behavior and thus, any activity that does not act in accordance with these rules is marked as

malicious. Another advantage of SIDE has to do with the fact that its detection accuracy is

not negatively affected by network volatility (i.e., churn, changes in the topology, high node’s

mobility, etc.). This is because the proposed engine does not use the notion of a normal

profile, but it monitors the network conditions in real time. On the other hand, in anomaly-

based engines, dynamic changes of the network, typically, cause high rate of false positive

since they consider them as effects of malicious actions [23].

SIDE’s reliance on local information alleviates the associated overheads (i.e., capture,

store, and process) of audit data collection, since there is no need for audit data exchange

 24

among network nodes or the monitoring of the exchanged packets. Although the proposed

attestation procedure engages neighboring nodes to exchange attestation packets, the imposed

communication overhead is limited as presented in sect. 4.3. In addition, the imposed

overhead is uniformly distributed among all the network nodes and thus, there is no unfair

distribution of detection responsibilities. The utilization of hardware-based encryption

minimizes the consumption of the related processing and battery resources, during the

attestation procedure. Evaluations of hardware-based encryption have shown that a hardware-

based implementation of AES with a key size of 128 bits consumes 97% less energy,

compared to software-based encryption; while the throughput is increased by 2500%

[45][46].

Finally, SIDE offers several advantages compared to the existing specification-based

detection engines for AODV. More specifically, it detects all the possible attacks that target

the protocol, because: (a) it monitors all the types of AODV messages, including routing

control (RREQ, RREP and RERR) and data packets; and (b) the proposed specifications were

developed based on the valid protocol operation and thus, any deviation is considered

malicious, regardless if it is a known or unknown attack. On the contrary, the existing

specification-based engines proposed in [13][15][16] monitor, only, RREQ and RREP,

allowing possible attackers to disrupt routing by generating forged RERR packets. Moreover,

the specifications included in the engines analyzed in [14][18] are designed to detect, only, a

particular set of AODV attacks, and thus, unknown attacks that do not violate these

specifications remain undetected.

4.2 Security evaluation
In an implemented scenario, an adversary may either target the AODV protocol or SIDE. The

detection engine of SIDE monitors the protocol’s functionality and parameters enabling the

detection of any attacks that attempt to violate them. On the other hand, the proposed remote

attestation procedure as well as the fact that SIDE is deployed on a TrustZone platform

guarantee and safeguard its operation. In the following, we provide a case study of known

critical attacks that target the AODV protocol and illustrate how these are resolved by SIDE,

in comparison with other specification-based schemes. Moreover, we ascertain the robustness

of SIDE against actions that aim to hinder or disable it.

4.2.1 Detection of known attacks
A RREQ flooding attack is a commonly used attack, which aims at the consumption of

network resources. In this attack, a malicious node broadcasts a large amount of forged

RREQ messages with random, fake source and destination IP addresses. Legitimate nodes

receiving these messages are obliged to generate reply messages, depleting both their

 25

resources as well as the resources of any other node participating in the route discovery

process. SIDE monitors the generation of RREQ messages at each network node (see section

3.2.2) and is capable of detecting whether a host node attempts to perform a RREQ flooding

attack. This is achieved by validating the originator IP address encapsulated in the generated

RREQ and by monitoring if the rate of RREQs per second exceeds the RREQ rate limit.

RREQ flooding can also be detected by the existing specification-based engines analyzed in

[13][14][15][16][18].

Denial of Service (DoS) is another, widely, performed attack in which an adversary

attempts to disrupt the network operation and obstruct the access of a legitimate node or set of

nodes to the network services. In its simplest form, the malicious node may choose to

selectively drop control messages and data packets, aiming at either disrupting specific routes

or conserving energy (i.e., selfish node). SIDE, at each host node, keeps track of all packets,

from their reception up until transmission, and thus, detects any attempt by the host node to

drop, delay, or modify a data or control packet. The attacker may also attempt to break the

existing routes, by transmitting forged RERR messages. This will activate the route discovery

process, leading to a DoS. Since AODV specifies the circumstances under which a node

generates a RERR message, SIDE monitors every message generation, detecting any

unjustified attempt (see section 3.2). Existing solutions introduced in [14] and [18] are also

capable of detecting such attacks; while the detection engines analyzed in [13][15][16] focus,

only, on RREQ and RREP control messages, skipping RRER.

