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Abstract 

In this paper, we investigate and evaluate through experimental analysis 

the possibility of recovering authentication credentials of mobile 

applications from the volatile memory of Android mobile devices. 

Throughout the carried experiments and analysis, we have, exclusively, 

used open-source and free forensic tools. Overall, the contribution of this 

paper is threefold. First, it thoroughly, examines thirteen (13) mobile 

applications, which represent four common application categories that 

elaborate sensitive users’ data, whether it is possible to recover 

authentication credentials from the physical memory of mobile devices, 

following thirty (30) different scenarios. Second, it explores in the 

considered applications, if we can discover patterns and expressions that 

indicate the exact position of authentication credentials in a memory 

dump. Third, it reveals a set of critical observations regarding the privacy 

of Android mobile applications and devices. 

Keywords: privacy of mobile applications, mobile forensics; android; 

memory dump; mobile applications; volatile memory; authentication 

credentials. 

1 Introduction 

According to recent reports [1], the global adoption of smart phones and tablets has 

been growing faster than any other consumer technology in history. These small 

factor devices introduce a new processing and communication paradigm, enabling 

end-users to access and manage a broad set of data and services, while on the move. 

To materialize this, a wide range of mobile applications have been developed, which 

are extending from entertainment and gaming to critical mobile banking and 

proprietary enterprise applications for accessing corporate resources. 

Along with great opportunities, mobile devices reveal new attack vectors for 

the involved parties (i.e., users, service providers, data owners, etc.) [2]. It is a fact 

that mobile devices can be easily stolen or misplaced, due to their compact size. The 



loss of a mobile device can lead to major privacy breach, since emails, social 

activities, pictures or any other stored data can be disclosed. A study in 2011, named 

as the lost smart phone problem [3], determined that in a 12-month period 142,708 out 

of 3,297,569 employee smart phones were lost or stolen, i.e., 4.3 percent per year. 

Moreover, in 2012, researchers from Symantec presented their results of the 

Smartphone Honey Stick Project [4]. In this project, 50 smart phones were, 

intentionally, lost in cities around the U.S. and Canada. The phones were loaded with 

logging software, so that Symantec could keep track of all activities. The study came 

to the result that in the 96 percent of the cases, the finders had accessed the personal 

data (e.g., email, photos, etc.) that was stored in the lost devices. Moreover, on nearly 

half of them (43 percent), the finders had attempted to access the owners’ online 

banking applications. 

The proliferation of mobile devices has also led to the birth of mobile digital 

forensics, a branch of digital forensics that deals with the recovery of digital evidence 

or data from mobile devices, under forensically sound conditions. The latter denotes 

the acquisition of identical copies of the entire available evidences/data, without 

causing any alteration to the underlying device. Currently, most of the forensic 

research on mobile devices has been focused on: (i) the acquisition and analysis of the 

internal flash NAND memory and SD Cards; (ii) the understanding of the employed 

file systems; and (iii) the scrutinizing of the application files for identifying malware. 

However, little attention has been paid to the research on the acquisition and analysis 

of the volatile memory, also referred as random access memory (RAM), of mobile 

devices. This is the motivation of the present work, which focuses, explicitly, on the 

volatile memory of mobile devices. Moreover, this type of memory holds, temporary, 

the authentication credentials (i.e., usernames and passwords) submitted by the users 

to activate security critical applications (e.g., mobile banking, password managers, 

etc.). 

Previous research has proved that forensic investigators can discover critical 

information in the volatile memory of desktop computers, like users’ authentication 

credentials [5]. Thus, it is motivating to examine if we can discover such information 

in the volatile memory of mobile devices. Considering that 61 percent of the Internet 

users reuse authentication credentials on multiple websites/services [6], we realize 

that sometimes the disclosure of a username and/or password is sufficient to 

compromise the privacy of all the user’s applications [7]. Especially, in case of 

applications that deal with sensitive data or functionality (e.g., banking, password 

managers, e-shopping, etc.), an exposure of authentication credentials can lead to 

major privacy breach.  

