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Abstract 

The proliferation of mobile computing devices has enabled the utilization of infrastructure-

less networking as commercial solutions. However, the distributed and cooperative nature of 

routing in such networks makes them vulnerable to a variety of attacks. This paper proposes 

a host-based monitoring mechanism, called SIDE that safeguards the operation of the AODV 

routing protocol. SIDE encompasses two complementary functionalities: (i) a specification-

based detection engine for the AODV routing protocol, and (ii) a remote attestation 

procedure that ensures the integrity of a running SIDE instance. The proposed mechanism 

operates on a trusted computing platform that provides hardware-based root of trust and 

cryptographic acceleration, used by the remote attestation procedure, as well as protection 

against runtime attacks. A key advantage of the proposed mechanism is its ability to 

effectively detect both known and unknown attacks, in real time. Performance analysis shows 

that attacks are resolved with high detection accuracy, even under conditions of high network 

volatility. Moreover, SIDE induces the least amount of control packet overhead in 

comparison with a number of other proposed IDS schemes. 
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1 Introduction  
Infrastructure-less networks comprise a wide range of networking paradigms such as mesh 

networks, mobile ad hoc networks (MANETs), vehicular ad hoc networks (VANETs), delay 

tolerant networks (DTN), opportunistic and sensor networks, as well as various overlay 

networks. A common characteristic of these networks is the absence of any fixed architectural 

component such as routers, access points, etc., supporting and serving dynamic topologies 

and behaviors. These unique properties, empowered by the proliferation of mobile devices 

(i.e., smartphones, tablets, etc.) and the advent of ad-hoc networking standards, such as Wi-Fi 

direct [1], enable the materialization of infrastructure-less networks for providing 

communication and cooperation solutions, such as the extension of networking environments 

(i.e., cellular networks, personal or corporate wireless networks, etc.) in areas where network 

coverage is limited [3] (i.e., metropolitan areas, indoor environments, etc.).  



 2 

A widely accepted implementation of an infrastructure-less network is based on a 

dynamic and adaptive routing protocol, named ad hoc on demand distance vector (AODV) 

[2], which, initially, was designed for MANETs and later has been adopted by DTN [4], 

opportunistic [5], mesh [6], and sensor [7] networks. AODV operates with the assumption 

that all participating nodes are well-behaved, and thus, it does not include any security 

mechanism. Considering also the deployment characteristics of infrastructure-less networks 

(i.e., wireless shared access, dynamic topologies, cooperative routing, etc.), it can be realized 

that AODV faces a wide set of security threats [11]. More specifically, any malicious network 

node may easily exploit critical protocol fields such as hop count, sequence numbers, source 

and destination address, etc., causing a variety of attacks, such as route disruption, resource 

consumption, denial of services, etc. [9].  

Since the protection of the protocol’s fields and functionality is not possible by default, 

an effective way to address these inherent vulnerabilities is through the deployment of a 

detection mechanism. However, the design of an intrusion detection system (IDS) for AODV 

has been proven a challenging task, considering the limitations of the existing IDS [8][23] 

(i.e., analyzed in sect. 2.2 of this paper). The majority of them capture, store, and, 

subsequently, process the whole traffic (i.e., control and payload) within the radio range of a 

monitoring node, in order to collect as much audit data as possible and then assess the 

behavior of the neighboring nodes. Consequently, monitoring nodes bear additional 

computational and storage burdens, while energy consumption is increased. In addition, 

during the collection of audit data, malicious activities are not detected. Finally, in cases of 

high nodes’ mobility or continuous changes in network topology, the collected audit data 

might lead to inconclusive or erroneous assessments, resulting in false positives/negatives.  

The limitations and weaknesses of current IDSs may be addressed by a host-based IDS 

that monitors the behavior of its own host node. A host-based IDS alleviates the need for 

collecting audit data that may be malicious, incomplete, or outdated, providing an accurate 

and real time view of the host node’s protocol operations. Thus, malicious behaviors can be 

detected immediately, with low false positives/negatives, and without the associated 

overheads of audit data collection. However, such an approach has been unfeasible in the 

past, mainly, because of the fact that a host-based IDS operating on a malicious node, could 

not be considered as trusted. The emergence of trusted computing [20] may address this 

uncertainty and make host-based IDS a viable security solution for infrastructure-less 

networks. Trusted computing provides hardware-based root of trust, accompanied by a set of 

primitive functions that propagates trust from hardware to the application software. At the 

core of this technology resides the process of remote attestation with which a computer can 

prove the integrity of a platform (e.g., hardware and software) to a remote party [38].  
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This paper proposes a novel host-based monitoring mechanism, called SIDE (i.e., 

Specification-based Intrusion Detection), which relies on trusted computing in order to 

provide a resilient, specification-based IDS. More specifically, each network node 

implements an instance of SIDE, which unlike existing IDSs, is responsible for monitoring its 

own host node. This approach enables SIDE’s detection engine to monitor local information 

and ascertain an accurate view of protocol operations, in real time. SIDE’s detection engine is 

based on a comprehensive set of specifications that defines the legitimate functionality of the 

AODV protocol. As a result, any malicious activity (i.e., known or unknown) that violates the 

legitimate functionality of AODV can be identified. To defend against malicious host nodes 

that may attempt to modify or even disable SIDE, the proposed mechanism encompasses a 

remote attestation procedure that verifies the integrity of running SIDE instances in the 

network. Moreover, SIDE operates on a trusted computing platform that provides hardware-

based root of trust and cryptographic acceleration, used by the remote attestation procedure, 

as well as protection against runtime attacks. The proposed mechanism utilizes a TrustZone 

[42] enabled ARM processor, which constitutes a trusted computing platform included in the 

vast majority of mobile and embedded devices. The performance of SIDE is evaluated 

through an extensive set of simulations. The numerical results show that SIDE resolves 

attacks in real time with high detection accuracy, while imposing limited overheads in the 

operation of AODV.  

The rest of this paper is organized as follows. Section 2 analyzes the functionality of 

the AODV routing protocol; briefly evaluates existing security schemes that have been 

proposed for AODV; and provides an analysis of remote attestation techniques. In section 3 

the proposed mechanism is introduced and its functionality is elaborated. In section 4, we 

perform an in-depth evaluation of SIDE, which includes: (i) an outline of its advantages over 

previously proposed detection engines; (ii) a security evaluation of its robustness against a 

variety of attacks; iii) the computational cost and memory requirements, and, (iv) a 

comparative evaluation of its performance based on simulations. Finally, section 5 contains 

the conclusions.  

2 Background 
In this section, we first provide an overview of the AODV protocol’s functionality. This 

overview covers only the most critical aspects of the protocol’s operations, since a more 

throughout analysis of AODV exists in [2]. In section 2.2, we provide an evaluation of several 

security solutions that have been proposed for AODV. A comprehensive analysis of all the 

related literature requires an extensive review, which is outside the scope of this paper. 

Instead, we have selected a representative set of security solutions that covers the majority of 

utilized security mechanisms and encompasses: (i) extensions to the AODV protocol that 
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incorporate cryptography and (ii) intrusion detection mechanisms that use either anomaly-

based or specification-based detection. Finally, in section 2.3, we evaluate existing remote 

attestation procedures.  

2.1 Overview of the AODV routing protocol 
AODV is an on demand routing protocol, which maintains routes as long they are needed by 

source nodes. It is scalable and offers low processing, memory, and communication 

overheads to the underlying network. It utilizes three control messages to achieve route 

discovery: route request (RREQ), route reply (RREP), and route error (RERR). It also 

provides an optional fourth control message (i.e., Hello message), which is used for 

preserving connectivity between neighboring nodes. When a node wishes the establishment of 

a route, it initiates a route discovery process by broadcasting a RREQ message that includes 

the: source IP address, source sequence number, destination IP address, destination sequence 

number, RREQ id (i.e., an incremented identifier), and hop count field. Each RREQ message 

is, uniquely, identified by the pair of source IP address and RREQ id. The intermediate nodes 

that receive the RREQ may either reply to it (i.e., possess an updated route to the destination) 

or forward it (i.e., do not possess a route to the destination and the time to live (TTL) field is 

greater than one). In case that multiple copies of the same RREQ are received by an 

intermediate node, the duplicates are discarded. The destination node or an intermediate node 

that has a fresh route to the destination replies to a RREQ, by generating an RREP message 

that contains the: source IP address, source sequence number, destination IP address, 

destination sequence number (i.e., an increasing counter denoting the most recent route), 

lifetime field (i.e., indicates the time for which the route is considered valid), and hop count 

field (i.e., denotes the distance in hops from the source to the destination). Intermediate nodes 

receiving the RREP update their routing tables, only, if the destination sequence number in 

the message is higher from the stored value in their routing tables, or the destination sequence 

numbers are equal, but the hop count field in the RREP is smaller than the stored value. If a 

link breaks, an intermediate node initiates a local repair mechanism attempting to discover a 

new route to the destination by transmitting a RREQ message. If the repair mechanism fails to 

discover a route, the node generates a RERR message that includes the IP addresses and the 

last known destination sequence numbers of the unreachable destinations, informing the 

receiving nodes that they should restart the routing discovery process, if they want to 

communicate with them.  

