
Bypassing XSS Auditor: Taking Advantage of Badly Written PHP Code

Anastasios Stasinopoulos, Christoforos Ntantogian, Christos Xenakis
Department of Digital Systems, University of Piraeus

{stasinopoulos, dadoyan, xenakis}@unipi.gr

Abstract—XSS attacks have become very common nowadays,
due to bad-written PHP web applications. In order to provide users
with rudimentary protection against XSS attacks most web browser
vendors have developed built-in protection mechanisms, called XSS
filters. In this paper, we analyze two attacks that take advantage of
poorly written PHP code to bypass the XSS filter of WebKit engine
named XSS Auditor and perform XSS attacks. In particular, the first
attack is called PHP Array Injection, while the second attack is a
variant of the first one and it is named as PHP Array-like Injection.
Both attacks take advantage of improper management of variables
and arrays in PHP code to bypass the XSS Auditor. We elaborate
on these attacks by presenting concrete examples of poorly written
PHP code and constructing attack vectors to bypass the XSS
Auditor. To defend against the identified attacks, we provide proper
code writing rules for developers, in order to build secure web
applications. Additionally, we have managed to patch the XSS
Auditor, so that it can detect our identified XSS attacks.

Keywords— Cross Site Scripting, XSS, WebKit, XSS Auditor,
PHP Array Injections, Quote-Jacking

I. INTRODUCTION
PHP (a recursive acronym for “PHP Hypertext

Preprocessor”) is an open source server-side scripting
language designed for web development, but it is also used as
a general-purpose programming language. According to
Netcraft’s Web Server Survey [1], by January 2013, PHP was
installed on more than 240 million websites. The most
prominent websites that use PHP include Google, Facebook,
Yahoo!, Wikipedia, Amazon, Ebay, YouTube, Flickr, and
many more. PHP code can be mixed with HTML code or it
can be used in combination with various template engines and
web frameworks. PHP code is usually processed by a PHP
interpreter, which is implemented as a web server’s native
module or a Common Gateway Interface (CGI) executable.
After the PHP code is interpreted and executed, the web
server sends the resulting output to its client, usually as a part
of the served web page.

Although PHP is a powerful, free, and easy to learn and
use programming language, it comes with certain features
that makes easy to write insecure code. According to the
National Vulnerability Database [2], in 2013, 9% of all
vulnerabilities reported were related to PHP [3]. Furthermore,
it is worth noting that since 1996 about 30% of all
vulnerabilities, which are reported to the same database are
related to PHP. Web applications that are implemented in
PHP can be vulnerable to various exploit vectors, such as
XSS (Cross-Site Scripting), SQL Injections, CSRF (Cross-
Site Request Forgery) injections etc. The OWASP Top Ten
for 2013 [4] lists XSS as the most common security risks to
web applications. More specifically, XSS [5] is an

application-layer threat that emanates from the security
weaknesses of client-side scripting languages, HTML and
JavaScript (or more rarely VBScript, ActiveX or Flash). The
purpose of an XSS attack is to inject malicious code in a
website, in order to bypass security access controls and
compromise data or perform session hijacking. An XSS
attack occurs when an adversary manipulates and injects a
malicious code in a web application (usually JavaScript), in
order to alter data contexts in HTML code into a scripting
context -usually by injecting new HTML, JavaScript strings
or CSS markup. This injection code is sent to the web
application via HTTP parameters and it is executed by the
client browser and eventually, inserted into the output of the
web application. There are three categories of XSS
vulnerabilities:
a) Reflected XSS: The concept of this kind of XSS attack is
that the victim clicks on a crafted link and the attack is
initiated. More specifically, an XSS vulnerability is reflected
in the application's output, if the injection is echoed by the
server in the response of an HTTP request. Reflection can
occur with error messages, search engine submissions,
comment previews, etc. This form of attack can be mounted
by persuading a user to click a link or submit a form of the
attacker’s choice, issues that may involve emailing the target,
mounting a UI Redress attack, or using a URL shortener
service to disguise the URL.
b) Stored XSS: The injection is resilient throughout sessions
by being permanently stored in a data storage and it is echoed
every time a user visits the unsafe web site or views the
targeted data. Obviously, the range of potential victims is
greater than in the reflected XSS, since the payload is
displayed to any visitor.
c) DOM-Based XSS: DOM-based XSS attacks control the
web page’s Document Object Model (DOM), which serves as
a cross-platform and a language-independent model that
interacts with objects in HTML. DOM-based XSS can be
either reflected or stored. The attacker is allowed to run
JavaScript scripts in a web browser through targeting
vulnerabilities in the HTML code and interacting with the
DOM of the web page.