In this paper, we investigate and evaluate through experimental analysis 

whether we can discover authentication credentials of mobile applications in the 

volatile memory of rooted mobile devices, following thirty (30) different scenarios 

(i.e., eleven (11) general scenarios with some time variations). We focus on mobile 

devices that operate with the Android operating system (OS), because it is the most 

widely used one [8]. To perform the experiments, we follow a procedure for the 

acquisition of the volatile memory of rooted mobile devices, under forensically sound 



conditions. Throughout the carried experiments and analysis, we have, exclusively, 

used open-source, free forensic tools. In total, we have evaluated the privacy of 

thirteen (13) popular Android applications, which represent four common application 

categories (i.e., mobile banking, e-shopping/financial applications, password 

managers, and encryption/data hiding applications) that elaborate sensitive users’ 

data. For every investigated application and each studied scenario, we have performed 

two set of experiments with different objective each one. In the first one, our goal was 

to check if we could recover our own submitted credentials from the memory dump of 

a mobile device. In the second experiment, the goal was to find out patterns that 

indicate where the credentials are located in a memory image. Overall, the 

contributions of this paper are as follows:  

(i) Examine for each investigated application and studied scenario whether we 

can discover authentication credentials in the physical memory of mobile 

devices; 

(ii) Explore in the considered applications, if we can discover patterns and 

expressions that indicate the position of authentication credentials in a memory 

dump;  

(iii) Derive a set of critical observations that provide insights for the privacy of 

mobile applications under various mobile usage scenarios. 

The rest of the paper is organized as follows. Section 2 gives background 

information for Android OS and the related work. Section 3 presents the procedure for 

the acquisition of the volatile memory of Android mobile devices. Section 4 analyzes 

the carried out experiments. Section 5 elaborates on the results, providing generic 

observations and remarks regarding the privacy of authentication credentials in 

Android devices. Finally, section 6 concludes the paper. 

2 Background 

2.1 Android operating system 

Android is a Linux-based OS designed, primarily, for touch screen mobile devices 

such as smart phones and tablet computers. Since its appearance, Android followed an 

upward trajectory and wide acceptance, reaching triple-digit of growth for the last 

year [8]. Today, it holds approximately 75 percent of the world market and there have 

been more than 48 billion of Android applications’ installations so far, characterizing 

it as the fastest-growing mobile OS. 

Android utilizes native open source C libraries to perform OS tasks and Java 

as a language for developing applications. To execute them, it uses the Dalvik virtual 

machine [9], which creates Dalvik executable files .dex, (i.e., byte codes from .class 

and .jar files), designed to be suitable for systems that are constrained in terms of 

memory and processor speed. Each Android application runs in a separate process 

within its own Dalvik instance, relinquishing all responsibility for memory and 

process management to the Android run time, which stops and kills processes as 

necessary to manage resources [10]. 



Android devices employ three different types of memory, each of which 

serves different purposes: (i) the volatile memory (i.e., RAM) that loses gradually its 

data when power is switched off; (ii) the internal, non-volatile memory that is based 

on NAND flash technology, which does not require power to retain data; and (iii) the 

external, expandable, non-volatile memory in the form of SD card. Both flash and SD 

card memory store the Android file system, named YAFFS2, as well as applications’ 

and multimedia files.  

In some security sensitive mobile applications (i.e., mobile banking, financial 

applications, password managers, etc.), the users’ credentials (e.g., username and 

password) are never stored or cashed in the non-volatile memory (i.e., flash memory 

or SD card), trying to eliminate the possibility to be compromised and misused. Each 

time such an application is activated, the user is obliged to re-type and resubmit its 

credential to gain access to the provided services. The credentials, which are only 

resided within the volatile memory of mobile devices, are defined as data in motion 

[11]. In this work, we examine the potential of discovery authentication credentials, 

which exclusively exists as data in motion, evaluating the security and privacy that 

these mobile applications support.  

2.2 Related work 

Mobile devices constitute an important source of evidence for every forensic 

investigator, since they store a plethora of interesting information, such as locations, 

incoming and outgoing calls and messages, emails, browsing information, application 

usage, multimedia files, etc. Driving by this fact, the majority of the current forensic 

research on Android devices has been focused on the acquisition and analysis of the 

internal NAND flash memory and SD cards, presenting significant results regarding 

the YAFFS2 file system, as well as the data stored in it. Using also forensic 

techniques, researchers have achieved the investigation of Android application 

package (.apk) files, used to distribute and install applications on Android, for 

malware. However, to the best of our knowledge, little attention has been drawn to the 

acquisition and analysis of the volatile memory of Android devices.  

In our previous work [12], we have employed the Dalvik Debugging Monitor 

Server (DDMS) tool [13] that comes with the Android software development kit to 

dump the memory contents of a running process. Using DDMS, we examined the 

memory snapshots of a sufficient number of mobile applications instances, and we 

discovered authentication credentials in the majority of them. A limitation of this 

work is related to the fact that the memory dumps were acquired from an Android 

emulator, rather than an actual Android device. Moreover, DDMS has limited 

capabilities for forensic analysis, since it cannot dump the entire memory of the 

device. 