A DoS attack may become more effective in case that a malicious node advertises itself

as intermediate to the shortest paths to destinations (i.e., blackhole attack). To achieve this, it

forwards fabricated RREP messages, which include high sequence numbers, as responds to

received RREQs. Once the malicious node starts receiving data packets from the target

node(s), it usually drops them. SIDE is capable of detecting if the host node is attempting a

blackhole attack, since it monitors: (i) the presence of a fresh route to the requested

destination in the routing table; (ii) the eligibility of the host node for generating a RREP; and

(iii) the validity of the fields of a generated RREP (including the host’s sequence number)

(see section 3.3). The engines introduced in [13][14][16][18] are capable of detecting

blackhole attack; while this of [15] resolves the attack, only, if the monitoring node

receives the legitimate RREP message, issued by the destination. Two colluding malicious

nodes may also attract network traffic, by advertising that there is a direct link between them,

regardless of the actual distance in hops (i.e., wormhole attack). This attack is accomplished

by modifying the hop count field of the forwarded RREP messages. SIDE detects wormhole

attacks, since it monitors all fields (i.e., including the hop count field) set during the

 26

generation or modification of a RREP (see section 3.3). This attack is also detected by the

engines analyzed in [13][14][15][16], but not from this of [18].

Attackers may attempt to exploit the route discovery process, by omitting the backoff

mechanism, performing a rushing attack. By forwarding a RREQ packet ahead of time, a

malicious node may gain an advantage in being selected as part of an active route. SIDE

encompasses a set of rules that specify the valid operation of the backoff mechanism (see

section 3.2), and any attempt by the host node to violate these rules will be detected. For

example, if the host node attempts to transmit a RREQ before the backoff timer (i.e., 2 *

Previous Net Traversal Time) expires, it will be flagged as malicious. The detection engines

of [14][16] are also capable of detecting this attack; while the engines of [13][15][18] are not.

4.2.2 Robustness of the proposed engine
Adversaries trying to avoid detection may attempt to target SIDE, aiming at hindering its

operation, disabling it or tampering its functionality. To carry out these, they may either

intervene to the communication channel among networks nodes or have access to the

hardware or software of one or more nodes. Intervening in the communication channel, an

adversary may masquerade as a legitimate node, by attempting to provide a valid attestation

response, replay a previously captured attestation response, or capture, modify and resend

one. However, all of these attacks are overcome by the proposed remote attestation procedure.

In particular, an adversary cannot masquerade to be a legitimate node, since only the later

possesses a valid digital certificate signed by the network administrator. If the adversary

attempts to use a self-generated digital certificate, the remote attestation procedure will fail at

step 5 (see section 3.3), when the attester nodes tries to authenticate the adversary’s digital

certificate. Furthermore, the use of a nonce (i.e., the random number RN generated by the

attester node) value prevents an adversary from performing a replay attack, since the attester

node will reject any response with an outdated nonce value. Finally, the adversary cannot

capture a previously transmitted attestation response and modify it in order to forge a reply

with the new nonce, since the attestation responses are always encrypted by the target node

and the nonce is concatenated within SIDE’s hash value.

Having access to a host node, an adversary may also perform software or hardware

attacks. Software attacks, typically, aim at altering the behavior of a running program or

crashing it, by modifying the execution flow and allowing arbitrary code execution. Such

attacks include buffer-overflow, heap overflow, stack smashing, etc. These attacks are

counteracted by SIDE using the software isolation mechanisms, employed in the TrustZone

SoC. More specifically, the MMU provides a particular interface to the resided OSs (i.e.,

trusted and un-trusted), enabling each of them to maintain a local table of virtual-to-physical

memory address translation. Each entry of these tables includes an NS flag, which is used by

 27

the TrustZone CPU to identify if the equivalent memory address belongs to either the trusted

or the un-trusted OS and prevent the later from accessing any memory area allocated to the

trusted OS.

Hardware attacks attempt to exploit platform vulnerabilities, which are related to a

hardware interface commonly used for testing and debugging, known as joint test action

group (JTAG). JTAG is embedded in most processors, devised for testing and debugging

circuit boards. It may provide access to an adversary to resources that are only accessible by

the trusted OS (i.e., memory, storage, co-processor registers, etc). However, a TrustZone SoC

comes with the provision of permanent deactivation or semi-deactivation of this interface,

during manufacturing. A permanent deactivation completely disables it; while a semi-

deactivation limits its access to resources that are available to the un-trusted OS.