The current countermeasures to detect XSS attacks are: i)
server-side, ii) network-based using Web Application
Firewalls (WAF), and, iii) client-based using XXS filters at
the level of browsers. In this work, we will specifically focus
on XSS filters and how can be trivially bypassed using simple
yet effective techniques. By design, web browsers must
execute the HTML and JavaScript code which is obtained
from a web application through the HTTP protocol. The
objective of XSS filters is to detect “dangerous” attribute tags
(i.e., , <script>, etc.) inside HTTP parameters of the
GET and POST HTTP methods and prevent the execution of

the injected JavaScript code. An XSS filter, named XSS
auditor [6] has been implemented in the WebKit browser
engine [7] and it is used by the most widely used browser,
that is Google Chrome / Chromium as well as by the Apple
Safari browser. Microsoft’s Internet Explorer browser, from
version 8 to the latest, provides an XSS filter [8]. On the other
hand, Mozilla Firefox does not include a pre-installed XSS
filter, but there is a free plugin named NoScript [9], which
can be installed by end-users and it is considered to be an
efficient XSS filter for Firefox browser. Each of the above
XSS filters detects XSS attack vectors with different
techniques. More specifically:
a) The XSS filter of Internet Explorer handles regular
expressions to identify malicious attack vectors in outgoing
HTTP requests. The filter creates a unique signature of the
potentially malicious part, instead of removing it, and waits
for the HTTP response to arrive at the web browser. If the
signature matches anything that is contained inside the
response, the filter blocks and eliminates the suspicious parts.
b) NoScript Firefox Plugin handles regular expressions to
identify outgoing HTTP requests for malicious attack vectors.
If there is a match discovered between the regular expressions
and the parts of the URL concerning the attack vector, then
these URL parts are removed from the HTTP request.
c) Unlike the previous two filters, XSS Auditor does not use
regular expressions to filter outgoing HTTP requests [10]. In
particular, the XSS Auditor examines the DOM tree created
by the HTML parser, making the semantics of those bytes
clear. In this way, the XSS Auditor can easily identify which
parts of the response are being treated as script.

We have pinpointed that badly written web application
has the unfortunate ability of disabling XSS filters. Thus,
developers of web applications may unintentionally help
malicious actors to perform XSS attacks. In this paper, we
analyze two attacks that take advantage of poorly written
PHP code to bypass the XSS filter of WebKit (i.e., XSS
Auditor) and perform XSS attacks. In particular, the first
attack is called PHP Array Injection, while the second attack
is a variant of the first one and it is named as PHP Array-like
Injection. Both attacks exploit improper use or management
of variables and arrays in PHP code to bypass the XSS
Auditor. We elaborate on these attacks by presenting concrete
examples of poorly written PHP code and constructing attack
vectors to bypass the XSS Auditor. We have also audited the
source code of PHP applications to examine the prevalence of
the identified attacks. We have discovered that many open-
source Content Management Systems (CMS) are vulnerable
to PHP Array-like Injection attacks. Finally, to defend against
the identified attacks, we provide proper code writing rules
for developers, in order to build secure web applications.
Additionally, we have managed to patch the XSS Auditor, so
that it can detect our identified XSS attacks.

The rest of the paper is organized as follows. Section 2
provides the background analyzing the related work and the
architecture of the XSS Auditor. Section 3 present examples
of badly written PHP code that may result in bypassing XSS
Auditor and elaborates on the identified XSS attacks. Section
4 provides secure code writing guidelines and analyzes the

patches that we have committed to XSS Auditor. Finally,
Section 5 includes the conclusions.