In [14], the authors have proved that cold boot attacks against Android mobile 

devices, equipped with ARM processors, are possible. To accomplish this, they used a 

Galaxy Nexus mobile device in which the bootloader had been unlocked and the disk 

partition of user data was encrypted. They were able to retrieve the employed key of 



the encrypted partition of the disk from the volatile memory of the device, and, then, 

decrypt it. The authors also mentioned that on devices where the bootloader is locked, 

any attempt to break the disk encryption will result in the deletion of the data stored in 

it. However, they managed to retrieve personal information such as contact list, 

emails, photos, etc., from the device’s volatile memory. Finally, the authors have 

developed a recovery image, named FROST, to automate the process of retrieving the 

employed encryption keys. 

In [15], the authors have achieved to dump specific memory regions of a 

running process using the ptrace system call, which enables a process to inspect and 

control the execution of another process. The carried experiments and the consequent 

analysis were focusing on discovering evidences from chat applications (i.e., 

incoming and outgoing messages). A limitation of this approach has to do with the 

fact that each process of interest requires an exclusive memory extraction, which leads 

to more than one interaction with the mobile device that may cause overwrites and 

loss of evidences. Trying to address this, the authors of [16] have presented the first, 

public analysis of the Android’s Dalvik virtual machine. This work includes the 

Dalvik’s design as well as proposes a method of accessing it, leading to the recovery 

of forensically interesting information, such as history of calls, voicemails, browsing 

history, and wireless local area network keys. 

Volatilitux [17] provides a framework (written in python programming 

language) for analyzing the volatile memory of a Linux-based system. It enables the 

extraction of digital artifacts from a memory dump, but it supports a limited set of 

analysis capabilities, such as enumeration of the running processes, memory map of 

the running processes, etc. Moreover, up to now, there is no any module for acquiring 

the volatile memory from Android devices. The work in [18] describes a technique for 

dumping the memory of an Android application using the kill command, which 

terminates a running process of an application. Analyzing the captured memory 

snapshot, the authors have succeeded to retrieve an encryption key used by the 

application under investigation. However, it can only be applied up to Android v2.1, 

since in the later versions this command has been removed. 

The main limitations of the related work have to do with the following two 

facts: (i) it is acquired, only, a portion of the Android volatile memory; and (ii) the 

obtained memory snapshots are related to specific applications. Therefore, the carried 

out analyses as well as the related findings are confined to the above. In this paper, we 

manage to overcome these limitations by obtaining a full capture of the volatile 

memory of an Android device, which is forensically sound, and analyzing it, 

thoroughly. A forensically sound acquisition allows us to obtain copies of the volatile 

memory, which are identical to the physical memory of the mobile device; while the 

procedure itself does not alter the original device.  

3 Volatile memory acquisition procedure 

To dump the volatile memory of a rooted Android mobile device, we used an open-

source forensics tool named, Linux memory extractor (LiME) software [19]. LiME is 



a loadable kernel module, which allows the acquisition of the volatile memory from 

Linux and Linux-based devices, such as those powered by Android. LiME is able to 

acquire the memory pages in a forensically sound manner (approximately 99 percent 

of memory pages), since it minimizes the impact on the physical memory of the target 

device when transferring data to and from it. To achieve this, LiME has been designed 

with the following features:  

(i) Only a single binary (i.e., the LiME module) needs to be transferred to the 

device and executed to perform the memory acquisition.  

(ii) The LiME module has a minimal memory footprint, since it is very small (~70 

KB) 

(iii) LiME requires very few kernel functions to perform the memory dump.  

(iv) LiME requires minimal interaction with userland, since data reading and 

writing is handled within the kernel. In this way, LiME avoids hundreds of 

system calls and other function invocations that would otherwise need to be 

performed and modify the volatile memory. 

 

 

Figure 1: A flowchart of the procedure for the acquisition of the volatile memory of a rooted 

Android mobile device  



 

Figure 1 depicts the procedure and the required steps that should be followed 

to acquire a forensically sound memory image from an Android mobile device. In this 

procedure, we assume that the Android device is rooted. If it is not rooted, we should 

attempt to gain root privileges on the device, since LiME requires root privileges to 

perform memory dump [26]. There are various reliable methods for Android OS that 

allow privilege escalation from normal user to root [20] [25] and we don’t analyze 

them further. The most important part in the rooting procedure is to assure that the 

mobile device is not rebooted, since volatile memory cannot retain its data without 

power. Next, we create a loadable kernel module, named lime.ko, which is an object 

file that contains code to extend the running kernel functionality of an OS, such as 

Android. Technical details for the process of creating the lime.ko module can be found 

in [19]. After creating lime.ko, we acquire a forensically sound image of the device's 

SD memory card, using an open source imaging tool called dd [21]. The reason that 

we have to undertook this step is that the module lime.ko should be copied in the SD 

card. Since an important principle in forensic investigations is to avoid tampering the 

evidence, we have to acquire a raw image of the SD card, before copying the module 

lime.ko into the device’s SD memory card. In this way, we ensure that our results are 

forensically sound.  