4.3 Computational cost and memory requirements
To quantify the computational cost and memory requirements of SIDE, both the remote

attestation procedure and the detection engine should be individually analyzed. The remote

attestation procedure does not induce any significant computational costs, since all of the

required cryptographic computations are performed by the TrustZone crypto-coprocessor

[42],[50]. On the other hand, the remote attestation procedure induces memory consumption,

due to the fact that additional memory sections are allocated to store the required

cryptographic parameters. That is, 1 KB for the Certificate, 512 bytes for the RSA key pair,

256 bytes for the network administrator’s public key, 16 bytes for RN, 16 bytes for the

session key, and 32 KB for the hash digest (see section 3.3). In total, 1856 bytes are allocated

and stored in the memory for the remote attestation procedure.

The detection engine induces both computational costs and memory consumption when

it utilizes the CPU and the memory to perform comparisons, in order to check if the

specifications are violated or not. To quantify the computational costs, first we determine the

maximum number of comparisons performed by the detection engine, while executing a

complete set of specifications. As mentioned in section 3.2, the specifications are divided into

three sets, based on the host-node's communication condition: a) idle, b) transmitting, and c)

receiving. Next, we calculate how many CPU instructions are required to perform these

comparisons for each one of the above three sets of specifications.

Let UI, UT, and UR denote the maximum number of comparisons made by the detection

engine for the: a) idle, b) transmitting, and c) receiving sets of specifications, respectively.

The number of CPU instructions required for a comparison depends on the target CPU

architecture. In this analysis, we assume that the ARM CPU implements the thumb-2

instruction set [51], which requires one CPU instruction to perform a single comparison

between two integer values, stored in the CPU’s registers [51]. Three additional CPU

 28

instructions are required to fetch the two integers into the registers and store the result back

into the memory. Thus, each comparison is estimated at a cost of four CPU instructions.

Based on the above, the CPU instructions required for the execution of the maximum number

of comparisons for each set of specification is given by:

CI = 4UI (4),

CT = 4UT (5),

CR = 4UR (6),

where CI, CT, CR denote the maximum number of CPU instructions for the idle, transmitting,

and receiving sets of specifications, respectively.

In order to calculate the values of UI, UT, and UR, we measure the highest number of

comparisons performed by each respective set of specifications, when all their states are

executed. The maximum value of UI is 3, since the idle specification verifies three conditions

(see section 3.2.1): (i) if an incoming data packet is ready for transmission, (ii) if a data

packet has been received, and, (iii) if a control packet has been received. On the other hand,

UT has a maximum value of 28 comparisons, which occurs when a data packet is ready for

transmission, but there is no route to the destination and the route repair process fails (see

section 3.2.2). Finally, the maximum value of UR is 39 comparisons and it is reached when a

RREQ message is received by an intermediate destination and the ‘G’ flag on the RREQ

message is set, forcing the generation of a gratuitous RREP (see section 3.2.3). Based on

these measurements, we determine that the maximum number of CPU instructions required

for the three sets of specifications are: CI = 12, CT = 112 , and, CR = 156.

On the other hand, to quantify the detection engine's memory consumption, we have

calculated the memory required for storing the maximum number of parameters that may be

used by the detection engine, during the execution of a set of specifications (i.e., idle,

transmitting, or receiving). We assume these parameters are stored as 32-bit integers. For

each parameter, there are two values that are stored in memory: one value observed by the

engine while monitoring the AODV protocol and one value which is the expected (i.e.,

legitimate) value, based on the specifications. In any AODV operation, the detection engine

may allocate memory to temporarily store the following parameters: the destination IP

address, the originator IP address, the destination sequence number, the originator sequence

number, the RREQ id, the hop count field, the RREQ rate limit, the net traversal time¸ the

RREQ retries counter, the TTL max counter, the route entry flag, the lifetime field, the no

delete, 'G', 'D' flags, the RERR rate limit, the active route timeout, the blacklist timeout, the

allowed hello loss and the hello interval. Based on the above, the maximum number of

parameters allocated in the memory during the execution of the detection engine is 40,

resulting in a total memory consumption of 160 bytes.

 29

4.4 Performance Evaluation
In this section, a prototypical implementation of SIDE is evaluated through simulations. The

objective of the carried simulations was to compare SIDE’s performance to other security

mechanisms designed for AODV, verifying the previously mentioned advantages.