A node offers connectivity information by broadcasting local Hello messages, if this 

feature is enabled. Every time-period of hello interval, the node broadcasts a Hello message, 

which contains the: destination IP address, destination sequence number, lifetime field, and 

hop count field. The lifetime field is assigned the value allowed hello loss * hello interval, 
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while the hop count is set equal to zero. The allowed hello loss parameter is used by network 

administrators to determine the time frame (i.e., in multiples of the hello interval), where the 

routes are considered valid. Nodes perceive connectivity by listening to the packets 

transmitted by their neighbors. If a node does not receive any packet from a neighbor for a 

time period greater than allowed hello loss * hello interval, it assumes that the link to this 

node is currently lost.  

2.2 Related work 
The Secure AODV (SAODV) [36] is one of the first security mechanisms proposed for the 

AODV protocol. It constitutes a security-enhanced version of AODV that aims at protecting 

the routing messages of AODV, through the use of cryptography. It uses digital signatures to 

authenticate the non-mutable fields of messages and hash chains to authenticate the hop-count 

field, in both RREQ and RREP messages. However, this functionality requires extensive 

modifications to the original AODV protocol, raising compatibility issues. Furthermore, the 

authors assume that the key pairs used for the production of digital signatures cannot be 

compromised and thus, do not incorporate any self-protecting mechanisms. Finally, SAODV 

is unable to protect against blackhole, wormhole, rushing, and DoS attacks [17].  

Trying to limit the required modifications and attempting to protect from a wider set of 

threats, the majority of AODV security mechanisms uses detection techniques. Particularly, 

[29] proposes an anomaly-based engine that employs machine learning to generate a normal 

profile and relies on principal component analysis (PCA) [47] for detecting denial of service 

(DoS) attacks. However, the generated normal profile is static, including only the network 

conditions of the time that it was created. Therefore, in case of network changes during time, 

the engine considers them as results of malicious behaviors, presenting high rates of false 

positives. To address this, the use of dynamically updated normal profiles has been proposed 

in [25][26][30], where monitoring data during a period of time in which no malicious 

behavior was detected, is used to update the normal profile. The first [25] of these adaptive 

solutions uses PCA for resolving malicious behaviors; the second [26] utilizes a support 

vector machine classifier (SVM) [27] for detecting sinking attacks (i.e., nodes that do not 

cooperate in routing and forwarding); and the third one [30] relies on statistical analysis of 

malicious RREQ flooding (MRF1) for detecting DoS attacks. Although the use of dynamic 

profiles may reduce the rate of false positives in volatile networks; on the other hand, it is 

prone to false negatives, if within a monitoring time-period the engine fails to detect a 

malicious behavior, while an attack(s) takes place. In this case, the carried attack(s) becomes 

part of the normal profile, remaining undetected. Moreover, in order to limit the associated 

overheads of capturing, storing, and processing audit data, the aforementioned engines are 
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configured to monitor, only, a limited set of features, which enable the detection of a 

restricted set of possible attacks [25][26][29].  

Another approach that attempts to address the limitation of static normal profiles is 

through the use of dynamic thresholds. In [28], the authors have proposed a two-stage 

anomaly-based detection. During the first stage, a node is considered a potential threat if its 

observed behavior results in the highest statistical deviation from a pre-computed normal 

profile; while a threshold is generated (i.e., used during the second stage) by averaging the 

scores of all the observed nodes. In the second stage, the observed behavior of nodes is 

compared for statistical deviation from the generated threshold. Using this approach, any 

periodic symptom of suspicious behavior, caused mainly by network volatility, may lead to 

an improperly generated threshold, and consequently, to either false positives (i.e., if the 

generated threshold is too low) or false negatives (i.e., if the threshold is set too high).  

In [37], a distributed cooperative mechanism (DCM) is proposed to resolve blackhole 

attacks, by monitoring data packets transmitted by neighboring nodes. If a node has not 

routed any data packets during a fixed time-threshold, then the monitoring node will transmit 

a “test packet” through the suspicious node, destined for another cooperating detection node. 

If the later receives the “test packet,” then the suspicious node is legitimate, otherwise it is 

considered malicious. The primary disadvantage of this scheme is that malicious nodes may 

attempt to exploit this mechanism, by analyzing the duration of time before a malicious node 

is detected (i.e., estimate the threshold value), and subsequently, the routing of at least one 

packet within this time-frame.  

The inconstant detection accuracy of anomaly-based detection, which is extrapolated 

by network volatility, can be addressed using specification-based detection. However, the 

existing specification engines for AODV present some serious design limitations. Specially, 

the engines presented in [13][15][16] rely on distributed monitoring, by setting the nodes into 

promiscuous mode and observing the exchanged RREQ and RREP control messages. 

However, an attacker is able to generate and then forward forged RERR messages, disrupting 

in this way the routing process, while remaining undetected. Moreover, high nodes’ mobility 

has an impact on the delay of RREP messages, resulting in false positives. To address such 

limitations, both works presented in [14] and [18] propose two engines relying on more 

comprehensive sets of specifications, based on the known AODV attacks. However, attacks 

that do not violate these specifications remain undetected. Having recognized this, the authors 

of [14] have proposed the operation of a supplementary anomaly-based engine, which on the 

other hand eliminates all the advantages of employing specification-based detection.  

Regardless of the detection approach (i.e., specification or anomaly-based), all of the 

aforementioned schemes do not take into account any security vulnerabilities that may arise 

in relation to the proposed security mechanism itself. A security mechanism, such as an IDS, 
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should not only be capable of detecting malicious behavior, but also avoid introducing new 

vulnerabilities and be resilient to attacks that target the mechanism itself. Adversaries trying 

to avoid detection may attempt to target the employed IDS, aiming at hindering its operation, 

disabling it or tampering its functionality. Furthermore, a compromised IDS can be used to 

launch additional attacks, such as providing erroneous detection results in order to falsely 

accuse legitimate nodes as malicious.  

In our previous work [10], we introduced the concept of combining host-based 

monitoring and specification-based detection as a means for addressing the aforementioned 

limitations of present IDSs, as well as proposed a set of specifications that covers the 

functionality of the 802.11 MAC protocol. In this paper, we significantly expand that work 

by: (i) proposing a comprehensive set of specifications that covers the critical functionality of 

the AODV protocol, (ii) enhancing the resilience of SIDE through the utilization of a trusted 

computing platform (i.e., TrustZone), (iii) proposing a remote attestation procedure that 

facilitates trust between monitoring entities, (iv) providing a security evaluation, identifying 

possible attacks and vulnerabilities of SIDE and outlining how these are addressed, and (v) 

carrying out a performance evaluation, in order to evaluate the induced overheads associated 

with SIDE.  

2.3 Remote attestation  
Remote attestation may ensure the integrity of a software object such as a detection engine, 

by employing software or hardware techniques. In software techniques, the attester issues a 

challenge to the target node, requesting the verification of software hosted by the later. This 

challenge comes in the form of a verification procedure incorporating obfuscation or code 

optimality techniques [22], which should be executed within a predetermined time-period. 

Obfuscation attempts to transform the verification procedure into an equivalent, which is hard 

to be reversed engineered. Code optimality, on the other hand, relies on the assumption that 

the verification procedure cannot be further optimized in order to be executed faster, and thus, 

any attempt to reverse-engineer it will add noticeable delays. The target node hashes the 

memory location in which the verified software resides at and completes the procedure by 

returning the hashed results to the attester. The limitations of such a technique are 

summarized below: (i) it cannot be deployed in infrastructure-less networks (especially 

DTN), since any network-induced latency may lead to false positives; (ii) it cannot detect 

runtime attacks, such as buffer overflow; and (iii) it induces latency by disabling interrupts 

and blocking the execution of other software/applications during the verification procedure 

[32].  

Hardware-based attestation can be achieved based on trusted computing platforms. One 

such platform relies on a special hardware component, called trust platform module (TPM), to 
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establish a chain of trust through the basic input/output system (BIOS) to the operating 

system (OS), where load-time integrity is ensured using hash values stored in a sealed storage 

memory within TPM. Currently, several manufacturers such as Broadcom and Toshiba 

produce TPM microcontrollers, based on the latest TPM specifications [20]. However, this 

approach presents some significant limitations: (i) it increases the cost of devices due to the 

additional hardware; (ii) it cannot be deployed on legacy devices; (iii) it does not protect 

against runtime attacks; (iv) it relies on the assumption that a TPM cannot be tampered; and 

(v) in case of a TPM compromise, the trusted hardware must be physically replaced. Dynamic 

software integrity mechanisms [38][40] have also been designed to complement hardware-

based attestation, supporting runtime verification. They employ additional integrity 

measurements, at runtime, by monitoring data structures, system calls, memory stack, etc., 

but this binary analysis induces significant computational overhead, resulting in an execution 

slowdown of 3000% to 5000%.  
ARM Corporation offers an alternative trusted computing platform, known as 

TrustZone [42], suitable for ARM processor cores and system on chip (SoC) components. It 

provides two virtual processing cores with different privileges and a strictly controlled 

communication interface, enabling the creation of two distinct execution environments, 

encapsulated by hardware. It does not include a remote attestation procedure, but it offers all 

the required services to create one (i.e., secure storage, cryptographic primitives, etc.). Other 

vendors, such as Intel and AMD also provide similar platforms (i.e., Intel’s TXT, and AMD’s 

secure execution environment), but ARM equips the majority of mobile and embedded 

computing devices.  