In the sequel, we copy the module lime.ko into the SD memory card of the 

mobile device. After that, we, physically, connect the mobile device to a computer, 

using a universal serial bus (USB) interface. Next, as root, we execute in the mobile 

device the command insmod to insert the lime.ko module into the Android kernel. At 

the same time, the dumping process starts, where the memory dump is downloaded 

from the Android device to the computer through the Android Debug Bridge (adb) 

[22]. The time, required to end the dumping process, depends on the size of the 

volatile memory of the examined mobile device.  

4 Experiments 

In this section, we present and analyze the carried out experiments. In a three months 

period, we examined thirteen (13) Android applications in total, which elaborate 

sensitive users’ data. The majority of the examined applications release updates 

frequently. It is worth mentioning that all experiments were performed with the latest 

version of the applications, until June 1st, 2013. Each one of the considered 

applications employs a username and/or password as data in motion. Based on the 

provided functionality, the underlying mobile applications are divided into four 

categories:  

 mobile banking (m-banking) applications; 

 e-shopping/financial applications (i.e., applications that facilitate the mobile 

users to perform online payments or buy goods);  

 password managers (i.e., applications that manage in a secure manner the 

passwords of the user);  



 encryption and data hiding applications (i.e., applications that aim at 

enhancing the user’s privacy on its mobile device).  

m-banking and e-shopping/financial applications employ usernames and 

passwords to authenticate the mobile users, enabling remote access to the provided 

services. On the other hand, password managers, encryption and data hiding 

applications use only passwords (or the concatenation of a password with a random 

string that increases entropy) as keys to encrypt/decrypt passwords of other 

applications or other user’s sensitive data such as calls, messages, etc. All the tested 

applications provide logout or termination functionality. 

The m-banking category includes six applications of six major banks in 

Greece (i.e., bank1, bank2, bank3, bank4, bank5, and bank6). The e-

shopping/financial category comprises three applications (i.e., financial1, financial2, 

financial3) of well-known, international, e-commerce businesses that allow financial 

transactions. The password manager category consists of two applications (i.e., 

password1, password2) that store and retrieve passwords in a secure manner. They 

employ a master password to protect all the other mobile user’s passwords. Finally, 

the fourth category incorporates two applications (i.e., encyrption1, encryption2). The 

encryption1 uses a secret password as a key to encrypt messages (i.e., SMSs) and 

emails, sent and received by the mobile user. The encryption2 application, on the 

other hand, hides calls and messages from a specified contact from the contact list of 

the mobile device, and the only way to depict them is the user, first, entering a secret 

code in the dialer pad and then pressing the call button.  

Our test bed is equipped with a rooted Samsung Galaxy S Plus (i9001). This 

smart phone uses an Android v2.3 (Gingerbread), which is the most popular Android 

version (i.e., based on the relative number of devices that running this Android 

version), according to the Google’s statistics [23]. We have studied thirty (30) 

different scenarios (see Table 1), which are based on eleven (11) general scenarios 

with some time variations (i.e., we acquired the volatile memory from the inspected 

device after different time intervals). In every variation of each scenario, we have 

examined the entire set of the considered applications, using our own created 

credentials to login. For all scenarios, the dumping process lasted nine minutes for 

each one, while the size of the memory dump was approximately 512 MB (it is equal 

to the size of the physical memory of Samsung Galaxy S plus). The investigated 

scenarios as well as their variations are, briefly, described below:  

 

Scenario 1: Login, use and logout from the examined applications. We begin the 

memory dumping: a) immediately after the logout; b) after waiting for 10 minutes; c) 

after waiting for 20 minutes; and d) after waiting for 60 minutes. During the waiting 

time period, we keep the mobile device idle (i.e., powered on without any use).  

 

Scenario 2: Login, use and logout out from the examined applications. We begin the 

memory dumping after waiting, first, for a time interval of: a) 10 minutes, b) 20 

minutes and c) 60 minutes. During the waiting time period, we use the mobile device 



only as a phone, which means that it sends and receives phone calls and short 

messages.  