The simulations were performed using the ns-3 network simulator [35], version 3.16,

which was tested and validated after the installation. The underlying network topology was

constructed by, randomly, placing 25, 50, 75, and 100 nodes in an area of 1000m x 1000m,

where nodes established links if they were in a radio range of 100m or less. Network traffic

was generated by 10 randomly selected constant bit rate (CBR) source nodes, which

transmitted 512 bit data packets at fixed rates of 5, 10, or 20 packets per second. Nodes’

mobility was simulated using the random waypoint mobility model and the speed of mobile

nodes ranged from 0 to 20 m/s. Table 2 displays a summary of the simulation parameters.”

Table 2: Simulation parameters
Simulation parameters Value

Number of nodes 25/50/75/100

Simulation area 1000 m x 1000 m

Radio range 100 m

Mobility model Random waypoint

Nodes’ mobility Ranged from 0 to 20 m/s

Channel capacity 2Mbps

Traffic type CBR

Traffic volume 5/10/20 packets per second

CBR packet size 512 bytes

The comparative evaluation, except from SIDE, includes results from: (i) the SAODV

protocol [36]; (ii) three anomaly-based intrusion detection engines, SVM [26], MRF1 [30],

and DCM [37]; as well as (iii) the pure AODV without any security mechanism. The latter is

used as a base, where the imposed overheads by the considered security mechanisms can be

compared and studied. SAODV was selected because it constitutes a solution that

encompasses security features within AODV. Moreover, the three anomaly-based detection

engines were selected since they utilize state-of-the-art techniques (i.e., thresholds and

dynamic profiling) as well as they provide a broad set of simulation results, allowing for a

detailed comparison with SIDE.

 30

To quantify the performance and facilitate the comparison among the studied solutions,

we have selected the following metrics: (i) the packet deliver ratio (i.e., the percentage of

transmitted packets that reach their destination); (ii) the imposed control packet overhead

(i.e., the increase in the percentage of control packets transmitted by AODV); and (iii) the

observed detection accuracy (i.e., the percentage of attacks that are resolved by the detection

mechanism). The packet delivery ratio, in the presence of a malicious node(s) performing a

packet dropping attack(s), may assess the ability of the considered mechanism to detect and

isolate malicious nodes, minimizing the effects of the attack(s) in the operation of the

network. The control packet overhead measures the corresponding control packets initiated by

the considered mechanism, determining the induced communication, processing and energy

consumption overhead. Finally, the detection accuracy of a mechanism, in the presence of a

sinking attack(s) and under variable nodes’ mobility, evaluates the mechanism’s ability to

resolve attacks in volatile network conditions.

Figure 14 presents the packet delivery ratio as a function of the number of malicious

nodes, performing a packet dropping attack for AODV, SIDE, SAODV, and DCM. SVM and

MRF1 are excluded from this study, since their authors do not provide such results for their

performance. In the presence of one malicious node, the packet delivery ratio of pure AODV

(i.e., without any security measure) is about 80%; while for 10 malicious node the ratio drops

down to 20%, depicting the impact of the attack. The packet delivery ratio for SIDE is

approximately 100%, regardless of the number of malicious nodes, the density of network

nodes, or the volume of generated traffic. These results confirm the assertion that SIDE

performs detection in real time, meaning that attacks are detected immediately after they are

initiated by a malicious node. This can be attributed to the fact that SIDE monitors the

behavior of its host node, relying exclusively, on local information. Thus, any change in the

number of malicious nodes, the volume of traffic or the density of nodes, does not have an

impact on the monitoring process and the detection capabilities of SIDE. SAODV

demonstrates similar performance with SIDE, which in the worst case scenario of 10

malicious nodes it presents a packet delivery rate of 95%. This occurs because SAODV

eliminates the ability of malicious nodes to generate false RREP, allowing only the final

destinations of a RREQ to do this. Nevertheless, the malicious nodes are still capable of

dropping some data packets transmitted. On the contrary, the employment of the DCM engine

degrades the network operation and the considered metric as the number of malicious nodes

increases from 1 to 10, reaching the lowest value of 80% for the presence of 10 malicious

nodes.