II. BACKGROUND

A. Related Work
The literature includes many works that analyze

successful attempts of bypassing the XSS Auditor and XSS
filters in general. In this section, we mention the most
prominent works, since a comprehensive analysis of all the
related literature requires an extensive review, which is
outside the scope of this paper. When the XSS Auditor was
applied for the first time in Google Chrome, a series of
bypasses took place by the sla.ckers.org forum [11].
Moreover, in [12], it was proved that XSS Auditor can be
bypassed using two or more parameters [13]. In [14], the
XSS Auditor was bypassed using <svg> tags and html-
entities, while in [15] the authors used the “U+2028” and
“U+2029” Unicode characters to bypass XSS auditor. Note
the attacks in [14] and [15] have been fixed in the new
versions of XSS Auditor. In the most recent work [16], the
authors discovered a whopping seventeen security flaws that
allowed them to bypass the XSS Auditor's filtering
capabilities.

Apart from XSS auditor, researchers have successfully
bypassed other XSS filters. In [17], the NoScript plugin for
Firefox browser was bypassed through an Error Based SQL
injection flaw, while in [18] it was proved that the XSS filter
of Internet Explorer can be easily bypassed by taking
advantage of techniques that turn injected untrusted data into
trusted data, which is not subject to validation by Internet
Explorer’s XSS filter. Recently, a new class of XSS attacks
was discovered named as mutation-based XSS (mXSS) [19]
that may occur in innerHTML and related DOM Javascript
properties. The mutation-based XSS (mXSS) attack vectors
affect all three major browsers (i.e., Chrome, Firefox and MS
Inter Explorer). As a matter of fact, mutation-based XSS
(mXSS) vectors are not limited only to client-side XSS
filters, but can be used to successfully bypass widely
deployed state-of-the-art server-side XSS protections
mechanisms, including Web Application Firewall (WAF)
systems and Intrusion Detection and Intrusion Prevention
Systems (IDS/IPS).

Unlike the previously mentioned works that elaborate on
techniques and methods to bypass XSS protection
mechanisms, in this paper we focus on various mistakes that
PHP web application developers make and unwittingly help
the attackers to bypass the XSS Auditor and cause harm the
end-users.

B. XSS Auditor
XSS Auditor is placed between the HTML parser, (a

component of Rendering Engine which is responsible for
parsing the HTML into a tree (parse tree) of DOM element
and attribute nodes) and the JavaScript Interpreter (a virtual
machine which interprets and executes JavaScript code) as
shown in Figure 1. It is worth noting, that different web

browsers use different rendering engines. For example,
Internet Explorer uses Trident, Firefox uses Gecko, Safari
uses WebKit, while Chrome and Opera (since version 15) use
a fork of WebKit named Blink [20].

Fig. 1. XSS Auditor is between the HTML parser and the JavaScript

Interpreter.

An important characteristic of XSS Auditor is that it
inspects only GET / POST HTTP responses [10]. If the same
executable JavaScript is detected in both HTTP request and
response, the XSS Auditor raises an alert and prevents the
injected script from being executed. More specifically, the
auditing process consists of three parts:
a) Firstly, the XSS Auditor checks for “dangerous” event
attributes, that either contain a JavaScript URL or have the
name of an HTML event handler (i.e onerror, onclick,
onload, etc.). A JavaScript can be executed when an event
occurs. Thus, if such an HTML event attribute is found, the
XSS Auditor checks the corresponding HTTP request and in
case a match is found, the filter assumes that the event
attribute is malicious and deletes the attribute value.
b) Secondly, the XSS Auditor performs tag-specific checks
for “dangerous” event attributes. Note that except for
attributes containing JavaScript URLs or attributes that have
the name of an HTML event handler, there are also other
attributes HTML tags, such as <script>, <object>, <param>,
<embed>, <applet>, <iframe>, <meta>, <base>, <form>,
<input> and <button> that need to be filtered.
c) Thirdly, the XSS Auditor, filters injected inline scripts.
Whenever the XSS Auditor identifies a script tag, validates
the content that is enclosed between the opening and the
closing script tag. Assuming that an injection has occurred
and the content has been found in the request, it will result in
replacing the content with an empty string.