 

Scenario 3: Login, use and logout out from the examined applications. We begin the 

memory dumping after waiting, first, for a time interval of: a) 10 minutes, b) 20 

minutes and c) 60 minutes. During the waiting time period, we use the mobile device 

only as a smart phone, by activating various common Android applications such as 

Gmail, Play Store, YouTube, Mp3 player, News reader application, etc. 

 

Scenario 4: Login and use the considered applications, but we do not logout from 

them. Instead, we set them to run into the background by pressing the home button of 

the mobile device. We begin the memory dumping: a) immediately after setting the 

application into the background; b) after waiting for 10 minutes; c) after waiting for 

20 minutes; and d) after waiting for 60 minutes. During the waiting time period, we 

keep the mobile device idle (i.e., powered on without any use). This scenario was 

chosen because many users instead of logging out and properly closing the 

applications, they simply press the home button and return to the home screen. 

 

Scenario 5: Login and use the considered applications, but we do not logout from 

them. Instead, we set them to run into the background by pressing the home button of 

the mobile device. We begin the memory dumping: a) after waiting for 10 minutes; b) 

after waiting for 20 minutes; and c) after waiting for 60 minutes. During the waiting 

time period, we use the mobile device only as a phone, which means that it sends and 

receives phone calls and short messages. 

 

Scenario 6: Login and use the considered applications, but we do not logout from 

them. Instead, we set them to run into the background by pressing the home button of 

the mobile device. We begin the memory dumping: a) after waiting for 10 minutes; b) 

after waiting for 20 minutes; and c) after waiting for 60 minutes. During the waiting 

time period, we use the mobile device only as a smart phone, by activating various 

common Android applications such as Gmail, Play Store, YouTube, Mp3 player, 

News reader application, etc. 

 

Scenario 7: Login, use and logout from the examined applications. After logging out, 

we employ a task killer to terminate all the running processes, and, then, we acquire 

the volatile memory of the device. 

 

Scenario 8: Login, use and logout from the examined applications. After logging out, 

we switch the device to the airplane mode (i.e., deactivate all the communication 

interfaces, wireless, 3G, etc.). We begin the memory dumping: a) immediately after 

the switching; b) after waiting for 10 minutes; c) after waiting for 20 minutes; and d) 

after waiting for 60 minutes. During the waiting time period, we keep the mobile 

device idle (i.e., powered on without any use). 

 



Scenario 9: Login, use and logout from the examined applications. After logging out, 

we switch the device to the airplane mode (i.e., deactivate all the communication 

interfaces, wireless, 3G, etc.). We begin the memory dumping: a) after waiting for 10 

minutes; b) after waiting for 20 minutes; and c) after waiting for 60 minutes. During 

the waiting time period, we only use game applications.  

 

Scenario 10: Login, use and logout from the examined applications. After logging 

out, we switch off the mobile device, and then, switch it on (i.e., rebooting). 

Immediately after rebooting, we acquire the device’s volatile memory.  

 

Scenario 11: Login, use and logout from the examined applications. After logging 

out, we switch off the mobile device and remove the battery for 5 seconds. Then, we 

install the removed battery, switch on the mobile device, and after the completion of 

booting, we acquire the device’s volatile memory.  

 

Table 1: Summary of the experiment scenarios 

Scenarios Description of steps 

Scenario 1   

S1.a Login, use, logout, immediate dump.  

S1.b Login, use, logout, device idle for 10 minutes, dump.   

S1.c Login, use, logout, device idle for 20 minutes, dump.  

S1.d Login, use, logout, device idle for 60 minutes, dump.  

Scenario 2  

S2.a Login, use, logout, use it as a phone for 10 minutes, dump. 

S2.b Login, use, logout, use it as a phone for 20 minutes, dump.  

S2.c 

Login, use, logout, use it as a phone for 60 minutes, dump. 

Scenario 3  

S3.a Login, use, logout, use it as a smart phone for 10 minutes, dump  

S3.b Login, use, logout, use it as a smart phone for 20 minutes, dump  

S3.c Login, use, logout, use it as a smart phone for 60 minutes, dump  

Scenario 4  

S4.a Login, use, set the application into the background, immediate dump.  

S4.b Login, use, set the application into the background, device idle for 10 minutes, dump. 

S4.c Login, use, set the application into the background, device idle for 20 minutes, dump. 

S4.d Login, use, set the application into the background, device idle for 60 minutes, dump. 

Scenario 5  

S5.a Login, use, set the application into the background, use the device as a phone for 10 

minutes, dump. 

S5.b Login, use, set the application into the background, use the device as a phone for 20 

minutes, dump. 