 31

Figure 14: Packet delivery ratio as a function of the number of malicious nodes

Figure 15 depicts the percentage of additional control packets, compared to pure

AODV, transmitted by SIDE, SAODV, and DCM, as a function of the total number of

transmitted packets. Once again, SVM and MRF1 are excluded from this study, since their

authors do not provide comprehensive results for their performance. SIDE induces the least

control packet overhead (averaging 6%), and its performance is close to that of the AODV

protocol running without any security mechanisms. Moreover, we observe that the control

packet overhead of SIDE remained constant when the nodes density is increased. Even

though the higher number of nodes results in additional SIDE’s control packets (i.e.,

additional attestation messages), at the same time it causes a similar increase in control

messages for AODV. Thus, the relative control packet overhead between the proposed

mechanism and AODV is not modified when the nodes density increases. Moreover, the

employment of SAODV in a network of 50 nodes results in a control message overhead of

about 20%. On the other hand, as shown in figure 15, DCM exhibits the highest amount of

control packet overhead, exceeding on average 100% in a network of 50 nodes and 150% in a

network of 100 nodes. However, it is the only scheme that diminishes the occurred overhead

as the total number of transmitted packets increases. This is mainly caused by the

mechanisms’ ability to provide more accurate decisions about the behavior of nodes as the

respective number of monitoring packets increases. In this way, the need to transmit “test

packets” between monitoring nodes are minimized, reducing the associated communication

overheads.

We have also estimated the control packet overhead of SIDE when the traffic volume is

increased. Numerical results showed that this overhead decreases when the volume of traffic

is increased. In particular, a traffic volume of 5, 10, and 20 packets per second results in a

 32

packet control overhead of 11%, 6.1%, and 2.8%, respectively. This happens because the

control packets of SIDE (i.e., remote attestation messages) are generated at fixed interval

times, independently of the traffic volume. On the other hand, the increase of traffic volume

results in additional AODV control messages. As a result, the SIDE’s control packet overhead

in proportion to the number of AODV control messages is decreased.

Figure 15: Control packet overhead as a function of the number of packets

It is worth noting that SIDE’s control packets are smaller in size compared to AODV

and SAODV. More specifically, during the remote attestation procedure of SIDE, two packets

are exchanged with a size of approximately 1040 bytes (i.e., 1KB for the Certificate and 16

bytes for RN) and 1536 bytes (i.e., 1KB for the certificate, 256 bytes for the encrypted session

key, and 256 bytes for the encrypted hash), respectively. In total, around 2576 bytes are

transmitted per attestation request, or roughly around 1/10 of the size (i.e., 25 KB) of an

AODV control packet. The size of SAODV control packets is almost twelve (12) times the

size of the original AODV control packets (i.e., around 300 Kb in comparison to 25 KB for

pure AODV). This is due to the additional fields required by SAODV for the conveyance of

digital signatures and hashes. Finally, the authors of DCM do not provide any information

related to the size of the “test packets”, transmitted by the monitoring nodes.

Figure 16, presents the detection accuracy (i.e., the percentage of attacks that are

resolved by the detection mechanism) of SIDE and DCM, as a function of the number of

malicious nodes performing a blackhole attack. SVM, MRF1, and SAODV are excluded from

this study, since their authors do not provide respective results for their performance. Overall,

we conducted ten iterations of this experiment, in each of which the number of randomly

selected malicious nodes was incremented by one. The employment of SIDE results in a

detection accuracy of 100%, regardless of the amount of malicious nodes in the network, the

 33

density of nodes, or the volume of traffic. This can be attributed to the fact that SIDE relies on

a host-based architecture and thus, the presence of a higher number of malicious nodes does

not affect its detection accuracy. On the other hand, the deployment of DCM in a network

with nodes density equal to 100, results in a slight drop of the detection accuracy, which

reaches 99% in the presence of 10 malicious nodes. When the nodes density is decreased to

50, then the detection accuracy of DCM drops even further, and reaches 91% (i.e., the number

of malicious nodes is 10). This happens because decreasing the nodes density, limits the

number of cooperating nodes (i.e., legitimate), thus hindering the ability of DCM to resolve

malicious activities.