III. BYPASSING XSS AUDITOR
In this section, we elaborate on the discovered XSS

attacks that bypass the XSS Auditor. In all experiments, the
aim is to execute the Javascript code
<script>alert(1)</script>. In other words, the attack vector
(i.e., the inserted code <script>alert(1)</script>) should be
parsed by the HTML parser and then to be transferred to the
JavaScript Interpreter for execution. To perform the attacks,
we have developed in PHP web applications with subtle

mistakes that result in bypassing XSS Auditor. The injection
point of the Javascript code is the URL of the vulnerable PHP
web applications. If the attack is successful, an alert box is
prompted that simply includes the text “1”. We also mention
that the experiments performed in the most recent versions of
the browsers that use XSS Auditor. That is, Google Chrome
version “36.0.1985.143 m” for Windows OS and version
“36.0.1985.143” for Linux OS, Google Chromium version
“35.0.1916.153 Built” for Linux, Apple Safari version “6.1-
7537.71” for Mac OS X 10.7.5.

A. The PHP Arracy Injection Attack
In this section we describe our identified attack named as
PHP Array Injection. This attack can be performed in poorly
written PHP code and specifically when web applications
use the print_r() or var_export() (see figure 2) PHP functions
to print back the name of the super global array $_GET and
the value of it. In particular, the PHP Array Injection attack
can bypass the XSS Auditor when an adversary has under
his/her control two URL variables of a web application (that
uses the above PHP functions), due to the use of arrays
which can hold more than one value at a time. Note that the
use of the print_r() and var_export() functions is common in
web applications, because they offer a simple way to process
(e.g., print, debug, etc.) a super global variable (e.g., $_GET)
using arrays.

Moreover, to demonstrate this attack, we have developed
for testing purposes a simple web application that implement
the code snippet shown in figure 2 (i.e., snippet 1). Note that
the URL of the testing web application, which we performed
the experiments is:
“http://localhost/xssme/index.php?x[Key]=value”. The
testing web application allows any variable that is an input as
GET data to be assigned to any variable name that a user
defines. Thus, an adversary can inject his/her own Javascript
code. Moreover, in this application, the PHP Array Injection
attack exploits the fact that the URL allows a user to have
under his/her control both the Key and the Value variables.
Additionally, using the print_r() and var_export() functions,
an attacker can print back a chosen key of the “x[]” array and
the value of it. Finally, it is important to notice that the
snippet 1 uses the htmlspecialchars() function to escape
output data (see figure 2). However, as we analyze in section
4, the use of this function alone cannot prevent XSS attacks.

In our first attempt of the attack, we tried to replace in the
above URL, either the “Key” or “Value” with the XSS attack
vector “<script>alert(1);</script>”, as shown in the
following two examples:

x[<script>alert(1)</script>]=Value

and,

x[Key]=<script>alert(1)</script>

However, the previous two attempts were unsuccessful,
because the XSS Auditor can trivially identify the inserted
Javascript code. Based on [12], we realized that XSS Auditor
is not designed to detect injections, which are split across
multiple parameters. Thus, we perceived that we need to split

http://localhost/xssme/index.php?x%5BNameOfArray%5D=Value
http://localhost/xssme/index.php?x%5BNameOfArray%5D=Value

the attack vector: “<script>alert(1);</script>” into two or
more parts and then make the JavaScript engine ignore the
text “]=” between the controlled parts. Initially, we thought
that this can be achieved using the JavaScript multi-line
comment delimiters ‘/* */’ because any text between ‘/*’ and
‘*/’ will be ignored by JavaScript. For example, the first
attack vector part can be defined as x[<script>alert(1); and
the second part as /*]=*/</script>. Hence, we tried to
execute the attack vector:

x[<script>alert(1);/*]=*/</script>

However, this attempt was again unsuccessful. After an
extensive search in the source code of XSS Auditor, we
discovered that the latter prevents every attempt that involves
HTML and JavaScript comments, such as ‘<!-- -->' , ‘//’ and
’/* */’. If either the URL or the request body contains
comment characters, the filter is activated and the attempt
was blocked.