3 The proposed mechanism 
In this section, we analyze the proposed mechanism’s operation. In particular, section 3.1 

provides an architectural overview of all the components utilized by each network node in 

order to deploy the proposed mechanism. In section 3.2, we propose a comprehensive set of 

specifications that defines the legitimate functionality of the AODV protocol. The detection 

engine relies on this set to resolve if the behavior of the host node is legitimate or malicious. 

It is important to mention that although we focus on the AODV protocol, the proposed 

mechanism can be also applied to any infrastructure-less routing protocol, such as the 

Dynamic Source Routing (DSR) [48] and the Destination Sequence Distance Vector (DSDV) 

[49], by establishing a corresponding set of specifications. Finally, in section 3.3, we propose 

a remote attestation procedure that enables each instance of SIDE to attest its valid and un-

tampered operation to its neighboring entities.  
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3.1 General architecture 
Each network node, where the proposed mechanism can be applied, should consist of a 

TrustZone enabled SoC, which provides two virtual cores that execute two OSs: the un-

trusted and the trusted (see Figure 1). The un-trusted OS holds the user’s applications and 

data, including the instance of the AODV protocol that enables the host-node to communicate 

with other network nodes. Its kernel performs the basic functions such as application 

execution, memory management, device driver installation and maintenance, etc. Software 

executed in the un-trusted OS may also perform malicious actions that require escalated 

privileges (i.e., “root” rights). On the other hand, the trusted OS provides a protected 

execution environment for SIDE (i.e., both the detection engine and the remote attestation 

procedure), which is not accessible by the un-trusted OS (i.e., any code or data contained in 

SIDE cannot be inspected or modified by applications/software executed within the un-

trusted OS).  

Un-Trusted OS Trusted OS

applications

Kernel

Crypto 
co-processor

Detection engine

TrustZone enabled SoC

TrustZone API

CPU Memory System Bus

AODV Routing protocol

Monitor mode service

applications

PROMCo-processor 
registers

Open Virtualization Kernel

Remote attestation 
procedure

SIDE

MMU

Storage

TRM

 

Figure 1: Architecture of a network node operating SIDE 

The TrustZone SoC provides both the underlying hardware in which a node operates 

on, as well as hardware support for enforcing access control of hardware resources between 

the trusted and un-trusted OS. It encompasses the central processing unit (CPU), a set of co-

processor registers, the volatile memory (i.e., RAM), the memory management unit (MMU), 

the system’s bus, a cryptographic co-processor, the one-time programmable memory (i.e., 

PROM), the storage unit, and the trusted region mapping unit (TRM). MMU, the system’s 

bus, and the TRM include a non-secure (NS) flag that instructs the CPU whether the 

underlying resources are used by the un-trusted or the trusted OS, respectively. For example, 

for every RAM storage read/write request, the CPU checks the respective NS field for the 

particular memory address (i.e., MMU responsible for mapping virtual addresses to physical 

addresses) or partition (i.e, TRMs responsible for partitioning storage) and decides whether it 

belongs to the un-trusted or trusted OS. Access to the system bus (i.e., responsible for 

interconnecting all of the SoC’s hardware components) is controlled in a similar fashion. The 
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co-processor registers, MMU, the cryptographic co-processor, PROM, TRM and NS flags are 

neither visible, nor accessible from the un-trusted OS.  

PROM is used to store an SHA256 hash of a pre-distributed public key (i.e., NAPuK), 

which is stored in the host node’s storage. Since this hash value cannot be tampered or 

overwritten, it can be used to infallibly verify the public key NAPuK, which in turn can be used 

to authenticate nodes during the remote attestation procedure (see section 3.3 for more detail). 

The crypto co-processor provides basic crypto functionality, including key generation, 

encryption and decryption, using industry standard encryption algorithms such as RSA, AES, 

SHA2, etc. The goal behind this is to alleviate the CPU from computationally intensive 

cryptographic calculations, providing silicon that is specifically designed for this 

functionality. This approach increases the speed of cryptographic algorithms (i.e., 

throughput), while limiting their respective resources and battery consumption, making them 

feasible for resource constrained devices.  

The trusted OS is implemented using the open virtualization kernel [43], (i.e., the first 

open source implementation of a trusted OS kernel), which provides the basic OS 

functionality (i.e., task, storage, and memory management), the monitor mode service, and 

the TrustZone API [44]. The monitor mode service handles context switching between the 

two virtual processor cores (i.e trusted and un-trusted), facilitated by the co-processor 

registers that are used to store the state of the currently executing virtual core. This 

functionality is similar to a traditional OS context switch, ensuring that the state of the world 

that the CPU is leaving is safely saved, and the state of the world the CPU is switching to is 

correctly restored. Prior to the execution of SIDE, the monitor mode service will always 

perform a switch to the trusted OS (i.e., the trusted execution environment), and thus, the 

subsequent execution of SIDE will be isolated from the un-trusted OS though the 

aforementioned hardware restrictions, imposed by the TrustZone enabled CPU. The 

TrustZone API provides a standardized software interface to the TrustZone security services 

(i.e., cryptographic implementations using the cryptographic co-processor), which are 

employed by the remote attestation procedure of SIDE.  

SIDE consists of a remote attestation procedure, which provides a framework for 

installing trust between SIDE entities, as well as an engine that monitors AODV operation, 

indicating any malicious behavior - activity. The remote attestation procedure (elaborated 

further in sect. 3.3) utilizes the TrustZone API’s cryptographic primitives to verify software 

integrity on a target node, as well as to provide authentication and confidentiality between the 

communicating nodes. On the other hand, the detection engine (elaborated further in sect. 3.2) 

monitors the host node’s AODV protocol operations in real time, and resolves whether some 

AODV operation constitutes a malicious behavior, based on a comprehensive set of 

specifications that accurately define the legitimate operation of AODV.  
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3.2 The detection engine 
The set of specifications utilized by the detection engine to resolve malicious behavior is 

expressed through the use of a finite state machine (FSM). FSM states are characterized as 

legitimate or malignant, and a transition from one state to another is triggered by the node's 

operation or actions. The engine monitors the protocol’s execution and maps it to the 

appropriate state (i.e., legitimate or malignant). States that have not been specified are also 

considered as malignant. The developed specifications are divided into three sets, based on 

the host-node's communication condition: (a) idle, (b) transmitting, and (c) receiving states. 

Nevertheless, the detection engine can be expressed as one inclusive FSM. In the following 

sections, the FSM states of the proposed specification-based detection engine are presented 

and analyzed. 

3.2.1 Idle specifications 
The first set of specifications is presented only for the sake of completeness, since in this 

condition the protocol is awaiting either for a transmission or reception of packets, and thus, it 

does not include any final state designating a malicious behavior. The engine is initialized at 

state S0 and begins monitoring the host node for the following conditions: (i) a new packet is 

ready for transmission, (ii) an incoming data packet has arrived, or (iii) the reception of a 

control message. In the first two cases, the engine moves to states S1 (see sect. 3.2.2) and S2 

(see sect. 3.2.3), respectively; while in the third case it moves to state S3 (see sect. 3.2.3). A 

host node may receive three types of control messages: (i) a RREQ message, (i.e., as part of a 

route discovery process) and the engine moves to state S4 (see sect. 3.2.3), (ii) a RREP 

message (i.e., as a reply to a route discovery) and the engine moves to S5 (see sect. 3.2.3), or 

(iii) a RERR message (i.e., as a consequence of a link breakage) and the engine moves to S6 

(see sect. 3.2.2). Finally, if the host node has enabled the Hello message exchange (i.e., 

connectivity information), it may either generate a Hello message, where the engine monitors 

its generation (see sect. 3.2.2, state S7), or receive one from a neighboring node, where the 

engine monitors the routing table update process (see sect. 3.2.3, state S8).  

3.2.2 Transmitter specifications 
In case that the host node has a packet to transmit to another node (i.e., state S1), the engine 

moves to state S9, (if the node has already an active route to the destination); otherwise, it 

moves to S10. In state S9, the protocol retrieves from the routing table the route to the 

destination and attempts to transmit the packet (i.e., the engine moves to state S11 – see Figure 

2). If the transmission is successful, the engine moves to the initial state S0; otherwise, if a 

local link breakage occurs, AODV initiates the local repair mechanism attempting to discover 

a new route to the destination by transmitting a RREQ message, and the engine moves to state 
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S10. In case that the local repair is successful and the packet is transmitted, the engine returns 

to S11; otherwise, the protocol generates a RERR control message and the engine goes to S6 

(see Figure 5).  