Figure 16: Detection accuracy as a function of the number of malicious nodes

Figure 17 presents the detection accuracy of SIDE, SVM, and MRF1 as a function of

the average node’s speed. SAODV and DCM are excluded from this study, since their authors

do not provide such results for their performance. We conducted ten iterations of this

experiment, in each of which we increased the average node speed by a factor of 2 m/s,

beginning with an initial value of 0 m/s. For each iteration, ten nodes were randomly selected

to perform a sinking attack. The employment of SIDE results in a detection accuracy that is

constant and equal to 100%, regardless of the volatile network conditions (i.e., nodes

movement, density of nodes, or volume of traffic). This can be attributed to the fact that SIDE

resides at each network node, monitoring the nodes behavior and action using a well-defined

set of rules, which represent the legitimate behavior and actions, based on the AODV

specifications. The deployment of SVM also leads to comparable results with average

detection accuracy around 96%. This is because the engine uses a dynamically updated

normal profile, which however, introduces a number of limitations (see section 2.2). On the

other hand, the detection accuracy of MRF1 is highly affected by the change in node’s

mobility and with an average node’s speed of 15 m/s, it drops more that 20%. MRF1 utilizes

 34

a static normal profile and hence it is more prone to be affected by dynamic network changes.

These changes may cause MRF1 to rely on outdated information (i.e., normal profile) and

thus perform poorly.

Figure 17: Detection accuracy as a function of the average node’s speed

5 Conclusions
This paper proposed a monitoring mechanism called SIDE that safeguards the operation of

AODV. SIDE encompasses two complementary functionalities: (i) a specification-based

detection engine for AODV, and (ii) a remote attestation procedure. It operates on a trusted

computing platform, which provides hardware-based root of trust and cryptographic

acceleration used by the remote attestation procedure, as well as protection against runtime

attacks. A key advantage of the proposed mechanism is its ability to effectively detect both

known and unknown attacks. The performance analysis showed that SIDE is capable of

detecting malicious behaviors in real time, thus minimizing the impact of an attack. It was

also observed that it resolves attacks with a low percentage of false positives/negatives even

under high network volatility. Moreover, SIDE induces the least amount of control packet

overhead in comparison with a number of other proposed IDS schemes.

References

[1] WiFi Alliance, “Wi-Fi Peer-to-Peer (P2P) Technical 7 Specification,” www.wi-fi.org/Wi-Fi_Direct.php

[2] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector (AODV) Routing,” IETF
RFC 3561, Jul. 2003.

[3] D. Cavalcanti, D. Agrawal, C. Corderio, B. Xie, and A. Kumar, “Issues in integrating cellular networks
WLANs, and MANETs: A futuristic heterogeneous wireless network,” IEEE Wireless Communications.,
vol. 12, no. 3, pp. 30–41, Jun. 2005.

 35

[4] J. Ott, D. Kutscher, and C. Dwertmann. Integrating DTN and MANET Routing. In CHANTS ’06: in
proceedings of the 2006 SIGCOMM Workshop on Challenged Networks, pages 221–228, New York, NY,
USA, 2006.

[5] J. Lakkakorpi, M. Pitk¨anen, and J. Ott, “Adaptive routing in mobile opportunistic networks,” in
proceedings of the ACM MSWIM’10, (Bodrum, Turkey), pp. 101–109, October 2010.

[6] A.A. Pirzada, M. Portmann, J. Idulska, “Evaluation of Multi-Radio Extensions to AODV for Wireless
Mesh Networks”, in proceedings of the international workshop on Mobility management and wireless
access ACM MobiWac 2006.

[7] C. Gomez, P. Salvatella, O. Alonso, J. Paradells, “Adapting AODV for IEEE 802.15.4 mesh sensor
networks: theoretical discussion and performance evaluation in a real environment,” in proceedings of the
2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM’06), 2006, pp. 159–170.

[8] C. Xenakis, C. Panos, I. Stavrakakis, “A comparative evaluation of intrusion detection architectures for
mobile ad hoc networks,” Computers & Security, Volume 30, Issue 1, January 2011.

[9] B. Wu, J. Chen, J. Wu, and M. Cardei, “A Survey of Attacks and Countermeasures in Mobile Ad Hoc
Networks” in “Wireless Network Security”, Y. Xiao, X. Shen, and D. -Z. Du, Springer, Network Theory
and Applications, Vol. 17, 2006.

[10] C., Panos, P., Kotzias, C. Xenakis, I. Stavrakakis, “Securing the 802.11 MAC in MANETs: A
Specification-based Intrusion Detection Engine,” 9th Annual Conference on Wireless On-demand Network
Systems and Services (WONS), 2012

[11] P. Ning and K. Sun, “How to misuse AODV: a case study of insider attacks against mobile ad-hoc routing
protocols,” Ad Hoc Networks. 3, 6 (November 2005), 795-819.