<?php

 //--
 // Case 01 - The "print_r()" function.
 //--
 echo 'The "print_r()" function response:
';
 $get = print_r($_GET['x']);
 echo htmlspecialchars($get, ENT_QUOTES, 'UTF-8');

 //--
 // Case 02 - The "var_export()" function.
 //--
 echo '

 The "var_export()" function response:

';
 $get = var_export($_GET['x']);
 echo htmlspecialchars($get, ENT_QUOTES, 'UTF-8');

?>

Fig.2. Snippet 1 which is vulnerable to PHP Array Injection attack.

1) The Quote-Jacking Technique
After our initial failed attempts, we used a technique that

we named it Quote-Jacking to perform the PHP array
injection attack and successfully bypass the XSS Auditor. In
particular, we tried to repeat the previous attempts but this
time we replaced the aforementioned comment characters
with double-quotes ("") or single-quotes (''), in order to
comment out the second parameter. The rationale behind the
Quote-Jacking technique is that any string between <script>
and </script> tags, which is enclosed by single-quotes or
double quotes, is treated as a comment and should be ignored
when a JavaScript function (e.g., alert()) is executed. The
attack vector based on the Quote-Jacking technique is:

x[<script>alert(1);"]="</script>

Using the PHP Array Injection combined with the Quote-
Jacking technique we were able to successfully bypass the
XSS Auditor.

It is worth noting that the PHP array injection combined
with the Quote Jacking technique can be performed by
replacing in the above attack vector the semicolon character

‘;’ with any element from Table 1. For example, the
following attack vector can also bypass the XSS filter:

x[<script>alert(1)*"]="</script>

This happens because during our experiments we observed
that any NaN (Not-a-Number) [21] result from a Javascript
code execution, leads to successful XSS Auditor evasion. By
introducing any operator or element from the table we
achieve to perform an operation with NaN result and bypass
the XSS Auditor. It is important to mention that this finding
is not limited only to Javascript code that includes the alert()
function, but on the contrary it can be generalized for any
Javascript function without a return statement, or a function
with an empty return statement which gives as a result
“undefined”.

Table 1. Operators and elements for the Quote-Jacking technique.
JavaScript Operators

1. Assignment operators +=, -=, *=, /=, %=, |=, ^=, >>=,
<<=, >>>=

2. Comparison operators ==, ===, !=, !==, >, >-, <, <=,
>=

3. Arithmetic operators *, %, -, /
4. Bitwise operators |, ^, ~, >>, <<, >>>
5. Logical operators ||

JavaScript Functions
1. Functions void(), new(), typeof(), this(),

delete(), in(), instanceof()
Other accepted characters

1. Parenthesis / Brackets / Braces (), [], {}
2. Semicolon / linefeed Character

/ carriage return Character
;, %0a, %0d

B. The PHP Array-like Injection Attack
Except for the vulnerable PHP code that we mentioned in

the previous section, we have pinpointed that the XSS
Auditor can be bypassed with other poorly-written PHP code.
For instance, consider the PHP code snippet shown in figure
3 (i.e., snippet 2). This code uses a “foreach” loop to print
keys and values of a $_GET super global array. This code is
an alternative way to produce the same results as snippet 1,
but without making a use of print_r() or var_export()
functions. Similarly, figure 4 shows another example of badly
written code snippet (i.e., snippet 3) that has exactly the same
functionality as snippet 1, but does not use arrays.

<?php
foreach($_GET as $key => $value){
 echo "The key ".$key." has the value ".$value."
";
}
?>

Fig. 3. Snippet 2 which is vulnerable to PHP Array-like Injection
attacks.

<?php
 $key = key($_GET);
 $value = $_GET[$key];
 echo "The key ".$key." has the value ".$value."
";
?>

Fig. 4. Snippet 3 which is vulnerable to PHP Array-like Injection attacks.