S9 S11

Transmit packet End of packet 
transmission

S10

Link breakage detected 
and local repair 

mechanism initiated

Route repair was 
successful and 

packet transmitted

Local repair failed 
RERR generation

Packet to 
transmit

{From state S1}

{To state S6}

{To state S0}

No active route 
to destination

{From states 
S1, S37}

 
Figure 2:  Transmission of a data packet having a route to the destination 

In S10 (i.e., no active route to the destination exists – see Figure 3), AODV prepares a 

RREQ control message and the engine moves to state S12, where the following message fields 

are inspected: (i) the destination sequence number field should be equal to the last one stored 

in the routing table, and if no value is stored the unknown sequence number flag must be set 

up; (ii) the originator sequence number field must be set up equal to the host’s sequence 

number incremented by one; (iii) the RREQ id field should be also incremented by one; iv) 

the originator IP address field should be equal to the source address of the host node; and v) 

the hop count field should be set equal to zero. If any mismatch occurs, the engine moves to 

the final state S13; otherwise, the host node broadcasts the RREQ and the engine moves to 

state S14. If AODV produces more RREQs per second than the RREQ rate limit, then the 

engine moves to the final state S15, indicating a flooding attack. At state S14, AODV awaits 

for a RREP message containing an active route to the destination. In case that the host node 

receives a RREP before the net traversal timer expires, the engine moves to state S16 and the 

host node transmits the packet. After the transmission of the packet, the engine moves to state 

S11 (see Figure 2). Otherwise, if the timer expires before the reception of a RREP, the engine 

moves to state S17, the protocol initiates the backoff mechanism and then the engine moves to 

state S18 (see Figure 4). If the node attempts to initiate the backoff mechanism before the 

timer expires, the engine moves to the final state S15. 
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Figure 3: Transmission of a data packet without a route to the destination 

The backoff mechanism, which is initiated in cases that the host node does not receive 

a RREP within a net traversal time period, manages how the host node generates RREQs, 

protecting the network from RREQ flooding. As illustrated in Figure 4, the monitoring phase 

of this mechanism begins with state S18, in which AODV makes the first RREQ rebroadcast 

and the engine moves to state S19. At this state, the host node is expected to wait for twice the 

previous net traversal time, before attempting to rebroadcast the RREQ. If the host node 

transmits it before the timer expires, the engine moves to the final state S20, designating a 

rushing attack. If a RREP is received before the timer expires, the engine moves to state S21 

and the host node transmits the packet. After the transmission of the packet, the engine moves 

to state S11 (see Figure 2). Otherwise, (i.e., the host node does not receive any RREP message 

after RREQ retries attempts within a TTL max timeframe), it stops the broadcasting of 

RREQs and drops the packet await for transmission. If it does not drop it, the engine moves to 

the final state S23 (i.e., malicious behavior). Finally, if the route request was initiated by a 

local repair (i.e., states S10 and S37 in Figure 2 and Figure 7, respectively), the protocol must 

generate a RERR message and the engine moves to state S6, else, it returns to the initial state 

S0.  

Based on the AODV specifications [2], a RERR message is generated if one of the 

following occurs:  

a. The host node, while transmitting data, detects a link breakage for the next hop of an 

active route and the route repair attempt has failed (see state S10, Figure 2).   

b. The host node receives a data packet destined to a node for which it does not have an 

active route and the initiated local repair mechanism has failed (see state S10, Figure 7).  

c. The host node receives a RERR from a neighbor for one or more active routes.  
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Figure 4: Backoff mechanism  

In case that one of the above conditions occurs, the detection engine moves to state S6 (see 

Figure 5), where AODV updates the affected entries of the host node's routing table and 

provides a list of the unreachable destinations. For case (a) and (c) this list consists of the 

unreachable neighbors as well as the destination nodes in the local routing table of the host 

that use them as next hop; while in case (b) the list includes only the destination of the data 

packet that cannot be delivered. After these, the engine moves to state S24 and validates the 

modifications to the routing table’s field, allowing only the following: (i) for every 

unreachable destination, the destination sequence number of its routing entry (if such exists 

and is valid), in case (a) and (b) is incremented by one, while in case (c) it is copied from the 

received RERR message; (ii) the route entry is marked as invalid; and (iii) the lifetime field is 

updated to current time plus the delete period. If any deviation from the above takes place, 

then the engine moves to the final state S25; otherwise, after the generation of the RERR 

messages, it moves to state S26. At this state, the engine checks the following RERR message 

fields: i) the destination IP address and the destination sequence number should match the 

corresponding fields of the unreachable destination included in the routing table; and ii) the 

no delete flag should be set, only, if the node has initiated the local repair mechanism. If any 

deviation takes place or the rate of generated RERR messages is greater than RERR rate limit, 

(i.e., a parameter included in AODV), the engine moves to the final state S27; otherwise, the 

host node broadcasts the RERR and the engine moves to state S28. After the completion of the 

transmission, the engine returns to the initial state S0.  
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Figure 5: Generation of a RERR 

The generation of a Hello message is a periodic process that takes place every hello 

interval. In S7 (see Figure 6), the engine monitors the hello interval and when the timer 

expires, it moves to state S29. The generation of a message before the timer’s expiration, will 

lead to the final state S30, designating malicious behavior. At state S29, the engine validates the 

following fields of the Hello message: (i) the destination IP address and destination sequence 

number should be equal to the IP address and latest sequence number of the host node; (ii) the 

hop count have to be equal to 0; and (iii) the lifetime must be set equal to the product allowed 

hello loss * hello interval. If any of these fields holds an invalid value, then the engine moves 

to the final state S30; otherwise, it moves to S31 and monitors the transmission of the newly 

created message. In case that the host node drops the message (i.e., instead of broadcasting it), 

the engine moves to the final state S32.  
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Figure 6: Transmission of a Hello message 

3.2.3 Receiver specifications 
In case of data reception (i.e., data packet or control message), the engine based on the 

packet’s type moves from the idle state S0 to either S2 (i.e., data packet) or S3 (i.e., control 

message). At state S2 (see Figure 7), the engine checks if the host node is the final destination 

of the received data packet, and moves to state S33; otherwise (i.e., if the host node is an 
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intermediate destination), it moves to state S34. At S33, the only licit action for the host node is 

to process the packet and the engine returns to the initial state S0. If the received packet is 

dropped or forwarded, the engine identifies a malicious behavior and moves to the final state 

S35. In case that the host node is an intermediate destination (S34), the engine examines 

whether there is an active route to the final destination, and if such a route exists, it moves to 

state S36; otherwise (i.e., if not), it moves to state S37. 

At state S36, the expected (i.e., normal) behavior of the host node is to update the 

routing table entry, while the engine validates the respective modifications: the lifetime field 

of the source, destination, and the next hops (i.e., in both directions) is set up equal to current 

time + active route timeout. After this, the engine moves to state S38. If the host node 

forwards the data packet, then the engine moves to the state S11 (see sect. 3.2.2); otherwise, if 

the host node drops the packet or the update of routing table deviates from the above, the 

engine moves to the final state S39. At state S37 (i.e., unknown or inactive route to 

destination), the host node should initiate the local repair mechanism to find an active route 

by generating a RREQ message, and the engine moves to state S10 (see section 3.2.2). If the 

local repair is successful, the detection engine moves to state S36. In case that the local repair 

fails, the engine moves to state S6 and monitors the generation of a RERR message (see 

Figure 5). Finally, if the host node does not initiate the local repair, the detection engine 

moves to the final state S40, designating malicious behavior.  
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Figure 7: Reception of a data packet 

In case that a control message is received (see Figure 8), the engine moves to state S3. If 

the received message is a RERR, the engine moves to state S6, where the AODV protocol 

updates the affected entries of the host node's routing table and provides a list of the 
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unreachable destinations. This list consists of the unreachable neighbors as well as the 

destination nodes in the local routing table of the host that use them as next hop. After these, 

the engine validates the modifications to the routing table’s fields, allowing only the 

following: (i) for every unreachable destination, the destination sequence number of its 

routing entry is set equal to the value of the received RERR message; (ii) the route entry is 

marked as invalid; and (iii) the lifetime field is updated to current time plus the delete period.  
Otherwise (i.e., not a RERR), in S3 the engine, first, checks that a new routing table 

entry is created, only, if there is no corresponding entry for the node generating the message. 