[12] T. Anantvalee, J. Wu, “A Survey on Intrusion Detection in Mobile Ad Hoc Networks,” Wireless/Mobile
Network Security, Springer, Chapter 7, pp. 170 - 196, 2006.

[13] C.-Y. Tseng. et al., “A specification -based intrusion detection system for AODV,” in proceedings of ACM
Workshop on Security of Ad Hoc and Sensor networks, 2003.

[14] Y. Huang and W. Lee, “Attack Analysis and Detection for Ad Hoc Routing Protocols,” in proceedings of
the 7th international symposium in recent advances in intrusion detection (RAID 2004), Sophia Antipolis,
France, Sept. 2004.

[15] H.M. Hassan, M. Mahmoud, and S. El-Kassas, “Securing the AODV Protocol using Specification-based
Intrusion Detection,” in proceedings of the 2nd ACM International Workshop on Quality of Service &
Security for Wireless and Mobile Networks, Torremolinos, Spain, 2006.

[16] J. Grönkvist, A. Hansson, M. Sköld, “Evaluation of a Specification-Based Intrusion Detection System for
AODV,” in The Sixth Annual Mediterranean Ad Hoc Networking WorkShop. 2007: Corfu, Greece. p.
121-128.

[17] V. Mulert, J. I. Welch, and W. KG Seah. "Security threats and solutions in MANETs: A case study using
AODV and SAODV," Journal of Network and Computer Applications 35.4 (2012): 1249-1259.

[18] G. Vigna, S. Gwalani, K. Srinivasan, E. Belding-Royer, R. Kemmerer, “An Intrusion Detection Tool for
AODV-based Ad Hoc Wireless Networks,” in proceedings of the Annual Computer Security Applications
Conference (ACSAC), pages 16–27, Tucson, AZ, December 2004.

[19] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard 802.11
- 2007.

[20] Trusted Computing Platform Alliance. TCPA main specification v. 1.2. http://www.trustedcomputing.org/.

[21] M.Shaneck, K.Mahadevan, V.Kher, and Y.Kim. “Remote software-based attestation for wireless sensors,”
Security and Privacy in Ad-hoc and Sensor Networks, Vol. 3813, pp 27–41, 2005.

[22] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and obfuscation - tools for software
protection,” In IEEE Transactions on Software Engineering, volume 28, pages 735–746, August 2002.

[23] C. Panos, C. Xenakis, I. Stavrakakis, “An evaluation of anomaly-based intrusion detection engines for
mobile ad hoc networks,” in proceedings of the 8th International Conference on Trust Privacy and Security
in Digital Business (TrustBus 2011), Toulouse, August 2011.

[24] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote computer systems.” in the 12th
USENIX Security Symposium, pages 295–310. USENIX Association, August 2003.

 36

[25] H., Nakayama, S., Kurosawa, A., Jamalipour, Y., Nemoto, N., Kato, "A Dynamic Anomaly Detection
Scheme for AODV-Based Mobile Ad Hoc Networks," Vehicular Technology, IEEE Transactions on ,
vol.58, no.5, pp.2471-2481, Jun 2009.

[26] J.F.C., Joseph, Bu-Sung Lee, A., Das, Boon-Chong Seet, “Cross-Layer Detection of Sinking Behavior in
Wireless Ad Hoc Networks Using SVM and FDA,” Dependable and Secure Computing, IEEE
Transactions on , vol.8, no.2, pp.233-245, March-April 2011.

[27] C. Nello and S.-T. John, “An Introduction to Support Vector Machines and Other Kernel-Based Learning
Methods,” Cambridge Univ. Press, 2000.

[28] A. Lauf, R. A. Peters, W. H. Robinson, "A Distributed Intrusion Detection System for Resource-
Constrained Devices in Ad Hoc Networks". Elsevier Journal of Ad Hoc Networks, vol. 8, issue 3, pp. 253-
266, May 2010.

[29] P. Kabiri and M. Aghaei, “Feature Analysis for Intrusion Detection in Mobile Ad-hoc Networks,”
International Journal of Network Security, Vol.12, No.2, PP.80–87, Mar. 2011.

[30] A., Nadeem, M., Howarth, “Adaptive intrusion detection and prevention of denial of service attacks in
MANETs,” in International Conference on Wireless Communications and Mobile Computing: Connecting
the World Wirelessly (pp. 926–930). Leipzig, Germany, 2009.

[31] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy opaque constructs.
In Principles of Programming Languages 1998, POPL’98, San Diego, CA, Jan. 1998.