The above two vulnerable PHP code snippets can help an
attacker to bypass the XSS Auditor by performing a variation
of the PHP array injection attack, named PHP Array-like
Injection. This attack targets against PHP applications which
behave like making use of arrays but they don't make actual
use of them. For example, in figure 3 snippet 2 does not
explicitly use arrays but instead uses the “foreach” loop to
print keys and values of a $_GET array. Again, to
demonstrate this attack we have developed in PHP testing
applications that implement the above snippets. The
developed applications use the URL:
“http://localhost/xssme/index.php?a=b”. An attacker via the
$_GET variable can insert a custom name for a key (i.e,. ‘a’
in the URL) and a corresponding value (i.e., ‘b’ in the URL).
If we use in the above URL as key the string
“<script>alert(1);” and as value the string “</script>” then
we achieve a NaN result and bypass the XSS Auditor as
analyzed previously (see section 3.1.1). The URL with the
final attack vector is

<script>alert(1);"="</script>

C. Impact
To examine the prevalence of the identified attacks, we have
audited the source code of various PHP applications. We
have discovered that many open-source CMS are vulnerable
to PHP Array-like Injection attacks. In particular, we have
pinpointed that the file and image manager plugin “Ajax File
Manager v1.0” used by Tinymce and FCKeditor editors in
the file named ajax_create_folder.php is vulnerable to the
PHP Array-like Injection attacks. This plugin is used in
various applications such as “Ajax File Manager”, XOOPS
2.5.0-2.5.4, OSClass 3.4.3, Zenphoto 1.4.1.4, phpMyFAQ
<= 2.7.0, PrestaShop 1.5, A6-CMS (ACMS) 5.30, Log1
CMS 2.0 and many more. In the new versions of these
applications the vulnerable plugin has been corrected.

It is evident that a successful exploitation and bypass of a
browser-based XSS filter (including XSS Auditor) could
lead to an XSS attack to every user that visits the vulnerable
web application. The impact of XSS attacks if often
misconceived by developers, because they consider that XSS
attacks cannot be exploited to steal personal data of end-
users. In our point of view, the consequences of XSS attacks
can be devastating. In particular, an attacker exploiting XSS
vulnerabilities can perform several malicious actions
including:
a) Steal or take over a user’s session (i.e., session hijacking).
b) Monitor a user’s activities.
c) Steal sensitive data from the user’s browser on a personal
computer, smart-phone or tablet.
d) Execute arbitrary code on the user’s personal computer,
smart-phone or tablet.
e) Take full control of the user's personal computer personal
computer, smart-phone or tablet

f) Pivot and attack the network(s) connected to the user's
personal computer, smart-phone or tablet.

IV. COUNTERMEASURES
The best strategy to prevent XSS attacks is the adherence

to secure coding guidelines and practices, in order to build
secure applications without vulnerabilities. In this section we
provide some indicative secure coding practices against our
identified attacks. A full detailed guide to prevent XSS
attacks is also available on OWASP [22]. Additionally, we
present the procedure that we followed to patch and enhance
the security of the XSS Auditor.

A. HTML Escaping
The most important rule against XSS attacks (and in general
injection attacks) is “Filter Input - Escape Output”. More
specifically, by escaping data on output we ensure that data
cannot be misinterpreted by the parser or interpreter. The
obvious examples are the “<” and “>” characters that denote
element tags in HTML. If these characters were allowed to
be inserted in a user-supplied input, it would allow an
attacker to introduce new tags (i.e. , <script> etc.) that
the browser would render. For this reason, developers should
escape these special characters by using htmlspecialchars()
PHP function [23]. This function, apart from “<” and “>”
that have already been mentioned, also converts other special
characters, such as “&”, “"” and “'” to HTML entities.
Escaping can be performed using the PHP funcation
htmlspecialchars() which should be called with the
ENT_QUOTES flag and a charset parameter. The
ENT_QUOTES flag specifies how double and single quotes
should be handled. Without passing ENT_QUOTES as the
second parameter, single-quote chars are not encoded. In
summary, the presented snippets should properly use the
htmlspecialchars() function to avoid PHP Array-like
Injection attacks as shown in figure 5.