If the received message is a Hello, the routing table entry is always updated, while if it is a 

RREQ or RREP, the routing table entry is updated, only, under the condition that the received 

sequence number is either higher than the destination sequence number in the routing table 

entry, or are equal, but the received hop count incremented by one is smaller than the existing 

in the routing table. If an update to the routing table takes place (based on the conditions 

above), the engine validates the modifications to the routing table’s fields, allowing only the 

following: (i) the destination sequence number is set equal to the value of the received 

message; (ii) the route entry is marked as valid; (iii) the lifetime field in the routing table 

entry is set equal to the value of the received message (if the message is a RREQ or RREP) or 

to the value allowed hello loss * hello interval (if the message is a Hello); and iv) the next hop 

field in the respective routing entry depicts the neighbor node from which the message was 

received. If any deviation from the above takes place, then the engine moves to the final state 

S41; otherwise, based on the packet’s type it: (i) moves to S4 (i.e., RREQ message); (ii) moves 

to S5 (i.e., RREP message); or (iii) remains at S3 and starts monitoring the lifetime timer (i.e., 

Hello message). At S3, if the host node receives a new Hello message for the considered route 

entry within the lifetime interval, then the engine resets the timer and remains at S3; otherwise, 

it moves to state S42 and marks the route entry as expired.  
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Figure 8: Reception of a control message 
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Upon a reception of a RREQ (see Figure 9), the engine moves to state S7 and decides 

whether the message is to be discarded, based on the following conditions: (i) the neighboring 

node from which the RREQ was received is blacklisted; or (ii) the host node has already 

received the same RREQ. If one of the conditions holds, then the engine moves to state S43; 

otherwise, it moves to S44. At state S43, the engine checks whether the host node discards the 

RREQ, and if not, it moves to the final state S45 (i.e., malicious behavior). In a similar 

fashion, at state S44, the engine checks whether the host node retain the RREQ, and then shifts 

to either state S47 (i.e., the host node is the final destination) or S48 (i.e., the host node is an 

intermediate node).  
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Figure 9: Reception of a RREQ 

At state S47 (i.e., RREQ reaches the final destination), the engine monitors the 

generation of a RREP message (see  Figure 10) and moves to state S49, where it checks the 

followings: (i) the host node increments its sequence number by one in case that the sequence 

number of the RREQ message is equal to the incremented value, otherwise, the sequence 

number value remains the same; (ii) the destination IP address and the originator sequence 

number of the RREP message match to the corresponding fields of the received RREQ 

message; (iii) the destination sequence number field of the RREP message is equal to the host 

node’s sequence number; (iv) the hop count field is set equal to zero; and (v) the lifetime field 

is set equal to my route timeout. At least one invalid value shifts the engine to the final state 

S50 (i.e., malicious behavior), while valid ones to state S51. At S51, the engine monitors 

whether the host node unicasts the RREP back to the originating node, and if not, it moves to 

the final state S52. In case that the host node attempts to transmit the RREP, but the 

neighboring node fails to accept it, the later is added to the host node’s blacklist (S53). If not, 

the detection engine moves to the final state S54.  
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At state S48 (i.e., RREQ reaches an intermediate destination), the engine checks 

whether the host node has a fresh route to the final destination (see Figure 11) and, if yes, it 

moves to state S55; otherwise it moves to S56. At S55, the engine checks if the destination-only 

flag ('D' flag) is set (i.e., means that only the destination node is allowed to generate a RREP), 

and if so, the engine moves to state S56, monitoring the host node to re-broadcast the RREQ. 

Any attempt by the host node to generate a RREP will lead to the final state S57. If the 'D' flag 

is not set, then the detection engine moves to state S58, and, subsequently, checks if the 'G' 

flag is set (i.e., indicates whether a gratuitous RREP should be sent to the destination node of 

the RREQ) in the received RREQ packet. If it is, the expected behavior of the host node is to 

unicast a RREP (i.e., gratuitous RREP) to the RREQ’s destination node as well as a RREP 

message back to the RREQ’s originator; otherwise, only the RREP message to the RREQ’s 

originator is expected to be transmitted. If the host node does not transmit the generated 

RREP message (and the gratuitous RREP if needed), then the engine moves to the final state 

S59. A successful transmission will move the engine to state S60. Finally, if the host node 

attempts to transmit the RREP, but the neighboring node fails to accept it, the expected 

behavior is the inclusion of the neighboring node to the host node’s blacklist (S61). If the host 

node does not include the neighboring node to its blacklist, then the detection engine moves 

to the final state S62. 
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 Figure 10:  RREQ reaches the final destination 

At state S56 (i.e., the host node does not possess a fresh route to the destination), AODV 

modifies the received RREQ message and the engine moves to state S63, allowing only the 

following changes: (i) the time to live is decreased by one, (ii) the hop count is incremented 

by one, and (iii) the destination sequence number is set up with the maximum value of the 

corresponding field of the received RREQ and the one maintained by the node. If the carried 

modifications are legitimate, the considered message is broadcasted (S64); otherwise the 

engine moves to the final states: S65 (i.e., illegal modifications) or S45 (the host node drops the 

packet).  
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Figure 11:  RREQ reaches an intermediate destination 

Upon a reception of a RREP message (see Figure 12), the engine moves to state S5 and 

shifts either to state: (i) S9 (i.e., final destination), where the host node is expected to initiate 

data transfer (see sect. 3.2.2), or (ii) S66 (i.e., intermediate), where AODV modifies the 

received RREP message and the engine moves to state S67. At this state, the engine verifies 

that the fields of the modified RREP message match to these of the received message except 

for the hop count field, which should be incremented by one. If any of the above is not true, 

then the engine moves to the final state S68; otherwise, it moves to state S69, monitoring 

whether the host node, actually, forwards the RREP towards the destination. In cases that the 

RREP is dropped, the engine moves to the final state S70, otherwise, the RREP transmission is 

complete and the engine returns to the initial state S0.  
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Figure 12: Reception of a RREP 
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3.3 Remote attestation 
The remote attestation procedure enables a node to verify that a particular neighboring node 

operates an un-tampered version of SIDE. As a prerequisite, each node in the network should 

store: (i) a 2048bit RSA key pair (NPrK, NPuK); (ii) the network administrator’s 2048bit RSA 

public key (i.e., NAPuK); (iii) an SHA256 hash of NAPuK; (iv) its own digital certificate Certn 

signed by the network administrator; and (v) SIDE’s executable (i.e., the binary code of the 

detection engine and the remote attestation procedure) in its storage. The “network 

administrator” may represent a variety of entities ranging from the hardware manufacturer to 

the network’s institutor, depending on the network’s deployment objectives, which are out of 

the scope of this paper. For the sake of simplicity, we assume that all nodes run the same 

version of SIDE. The node initiating a remote attestation procedure is referred as the 

“attester” (denoted as N1), while the recipient of the attestation request is the “target node” 

(denoted as N2). The proposed attestation procedure (illustrated in Figure 13) includes the 

following steps:  

1. Within node N1, SIDE generates a random waiting time (from 0 to 2 x hello interval), 

before issuing an attestation request to a neighboring node. Subsequently, SIDE keeps 

track when the random waiting time has elapsed. The interval between attestation 

requests is based on the hello interval parameter because the latter is AODV’s optimal 

parameter for 1-hop control message exchange.  

2. Once the waiting timer expires, SIDE randomly selects one of the attester node’s 

neighbors as the target (i.e., node N2) and generates a 128bit random nonce (RN) (i.e., 

utilized to alleviate replay attacks). It then transmits an attestation request message (i.e., 

message 1) to the target, which contains the attester’s digital certificate CertN1 and the 

non-predictable RN, as well as generates a SHA256 hash of SIDE’s executable residing in 

N1’s storage concatenated with RN (see eq. (1) below).  

 
Message 1: CertN1, RN 

 
3. Upon the reception of the attestation request, node N2 first verifies the authenticity of 

N1’s public key N1PuK, using the accompanied certificate CertN1 and the network 

administrators public key NAPuK. If the public key is authentic, it generates a SHA256 

hash of SIDE’s executable residing in N2’s storage concatenated with RN (see eq. (1) 

below), and a 128bit AES session key KN1N2.  

 
HashSIDE = SHA256 {RN || BinarySIDE}  (1) 

 
4. The target node N2 then generates an attestation reply message (i.e., message 2), which 

includes: (i) the target’s certificate CertN2; (ii) the generated session key KN1N2 as well as 



 22 

the received RN encrypted, first, by the target’s private key N2PrK and, subsequently, by 

the attester’s public key N1PuK; and (iii) finally, the hash of SIDE’s executable and RN 

(i.e., HashSIDE) encrypted by the session key KN1N2.  

 
Message 2: CertN2, N1PuK{N2PrK(KN1N2, RN)}, KN1N2{HashSIDE} 

 
5. Upon the reception of the attestation reply, the attester node N1, first, verifies the 

authenticity of N2’s public key N2PuK, using the accompanied certificate CertN2 and the 

network administrators public key NAPuK. If it is authentic, it uses its private key N1PrK 

and N2’s public key N2PuK to decrypt the session key KN1N2 and RN. It then compares the 

received RN with the previously generated one, in order to verify that the reply message 

is legitimate and not a replay attack. Finally, it uses the session key KN1N2 to decrypt 

SIDE’s digest HashSIDE and compares it with its own generated hash. If the target node 

N2 runs an un-tampered version of SIDE, then the two hashes should match, considering 

that: (i) all nodes run the same version of SIDE, (ii) SIDE’s executable is compiled for 

the same OS (i.e., the open virtualization kernel), and (iii) both nodes used the same RN 

value in the computation of (1). If the two hashes do not match, then the target node is 

considered untrustworthy.  