S5.c Login, use, set the application into the background, use the device as a phone for 60 

minutes, dump.   

Scenario 6   

S6.a Login, use, set the application into the background, use the device as a smart phone 

for 10 minutes, dump.  

S6.b Login, use, set the application into the background, use the device as a smart phone 

for 20 minutes, dump.  

S6.c Login, use, set the application into the background, use the device as a smart phone 



for 60 minutes, dump.  

Scenario 7  

S7 Login, use, logout, use task killer, immediate dump. 

Scenario 8  

S8.a Login, use, logout, switch the device to airplane mode, immediate dump. 

S8.b Login, use, logout, switch the device to airplane mode, device idle for 10 minutes, 

dump. 

S8.c  Login, use, logout, switch the device to airplane mode, device idle for 20 minutes, 

dump.  

S8.d Login, use, logout, switch the device to airplane mode, device idle for 60 minutes, 

dump.  

Scenario 9  

S9.a Login, use, logout, switch the device to airplane mode, use gaming applications for 

10 minutes, dump.  

S9.b Login, use, logout, switch the device to airplane mode, use gaming applications for 

20 minutes, dump.  

S9.c Login, use, logout, switch the device to airplane mode, use gaming applications 60 

minutes, dump.  

Scenario 10   

S10 Login, use, logout, reboot, immediate dump. 

Scenario 11  

S11 Login, use, logout, switch off the device, remove battery for 5 seconds, insert battery, 

switch on, dump. 

 

For each investigated application and studied scenario or scenario variation, 

we have carried out two experiments with different objective each one. In the first 

one, our goal was to check if we could recover our own submitted credentials from 

the memory dump of the mobile device. In the second experiment, on the other hand, 

the goal was to find out patterns and expressions that indicate where the credentials 

are located in a memory dump. This would be beneficial in forensic investigations, 

where the researchers have memory images of Android devices and they may use 

these patterns to find unknown credentials. On the contrary, as a negative side effect, 

if a malicious steals an Android device, it will try these patterns to find out the 

credentials of the device’s owner.  

To perform the experiments, we repeated the following steps for each 

examined application and studied scenario. First, we randomly choose and login to the 

application under investigation (already installed in our test bed device), by 

submitting our own created credentials (i.e., username and/or password). After using 

the application for an arbitrary time period, which varies from 2 to 10 minutes, we 

carry out the specific actions, described in each considered scenario. Then, we dump 

the device's volatile memory, using the procedure described in section 3. Finally, we 

search for the submitted credentials and nearby patterns, by employing another open-

source forensics tool called The Sleuth Kit (TSK) [24]. TSK is used to perform 

forensic investigations and data extraction from images of Windows, Linux and Unix 

computers. It includes various utilities to find metadata entries, display data blocks 

within a file system, and search for allocated and unallocated file names within a file 

system. 



5 Results 

In the first set of experiments, we successfully recovered our own submitted 

credentials in the majority of the applications, since they were in plaintext, without 

almost any modification. In some cases, the characters of the retrieved credentials 

within the memory images were separated by the dot symbol. For example, in case 

that the submitted password of an application was the phrase “password”, then we 

located in the memory image the phrase “p.a.s.s.w.o.r.d.”. The reason of this trivial 

modification was due to the employed Unicode encoding (i.e., UTF-16). We also 

observed in one application that the characters of the password string were HTML 

encoded. For example, in case that the password of the application was the string 

“p@ssword!”, then we found out in the memory image the string 

“p%40ssword%21”. In the following Figure 2, a memory snapshot using the TSK 

open-source forensic tool is presented, which includes the discovered password string 

“.d.s.s.e.c.” in clear text, where its characters are separated by the dot symbol.  

 
Figure 2: A snapshot of a memory dump presenting the discovered password “dssec” as well as 

the pattern “password:” that indicates the exact password location.   

 

The following Figure 3 presents all the findings and summarizes the results of 

the first set of experiments (i.e., recovery of the own submitted credentials) for each 

investigated application (also grouped in categories) and studied scenario. In this 

figure, the cells that include the letters U and P indicate the successful recovery of the 

username and password, respectively, for the specific application and the considered 

scenario. Moreover, the grey colored cells that contain the letter X signify the 

unsuccessful recovery of a username or password. Finally, the cells that comprise the 

dash symbol denote that the related applications do not use a username (i.e., they only 

employ a password). 