[32] A. Seshadri et al., “SCUBA: Secure Code Update by Attestation in Sensor Networks,” Proc. 5th ACM
Wksp. Wireless Security (WiSe’06), Los Angeles, Sept. 2006.

[33] Federal Information Processing Standards Publication (FIPS PUB) 180-4, Current version of the Secure
Hash Standard (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512), March 2012.

[34] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. “Software tamper resistance based on the difficulty of
interprocedural analysis,” Proc 3rd Workshop on Information Security Applications (WISA 2002), Korea,
August 2002.

[35] The NS-3 Network Simulator, http://www.nsnam.org/. Last accessed at 17/03/2014.
[36] M. Zapata and N. Asokan, “Securing Ad-hoc Routing Protocols,” in Proc. of ACM Workshop on Wireless

Security (WiSe), Atlanta, GA, Sept. 2002.
[37] C.W. Yu, T.K. Wu, R. H., Cheng, and S. C. Chang, “A Distributed and Cooperative Black Hole Node

Detection and Elimination Mechanism for Ad Hoc Networks”, PAKDD 2007 Workshops, pp. 538–549,
2007.

[38] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. “Remote attestation to dynamic system properties:
Towards providing complete system integrity evidence.” In Proceedings of the 39th International
Conference on Dependable Systems and Networks (DSN’09), 2009.

[39] Seshadri, A., Luk, M., and Perrig, A. “SAKE: Software attestation for key establishment in sensor
networks.” In Proceedings of the 4th IEEE international conference on Distributed Computing in Sensor
Systems (DCOSS 2008).

[40] L. Davi, A. R. Sadeghi, and M. Winandy. “Dynamic integrity measurement and attestation: Towards
defense against return-oriented programming attacks.” In Proceedings ACM workshop on Scalable trusted
computing, 2009.

[41] J. Clause, W. Li, A., Orso, “Dytan: A Generic Dynamic Taint Analysis Framework. In Proceedings of the
2007 international symposium on Software testing and analysis, 2007.

[42] ARM Ltd. ARM1176JZF-S Technical Reference Manual, Revision: r0p7. Available online at:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf, 2008.

[43] The Open Virtualization kernel, http://www.openvirtualization.org/. Last accessed at 08/06/2013.
[44] TEE Internal API Specification v1.0 http://www.globalplatform.org/specificationsdevice.asp. Last

accessed at 08/06/2013.
[45] I. Ekelund, "Low energy AES hardware for microcontroller." PhD diss., Norwegian University of Science

and Technology, 2009.
[46] V. Cervenka, "Energy Efficient Public Key Cryptography in Wireless Sensor Networks." Innovations and

Advances in Computer, Information, Systems Sciences, and Engineering. Springer New York, 2013. 497-
509.

[47] W. Svante, K. Esbensen, and P. Geladi, "Principal component analysis," Chemometrics and intelligent
laboratory systems 2.1 (1987): 37-52.

[48] Johnson, David B., David A. Maltz, and Josh Broch. "DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networks." Ad hoc networking 5 (2001): 139-172.

[49] C. Perkins, B. Pravin, "Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile
computers." ACM SIGCOMM Computer Communication Review. Vol. 24. No. 4. ACM, 1994.

http://www.hcis-journal.com/sfx_links?ui=2192-1962-1-4&bibl=B38�

 37

[50] A. Hodjat, V. Ingrid, "Interfacing a high speed crypto accelerator to an embedded CPU," Signals, Systems
and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on. Vol. 1. IEEE,
2004.

[51] ARM Architecture Reference Manual, Thumb-2 Supplement. Available online at:
http://read.pudn.com/downloads159/doc/709030/Thumb-2SupplementReferenceManual.pdf

	1 Introduction
	2 Background
	2.1 Overview of the AODV routing protocol
	2.2 Related work
	2.3 Remote attestation
	3 The proposed mechanism
	3.1 General architecture
	3.2 The detection engine
	3.2.1 Idle specifications
	3.2.2 Transmitter specifications
	3.2.3 Receiver specifications

	3.3 Remote attestation
	4 Evaluation of the proposed detection mechanism
	4.1 Advantages over previously proposed detection mechanisms
	4.2 Security evaluation
	4.2.1 Detection of known attacks
	4.2.2 Robustness of the proposed engine

	4.3 Computational cost and memory requirements
	4.4 Performance Evaluation
	5 Conclusions
	References