Since nodes N1 and N2 have already established a shared secret session key KN1N2 (i.e., 

known only to nodes N1 and N2), any subsequent attestation requests between them can be 

performed using this key. The attester node N1 may submit an attestation request to the target 

node N2, by generating and transmitting RN, while N2’s  reply encompasses the hash of 

SIDE’s executable concatenated with RN and encrypted with the session key (i.e., 

KN1N2{HashSIDE, RN}). Finally, the session key KN1N2 is utilized for as long as nodes N1 and 

N2 remain neighbors (i.e., while the AODV lifetime timer does not expire).  
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Figure 13: Remote attestation procedure 
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4 Evaluation of the proposed detection mechanism 
In this section, we thoroughly evaluate SIDE focusing on: (i) the advantages over previously 

proposed mechanisms (see section 4.1); (ii) the robustness of the proposed mechanism against 

attacks (see section 4.2); (iii) the computational cost and memory requirements (see section 

4.3); and (iv) the performance of SIDE compared to other state-of-the-art solutions (see 

section 4.4).  

4.1 Advantages over previously proposed detection mechanisms 
SIDE introduces a number of significant advantages over existing detection mechanisms 

designed for AODV. First off, the employment of the remote attestation procedure enables 

the engine's deployment in host nodes that may also include suspicious/malicious software, 

allowing monitoring local information and thus ascertain an accurate view of the protocol 

operations. Every protocol action is monitored by the employed engine and any deviation or 

malicious behavior from the protocol specifications is detected, in real-time, minimizing the 

time in which a malicious activity may induce damage into the network. On the other hand, 

anomaly-based detection engines, typically, resolve attacks in non-real time, since they have 

to collect audit data for some predefined time frame, preprocess them, run the detection 

algorithm, and then, resolve if a malicious activity took place [23]. Therefore, the detection of 

an attack takes at least:  

detection time = TF + P + D   (2),  

where TF is the time frame for collecting audit data, P the preprocessing time, and D the time 

it takes for the engine to analyze the audit data and provide a decision. 

SIDE may also effectively detect every possible attack (i.e., currently known or 

unknown) that targets the operation of AODV, as long as the attack is expressed as a violation 

of the protocol's specifications. This is achieved by relying on operational rules developed 

following the legitimate protocol operation, instructed by the protocol’s specifications, rather 

than attack patterns (i.e., signature-based detection) or statistical behavioral models (i.e., 

anomaly-based detection). These operational rules, accurately, express the expected protocol 

behavior and thus, any activity that does not act in accordance with these rules is marked as 

malicious. Another advantage of SIDE has to do with the fact that its detection accuracy is 

not negatively affected by network volatility (i.e., churn, changes in the topology, high node’s 

mobility, etc.). This is because the proposed engine does not use the notion of a normal 

profile, but it monitors the network conditions in real time. On the other hand, in anomaly-

based engines, dynamic changes of the network, typically, cause high rate of false positive 

since they consider them as effects of malicious actions [23].  

SIDE’s reliance on local information alleviates the associated overheads (i.e., capture, 

store, and process) of audit data collection, since there is no need for audit data exchange 
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among network nodes or the monitoring of the exchanged packets. Although the proposed 

attestation procedure engages neighboring nodes to exchange attestation packets, the imposed 

communication overhead is limited as presented in sect. 4.3. In addition, the imposed 

overhead is uniformly distributed among all the network nodes and thus, there is no unfair 

distribution of detection responsibilities. The utilization of hardware-based encryption 

minimizes the consumption of the related processing and battery resources, during the 

attestation procedure. Evaluations of hardware-based encryption have shown that a hardware-

based implementation of AES with a key size of 128 bits consumes 97% less energy, 

compared to software-based encryption; while the throughput is increased by 2500% 

[45][46].  

Finally, SIDE offers several advantages compared to the existing specification-based 

detection engines for AODV. More specifically, it detects all the possible attacks that target 

the protocol, because: (a) it monitors all the types of AODV messages, including routing 

control (RREQ, RREP and RERR) and data packets; and (b) the proposed specifications were 

developed based on the valid protocol operation and thus, any deviation is considered 

malicious, regardless if it is a known or unknown attack. On the contrary, the existing 

specification-based engines proposed in [13][15][16] monitor, only, RREQ and RREP, 

allowing possible attackers to disrupt routing by generating forged RERR packets. Moreover, 

the specifications included in the engines analyzed in [14][18] are designed to detect, only, a 

particular set of AODV attacks, and thus, unknown attacks that do not violate these 

specifications remain undetected.  

4.2 Security evaluation 
In an implemented scenario, an adversary may either target the AODV protocol or SIDE. The 

detection engine of SIDE monitors the protocol’s functionality and parameters enabling the 

detection of any attacks that attempt to violate them. On the other hand, the proposed remote 

attestation procedure as well as the fact that SIDE is deployed on a TrustZone platform 

guarantee and safeguard its operation. In the following, we provide a case study of known 

critical attacks that target the AODV protocol and illustrate how these are resolved by SIDE, 

in comparison with other specification-based schemes. Moreover, we ascertain the robustness 

of SIDE against actions that aim to hinder or disable it.  

4.2.1 Detection of known attacks 
A RREQ flooding attack is a commonly used attack, which aims at the consumption of 

network resources. In this attack, a malicious node broadcasts a large amount of forged 

RREQ messages with random, fake source and destination IP addresses. Legitimate nodes 

receiving these messages are obliged to generate reply messages, depleting both their 
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resources as well as the resources of any other node participating in the route discovery 

process. SIDE monitors the generation of RREQ messages at each network node (see section 

3.2.2) and is capable of detecting whether a host node attempts to perform a RREQ flooding 

attack. This is achieved by validating the originator IP address encapsulated in the generated 

RREQ and by monitoring if the rate of RREQs per second exceeds the RREQ rate limit. 

RREQ flooding can also be detected by the existing specification-based engines analyzed in 

[13][14][15][16][18].  

Denial of Service (DoS) is another, widely, performed attack in which an adversary 

attempts to disrupt the network operation and obstruct the access of a legitimate node or set of 

nodes to the network services. In its simplest form, the malicious node may choose to 

selectively drop control messages and data packets, aiming at either disrupting specific routes 

or conserving energy (i.e., selfish node). SIDE, at each host node, keeps track of all packets, 

from their reception up until transmission, and thus, detects any attempt by the host node to 

drop, delay, or modify a data or control packet. The attacker may also attempt to break the 

existing routes, by transmitting forged RERR messages. This will activate the route discovery 

process, leading to a DoS. Since AODV specifies the circumstances under which a node 

generates a RERR message, SIDE monitors every message generation, detecting any 

unjustified attempt (see section 3.2). Existing solutions introduced in [14] and [18] are also 

capable of detecting such attacks; while the detection engines analyzed in [13][15][16] focus, 

only, on RREQ and RREP control messages, skipping RRER.  

A DoS attack may become more effective in case that a malicious node advertises itself 

as intermediate to the shortest paths to destinations (i.e., blackhole attack). To achieve this, it 

forwards fabricated RREP messages, which include high sequence numbers, as responds to 

received RREQs. Once the malicious node starts receiving data packets from the target 

node(s), it usually drops them. SIDE is capable of detecting if the host node is attempting a 

blackhole attack, since it monitors: (i) the presence of a fresh route to the requested 

destination in the routing table; (ii) the eligibility of the host node for generating a RREP; and 

(iii) the validity of the fields of a generated RREP (including the host’s sequence number) 

(see section 3.3). The engines introduced in [13][14][16][18] are capable of detecting 

blackhole attack; while this of [15] resolves the attack, only, if the monitoring node 

receives the legitimate RREP message, issued by the destination. Two colluding malicious 

nodes may also attract network traffic, by advertising that there is a direct link between them, 

regardless of the actual distance in hops (i.e., wormhole attack). This attack is accomplished 

by modifying the hop count field of the forwarded RREP messages. SIDE detects wormhole 

attacks, since it monitors all fields (i.e., including the hop count field) set during the 
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generation or modification of a RREP (see section 3.3). This attack is also detected by the 

engines analyzed in [13][14][15][16], but not from this of [18].  

Attackers may attempt to exploit the route discovery process, by omitting the backoff 

mechanism, performing a rushing attack. By forwarding a RREQ packet ahead of time, a 

malicious node may gain an advantage in being selected as part of an active route. SIDE 

encompasses a set of rules that specify the valid operation of the backoff mechanism (see 

section 3.2), and any attempt by the host node to violate these rules will be detected. For 

example, if the host node attempts to transmit a RREQ before the backoff timer (i.e., 2 * 

Previous Net Traversal Time) expires, it will be flagged as malicious. The detection engines 

of [14][16] are also capable of detecting this attack; while the engines of [13][15][18] are not.  