The analysis of the numerical findings in Figure 3 reveals some interesting 

observations regarding both the privacy level that the examined application support as 



well as the behavior of the volatile memory of Android mobile devices, under 

different usage conditions. More specifically, by studying the results per 

experimentation scenario, we may deduce that in scenarios 1 and 4 we were able to 

discover the majority of the submitted authentication credentials (i.e., 80 percent in 

both of them). This can be attributed by the fact that in both scenarios, the mobile 

device was idle before performing the memory dump, which leads to the 

observation1.  

Observation1: As long as the user does not employ the mobile device (i.e., powered 

on and idle), it is more likely the authentication credentials (i.e., data in motion) to 

remain intact in the volatile memory of the device. 

On the other hand, in scenarios 10 and 11 the authentication credentials had 

always been erased from the volatile memory and we couldn’t find any of them (i.e., 0 

percent in both of them), driving to the observation2.  

Observation2: The best way to ensure that the volatile memory of a mobile device 

does not contain any authentication credential (or other sensitive data) is either to 

reboot the device or remove its battery. This has been also proved for desktop/laptop 

computers [5]. However, there is a fundamental difference in the usage of mobile 

devices and desktop/laptop computers that makes this observation very critical. That 

is, users of desktop/laptop computers reboot or shut them down in a daily basis. On 

the other hand, the users of mobile devices, rarely, close or reboot them. In fact, 

mobile users try to avoid closing or rebooting their devices, as much as possible, in 

order not to miss any phone call. Therefore, we can deduce that it is more likely a 

malicious to discover authentication credentials in the volatile memory of mobile 

devices than desktop/laptop computers. 

An interesting observation (i.e., observation3) that derives from all the 

scenarios with time variation (e.g., scenario 1, 2, 3, 4, 5, 6, 8, 9) has to do with the fact 

that the longer we waited to dump the memory image, the less authentication 

credentials were discovered in it.  

Observation3: Time is with security. The more time passes from the moment a user 

submitted his/her authentication credentials, the more likely is the authentication 

credential to be deleted. 

In scenarios 4, 5 and 6, where the examined applications were set up to the 

background (i.e., instead of logging out properly), we were able to discover the 

authentication credentials in a percentage of 80%, 74% and 72%, respectively. 

Moreover, in scenario 7 we were able to discover the authentication credentials in a 

percentage of 72%, despite the fact that the investigated applications were ended 

using a task killer application. From these facts we derive the following observations: 

Observation4: Setting up a running application into the background does not delete 

the authentications credentials from the volatile memory of the mobile device. This is 



an alarming result, since it is a common practice among users to set up the running 

applications into the background, instead of logging out properly. 

Observation5: Using a task killer application to end a running application does not 

wipe out the related authentication credentials from the volatile memory. 

By comparing the results in scenarios 2 and 3, we notice that in the first one 

we were able to find out the authentication credentials in a percentage of 77%; while 

in the second, only, in 48%. Based on this we may infer the observation6:  

Observation6: Using a mobile device as a smart phone (i.e., activating various 

Android applications), it is more likely to erase the authentication credentials that 

reside in the device's volatile memory, than using it as mobile phone (i.e., 

make/receive calls and send/receive SMS). This happens because a running Android 

application overwrites, previously, stored data in the device’s volatile memory. On 

the other hand, actions such as phone calls or sending/receiving SMS, do not engage 

the volatile memory of the mobile device, and, therefore, the contents of this memory 

are preserved. 

In scenarios 8 and 9 (i.e., switch the device to the airplane mode), we were able to 

discover the authentication credentials in a percentage of 58% and 16%, respectively. 

This significant difference, between these two scenarios, can be attributed by the fact 

that in scenario 9, after switching the device to the airplane mode, we launched and 

played a game application; while in scenario 8 the device stayed idle. Consequently, 

we may reason the following observation7. 

Observation7: Switching the mobile device to the airplane mode, the contents of the 

devices volatile memory are not necessarily erased, and, thus, authentication 

credentials can be recovered. However, in cases that after switching, the mobile user 

activates and runs an application such as a game, we notice that the majority of the 

authentications credentials, which reside at the volatile memory of the device, are 

erased. 

From the applications’ point of view, we perceive that for the entire set of the 

tested applications, we were able to find out the authentication credentials, at least 

once. In particular, in the category of m-banking and financial/e-shopping 

applications, we discovered the submitted authentication credentials in a percentage of 

65% and 51%, respectively. Similarly, in the group of password managers as well as 

the applications of encryption/hiding, the recovered credentials have reached the 

percentage of 45% and 71%, respectively. Based on these findings, we may deduce 

the following observations:  

Observation8: The majority of the examined Android applications are vulnerable to 

the recovery of authentication credentials from the volatile memory.  