4.2.2 Robustness of the proposed engine 
Adversaries trying to avoid detection may attempt to target SIDE, aiming at hindering its 

operation, disabling it or tampering its functionality. To carry out these, they may either 

intervene to the communication channel among networks nodes or have access to the 

hardware or software of one or more nodes. Intervening in the communication channel, an 

adversary may masquerade as a legitimate node, by attempting to provide a valid attestation 

response, replay a previously captured attestation response, or capture, modify and resend 

one. However, all of these attacks are overcome by the proposed remote attestation procedure. 

In particular, an adversary cannot masquerade to be a legitimate node, since only the later 

possesses a valid digital certificate signed by the network administrator. If the adversary 

attempts to use a self-generated digital certificate, the remote attestation procedure will fail at 

step 5 (see section 3.3), when the attester nodes tries to authenticate the adversary’s digital 

certificate.  Furthermore, the use of a nonce (i.e., the random number RN generated by the 

attester node) value prevents an adversary from performing a replay attack, since the attester 

node will reject any response with an outdated nonce value. Finally, the adversary cannot 

capture a previously transmitted attestation response and modify it in order to forge a reply 

with the new nonce, since the attestation responses are always encrypted by the target node 

and the nonce is concatenated within SIDE’s hash value.  

Having access to a host node, an adversary may also perform software or hardware 

attacks. Software attacks, typically, aim at altering the behavior of a running program or 

crashing it, by modifying the execution flow and allowing arbitrary code execution. Such 

attacks include buffer-overflow, heap overflow, stack smashing, etc. These attacks are 

counteracted by SIDE using the software isolation mechanisms, employed in the TrustZone 

SoC. More specifically, the MMU provides a particular interface to the resided OSs (i.e., 

trusted and un-trusted), enabling each of them to maintain a local table of virtual-to-physical 

memory address translation. Each entry of these tables includes an NS flag, which is used by 
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the TrustZone CPU to identify if the equivalent memory address belongs to either the trusted 

or the un-trusted OS and prevent the later from accessing any memory area allocated to the 

trusted OS.  

Hardware attacks attempt to exploit platform vulnerabilities, which are related to a 

hardware interface commonly used for testing and debugging, known as joint test action 

group (JTAG). JTAG is embedded in most processors, devised for testing and debugging 

circuit boards. It may provide access to an adversary to resources that are only accessible by 

the trusted OS (i.e., memory, storage, co-processor registers, etc). However, a TrustZone SoC 

comes with the provision of permanent deactivation or semi-deactivation of this interface, 

during manufacturing. A permanent deactivation completely disables it; while a semi-

deactivation limits its access to resources that are available to the un-trusted OS.  

4.3 Computational cost and memory requirements 
To quantify the computational cost and memory requirements of SIDE, both the remote 

attestation procedure and the detection engine should be individually analyzed. The remote 

attestation procedure does not induce any significant computational costs, since all of the 

required cryptographic computations are performed by the TrustZone crypto-coprocessor 

[42],[50]. On the other hand, the remote attestation procedure induces memory consumption, 

due to the fact that additional memory sections are allocated to store the required 

cryptographic parameters. That is, 1 KB for the Certificate, 512 bytes for the RSA key pair, 

256 bytes for the network administrator’s public key, 16 bytes for RN, 16 bytes for the 

session key, and 32 KB for the hash digest (see section 3.3). In total, 1856 bytes are allocated 

and stored in the memory for the remote attestation procedure. 

The detection engine induces both computational costs and memory consumption when 

it utilizes the CPU and the memory to perform comparisons, in order to check if the 

specifications are violated or not. To quantify the computational costs, first we determine the 

maximum number of comparisons performed by the detection engine, while executing a 

complete set of specifications. As mentioned in section 3.2, the specifications are divided into 

three sets, based on the host-node's communication condition: a) idle, b) transmitting, and c) 

receiving. Next, we calculate how many CPU instructions are required to perform these 

comparisons for each one of the above three sets of specifications.  

Let UI, UT, and UR denote the maximum number of comparisons made by the detection 

engine for the: a) idle, b) transmitting, and c) receiving sets of specifications, respectively. 

The number of CPU instructions required for a comparison depends on the target CPU 

architecture. In this analysis, we assume that the ARM CPU implements the thumb-2 

instruction set [51], which requires one CPU instruction to perform a single comparison 

between two integer values, stored in the CPU’s registers [51]. Three additional CPU 
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instructions are required to fetch the two integers into the registers and store the result back 

into the memory. Thus, each comparison is estimated at a cost of four CPU instructions. 

Based on the above, the CPU instructions required for the execution of the maximum number 

of comparisons for each set of specification is given by:  

CI  =  4UI  (4), 

CT  =  4UT  (5), 

CR  =  4UR  (6), 

where CI, CT, CR denote the maximum number of CPU instructions for the idle, transmitting, 

and receiving sets of specifications, respectively.  

In order to calculate the values of UI, UT, and UR, we measure the highest number of 

comparisons performed by each respective set of specifications, when all their states are 

executed. The maximum value of UI is 3, since the idle specification verifies three conditions 

(see section 3.2.1): (i) if an incoming data packet is ready for transmission, (ii) if a data 

packet has been received, and, (iii) if a control packet has been received. On the other hand, 

UT has a maximum value of 28 comparisons, which occurs when a data packet is ready for 

transmission, but there is no route to the destination and the route repair process fails (see 

section 3.2.2). Finally, the maximum value of UR is 39 comparisons and it is reached when a 

RREQ message is received by an intermediate destination and the ‘G’ flag on the RREQ 

message is set, forcing the generation of a gratuitous RREP (see section 3.2.3). Based on 

these measurements, we determine that the maximum number of CPU instructions required 

for the three sets of specifications are: CI = 12, CT = 112 , and, CR = 156. 

On the other hand, to quantify the detection engine's memory consumption, we have 

calculated the memory required for storing the maximum number of parameters that may be 

used by the detection engine, during the execution of a set of specifications (i.e., idle, 

transmitting, or receiving). We assume these parameters are stored as 32-bit integers. For 

each parameter, there are two values that are stored in memory: one value observed by the 

engine while monitoring the AODV protocol and one value which is the expected (i.e., 

legitimate) value, based on the specifications. In any AODV operation, the detection engine 

may allocate memory to temporarily store the following parameters: the destination IP 

address, the originator IP address, the destination sequence number, the originator sequence 

number, the RREQ id, the hop count field, the RREQ rate limit, the net traversal time¸ the 

RREQ retries counter, the TTL max counter, the route entry flag, the lifetime field, the no 

delete, 'G', 'D' flags, the RERR rate limit, the active route timeout, the blacklist timeout, the 

allowed hello loss and the hello interval. Based on the above, the maximum number of 

parameters allocated in the memory during the execution of the detection engine is 40, 

resulting in a total memory consumption of 160 bytes.  
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4.4 Performance Evaluation 
In this section, a prototypical implementation of SIDE is evaluated through simulations. The 

objective of the carried simulations was to compare SIDE’s performance to other security 

mechanisms designed for AODV, verifying the previously mentioned advantages.  

The simulations were performed using the ns-3 network simulator [35], version 3.16, 

which was tested and validated after the installation. The underlying network topology was 

constructed by, randomly, placing 25, 50, 75, and 100 nodes in an area of 1000m x 1000m, 

where nodes established links if they were in a radio range of 100m or less. Network traffic 

was generated by 10 randomly selected constant bit rate (CBR) source nodes, which 

transmitted 512 bit data packets at fixed rates of 5, 10, or 20 packets per second. Nodes’ 

mobility was simulated using the random waypoint mobility model and the speed of mobile 

nodes ranged from 0 to 20 m/s. Table 2 displays a summary of the simulation parameters.” 

Table 2: Simulation parameters 
Simulation parameters Value 

Number of nodes 25/50/75/100 

Simulation area 1000 m x 1000 m 

Radio range 100 m 

Mobility model Random waypoint 

Nodes’ mobility Ranged from 0 to 20 m/s 

Channel capacity 2Mbps 

Traffic type CBR 

Traffic volume 5/10/20 packets per second 

CBR packet size 512 bytes 

 

The comparative evaluation, except from SIDE, includes results from: (i) the SAODV 

protocol [36]; (ii) three anomaly-based intrusion detection engines, SVM [26], MRF1 [30], 

and DCM [37]; as well as (iii) the pure AODV without any security mechanism. The latter is 

used as a base, where the imposed overheads by the considered security mechanisms can be 

compared and studied. SAODV was selected because it constitutes a solution that 

encompasses security features within AODV. Moreover, the three anomaly-based detection 

engines were selected since they utilize state-of-the-art techniques (i.e., thresholds and 

dynamic profiling) as well as they provide a broad set of simulation results, allowing for a 

detailed comparison with SIDE.  
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To quantify the performance and facilitate the comparison among the studied solutions, 

we have selected the following metrics: (i) the packet deliver ratio (i.e., the percentage of 

transmitted packets that reach their destination); (ii) the imposed control packet overhead 

(i.e., the increase in the percentage of control packets transmitted by AODV); and (iii) the 

observed detection accuracy (i.e., the percentage of attacks that are resolved by the detection 

mechanism). The packet delivery ratio, in the presence of a malicious node(s) performing a 

packet dropping attack(s), may assess the ability of the considered mechanism to detect and 

isolate malicious nodes, minimizing the effects of the attack(s) in the operation of the 

network. The control packet overhead measures the corresponding control packets initiated by 

the considered mechanism, determining the induced communication, processing and energy 

consumption overhead. Finally, the detection accuracy of a mechanism, in the presence of a 

sinking attack(s) and under variable nodes’ mobility, evaluates the mechanism’s ability to 

resolve attacks in volatile network conditions.  

Figure 14 presents the packet delivery ratio as a function of the number of malicious 

nodes, performing a packet dropping attack for AODV, SIDE, SAODV, and DCM. SVM and 

MRF1 are excluded from this study, since their authors do not provide such results for their 

performance. In the presence of one malicious node, the packet delivery ratio of pure AODV 

(i.e., without any security measure) is about 80%; while for 10 malicious node the ratio drops 

down to 20%, depicting the impact of the attack. The packet delivery ratio for SIDE is 

approximately 100%, regardless of the number of malicious nodes, the density of network 

nodes, or the volume of generated traffic. These results confirm the assertion that SIDE 

performs detection in real time, meaning that attacks are detected immediately after they are 

initiated by a malicious node. This can be attributed to the fact that SIDE monitors the 

behavior of its host node, relying exclusively, on local information. Thus, any change in the 

number of malicious nodes, the volume of traffic or the density of nodes, does not have an 

impact on the monitoring process and the detection capabilities of SIDE. SAODV 

demonstrates similar performance with SIDE, which in the worst case scenario of 10 

malicious nodes it presents a packet delivery rate of 95%. This occurs because SAODV 

eliminates the ability of malicious nodes to generate false RREP, allowing only the final 

destinations of a RREQ to do this. Nevertheless, the malicious nodes are still capable of 

dropping some data packets transmitted. On the contrary, the employment of the DCM engine 

degrades the network operation and the considered metric as the number of malicious nodes 

increases from 1 to 10, reaching the lowest value of 80% for the presence of 10 malicious 

nodes.  
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Figure 14: Packet delivery ratio as a function of the number of malicious nodes 

Figure 15 depicts the percentage of additional control packets, compared to pure 

AODV, transmitted by SIDE, SAODV, and DCM, as a function of the total number of 

transmitted packets. Once again, SVM and MRF1 are excluded from this study, since their 

authors do not provide comprehensive results for their performance. SIDE induces the least 

control packet overhead (averaging 6%), and its performance is close to that of the AODV 

protocol running without any security mechanisms. Moreover, we observe that the control 

packet overhead of SIDE remained constant when the nodes density is increased. Even 

though the higher number of nodes results in additional SIDE’s control packets (i.e., 

additional attestation messages), at the same time it causes a similar increase in control 

messages for AODV. Thus, the relative control packet overhead between the proposed 

mechanism and AODV is not modified when the nodes density increases.  Moreover, the 

employment of SAODV in a network of 50 nodes results in a control message overhead of 

about 20%. On the other hand, as shown in figure 15, DCM exhibits the highest amount of 

control packet overhead, exceeding on average 100% in a network of 50 nodes and 150% in a 

network of 100 nodes. However, it is the only scheme that diminishes the occurred overhead 

as the total number of transmitted packets increases. This is mainly caused by the 

mechanisms’ ability to provide more accurate decisions about the behavior of nodes as the 

respective number of monitoring packets increases. In this way, the need to transmit “test 

packets” between monitoring nodes are minimized, reducing the associated communication 

overheads. 

We have also estimated the control packet overhead of SIDE when the traffic volume is 

increased. Numerical results showed that this overhead decreases when the volume of traffic 

is increased. In particular, a traffic volume of 5, 10, and 20 packets per second results in a 
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packet control overhead of 11%, 6.1%, and 2.8%, respectively. This happens because the 

control packets of SIDE (i.e., remote attestation messages) are generated at fixed interval 

times, independently of the traffic volume. On the other hand, the increase of traffic volume 

results in additional AODV control messages. As a result, the SIDE’s control packet overhead 

in proportion to the number of AODV control messages is decreased. 

 

Figure 15: Control packet overhead as a function of the number of packets  

It is worth noting that SIDE’s control packets are smaller in size compared to AODV 

and SAODV. More specifically, during the remote attestation procedure of SIDE, two packets 

are exchanged with a size of approximately 1040 bytes (i.e., 1KB for the Certificate and 16 

bytes for RN) and 1536 bytes (i.e., 1KB for the certificate, 256 bytes for the encrypted session 

key, and 256 bytes for the encrypted hash), respectively. In total, around 2576 bytes are 

transmitted per attestation request, or roughly around 1/10 of the size (i.e., 25 KB) of an 

AODV control packet.  The size of SAODV control packets is almost twelve (12) times the 

size of the original AODV control packets (i.e., around 300 Kb in comparison to 25 KB for 

pure AODV). This is due to the additional fields required by SAODV for the conveyance of 

digital signatures and hashes. Finally, the authors of DCM do not provide any information 

related to the size of the “test packets”, transmitted by the monitoring nodes. 

Figure 16, presents the detection accuracy (i.e., the percentage of attacks that are 

resolved by the detection mechanism) of SIDE and DCM, as a function of the number of 

malicious nodes performing a blackhole attack. SVM, MRF1, and SAODV are excluded from 

this study, since their authors do not provide respective results for their performance. Overall, 

we conducted ten iterations of this experiment, in each of which the number of randomly 

selected malicious nodes was incremented by one. The employment of SIDE results in a 

detection accuracy of 100%, regardless of the amount of malicious nodes in the network, the 
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density of nodes, or the volume of traffic. This can be attributed to the fact that SIDE relies on 

a host-based architecture and thus, the presence of a higher number of malicious nodes does 

not affect its detection accuracy. On the other hand, the deployment of DCM in a network 

with nodes density equal to 100, results in a slight drop of the detection accuracy, which 

reaches 99% in the presence of 10 malicious nodes. When the nodes density is decreased to 

50, then the detection accuracy of DCM drops even further, and reaches 91% (i.e., the number 

of malicious nodes is 10). This happens because decreasing the nodes density, limits the 

number of cooperating nodes (i.e., legitimate), thus hindering the ability of DCM to resolve 

malicious activities. 

 

Figure 16: Detection accuracy as a function of the number of malicious nodes 

Figure 17 presents the detection accuracy of SIDE, SVM, and MRF1 as a function of 

the average node’s speed. SAODV and DCM are excluded from this study, since their authors 

do not provide such results for their performance. We conducted ten iterations of this 

experiment, in each of which we increased the average node speed by a factor of 2 m/s, 

beginning with an initial value of 0 m/s. For each iteration, ten nodes were randomly selected 

to perform a sinking attack. The employment of SIDE results in a detection accuracy that is 

constant and equal to 100%, regardless of the volatile network conditions (i.e., nodes 

movement, density of nodes, or volume of traffic). This can be attributed to the fact that SIDE 

resides at each network node, monitoring the nodes behavior and action using a well-defined 

set of rules, which represent the legitimate behavior and actions, based on the AODV 

specifications. The deployment of SVM also leads to comparable results with average 

detection accuracy around 96%. This is because the engine uses a dynamically updated 

normal profile, which however, introduces a number of limitations (see section 2.2). On the 

other hand, the detection accuracy of MRF1 is highly affected by the change in node’s 

mobility and with an average node’s speed of 15 m/s, it drops more that 20%. MRF1 utilizes 
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a static normal profile and hence it is more prone to be affected by dynamic network changes. 

These changes may cause MRF1 to rely on outdated information (i.e., normal profile) and 

thus perform poorly.  

 

Figure 17: Detection accuracy as a function of the average node’s speed 

5 Conclusions 
This paper proposed a monitoring mechanism called SIDE that safeguards the operation of 

AODV. SIDE encompasses two complementary functionalities: (i) a specification-based 

detection engine for AODV, and (ii) a remote attestation procedure. It operates on a trusted 

computing platform, which provides hardware-based root of trust and cryptographic 

acceleration used by the remote attestation procedure, as well as protection against runtime 

attacks. A key advantage of the proposed mechanism is its ability to effectively detect both 

known and unknown attacks. The performance analysis showed that SIDE is capable of 

detecting malicious behaviors in real time, thus minimizing the impact of an attack. It was 

also observed that it resolves attacks with a low percentage of false positives/negatives even 

under high network volatility. Moreover, SIDE induces the least amount of control packet 

overhead in comparison with a number of other proposed IDS schemes.  
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