Observation9: It is alarming that even applications that should take security as a 

first priority, such as m-banking applications, have been proved to be vulnerable to 

the discovery of authentication credentials. 



 
 

Figure 3: Results of the first set of experiments (i.e., recovery of the own submitted credentials) 

for each investigated application, grouped in categories, and studied scenario.   



From the m-banking applications, the most vulnerable was the application of 

bank5, since we recovered the authentication credentials in almost all scenarios (i.e., 

except for scenarios 10 and 11). On the other hand, the most secure application was 

this of bank6, in which we discovered the authentication credentials only in scenario 

4.a, (i.e., set the running application to the background and, immediately, dump the 

volatile memory of the device). In the financial/e-shopping applications, the 

percentage of recovery of the submitted usernames was higher than this of passwords. 

The password managers were also vulnerable to the discovery of authentication 

credentials, but this happened more frequently in the application of password2, than in 

password1. Finally, the application of encryption1 has been proved more robust than 

the application encryption2, which was vulnerable to almost all the studied scenarios, 

except for scenarios 10 and 11. These findings lead to the following observations.   

Observation10: We found out that there are some Android applications that are 

secure under the threat of discovery of authentication credentials (e.g., bank6 

application); while there are some other that are, completely, exposed to this (e.g., 

encryption2 and bank5 applications). This contradictory results show that some 

applications have been developed taking into account security precaution, whilst 

some other not.  

Observation11: Regardless of the criticality of the considered applications, all 

developers should use correct and secure programing techniques (i.e., delete the 

authentication credentials when they are not used from the applications), in order to 

enhance the level of security provided by mobile platforms.  

Observation12: Password managers that aim to enhance the privacy of users, by 

protecting their passwords, were found to be vulnerable. This means that if a user 

loses his/her device, a malicious may discover all the user’s passwords, only by 

discovering the master password of the employed password manager application. 

Table 2. Discovered Patterns for usernames and passwords 

Username Password 

j_username= j_password= 

username= password= 

userid> password: 

login i:type= pass i:type: 

 

In the second set of experiments, we determined specific patterns and 

expressions that indicate the location of the credentials (i.e., username and password) 

within the captured memory images, for the entire set of the examined applications. 

For example, as shown in Figure 2, right before the submitted password (i.e., dssec), 

we meet the string “password:”, evidently, indicating that the following string is the 

user’s password. Some other patterns that we found out for passwords (in the 

considered applications) are “password=”, “j_password=”, and “pass i:type” (see 

Table 2). Therefore, the expression “password” or the excerpt “pass” indicate the 



physical location, where the submitted passwords are stored, in clear text, for the 

entire set of the examined applications.  

Similarly, the discovered expressions for the location of the submitted 

usernames in the captured memory images are: “j_username=”, “username=”, 

“userid>”, and “login i:type=” (see Table 2). Hence, the patterns username, userid 

or login signify the location where the usernames are stored in the captured memory 

images. A forensic investigator (or a malicious) can simply dump the volatile memory 

of an Android device and search for these patterns to discover the usernames and 

passwords of the owner of the device. The identification of such expressions and 

patterns infers the last observation13.  

Observation 13: We proved the existence of patterns and expressions that pinpoint 

where the authentication credentials of each application are, exactly, located in a 

memory dump. Therefore, a malicious may, easily, recover the authentication 

credentials from a stolen device, simply, by searching in the memory dump for these 

patterns or expressions. In contrast, the involved developers should avoid using such 

patterns or expressions in the provided mobile applications.  

6 Conclusions 

In this paper, we investigated and evaluated the privacy of Android mobile 

applications. In particular, we examined whether authentication credentials in the 

volatile memory of Android mobile devices can be discovered, using open source 

forensics tools. The analysis of the results revealed that the majority of the considered 

Android applications are vulnerable to the recovery of authentication credentials from 

the volatile memory. It is alarming that even applications that should take security as a 

first priority, such as m-banking applications, have been proved to be vulnerable. 

Moreover, we observed that the volatile memory did not contain any authentication 

credential only when we rebooted the device or removed its battery. We also proved 

the existence of patterns and expressions that pinpoint where the authentication 

credentials of application are, exactly, located in a memory dump. Finally, taking into 

account that users tend to reuse password across various websites and applications, we 

drew the conclusion that regardless of the criticality of the applications, all developers 

should use correct and secure programing techniques and guidelines (i.e., delete the 

authentication credentials when they are not used from the applications), in order to 

hinder the authentication credential discovery and enhance the level of privacy, 

provided by mobile platforms.  
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