Moreover, it is important to ensure that the web
application specifies the character encoding for the HTML
document as UTF-8 character-set in a header() function, or
in a <meta> tag at the beginning of the <head> element. The
<meta> tag provides meta-data about the HTML document.
With this specification, HTML encodes all the inputs with
the UTF-8 encoding and a UTF-7 encoding attack can be
prevented [24].

<?php
foreach($_GET as $key => $value){
 echo "The key ".htmlspecialchars($key,ENT_QUOTES,'UTF-8')." has
the value ".htmlspecialchars($value, ENT_QUOTES,'UTF-8')."
";
}
?>

Fig. 5. Secure coding by escaping data on output.

B. Proper use of PHP Printing Functions
Developers should make proper use of PHP printing

function. That is, if they want to capture the output of
“print_r()” or “var_export()” functions, they need to escape
them correctly. As shown in paragraph 3.1, the exclusive use
of htmlspecialchars() is not adequate. Additionally, the return

http://localhost/xssme/index.php?HYPERLINK
http://localhost/xssme/index.php?HYPERLINK

parameter of “print_r()” or “var_export()” functions should
be set to “True”, as shown in figure 6. In this case, this action
will prevent the execution of the XSS attack vector, as the
output of “print_r()” and “var_export()” functions will be
stored into a variable and hence it will be escaped through the
htmlspecialchars() PHP function. Otherwise, the output of
those functions will be printed unescaped, resulting in
possible execution of the inserted Javascript code, since the
output is not passed to the htmlspecialchars().

<?php
 //--
 // Case 01 - The "print_r()" function.
 //--
 echo 'The "print_r()" function response:
';
 $get = print_r($_GET['x'],True);
 echo htmlspecialchars($get, ENT_QUOTES, 'UTF-8');

 //--
 // Case 02 - The "var_export()" function.
 //--
 echo '

 The "var_export()" function response:

';
 $get = var_export($_GET['x'],True);
 echo htmlspecialchars($get, ENT_QUOTES, 'UTF-8');
?>

Fig. 6. Secure coding by returning True in print_r() and var_export()
functions in combination with htmlspecialchars()

C. Patching XSS Auditor
To patch the XSS Auditor, we obtained the WebKitGTK+
source code, from the official repository [7], which a port of
the web rendering engine WebKit to the GTK+ 3 platform.
By the time we performed the patching, the version of
WebKitGTK+ was Revision 172889. The patching code has
been inserted in a specific file of the XSS Auditor named
XSSAuditor.cpp [6]. In essence, our patching code performs
several additional security checks to detect PHP Array and
Array-like Injection attacks. After our patches, we repeated
our experiments and we observed that the WebKit engine
was not vulnerable anymore to the identified attacks. The
patching code can be found in [25]. Finally, we have
committed the patches to the official repository of WebKit
on GitHub [7].

V. CONCLUSIONS
In this paper, we focused on the mistakes that PHP web
application developers make, primarily on managing
variables and unwittingly help the attackers to bypass the
XSS Auditor. We presented three real-world examples of
badly written PHP code and how an attacker can construct an
attack vector to perform an XSS attack. To defend against
the identified attacks, we provided secure coding practices

for PHP developers. Finally, we showed how we managed to
patch the XSS Auditor and enhance its security.

REFERENCES
[1] Netcraft, http://news.netcraft.com/archives/2013/01/31/php-just-

grows-grows.html
[2] National Vulnerability Database (NVD), http://web.nvd.nist.gov.
[3] PHP-related vulnerabilities on the National Vulnerability Database,

http://www.coelho.net/php_cve.html
[4] OWASP Top Ten 2013,

https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
[5] OWASP, Cross-site-Scripting(XSS),

https://www.owasp.org/index.php/Cross-site_Scripting_XSS
[6] XSS Auditor,

https://github.com/WebKit/webkit/blob/master/Source/WebCore/html/
parser/XSSAuditor.cpp

[7] WebKit, “The WebKit Open Source Project”,
https://github.com/WebKit/webkit

[8] David Ross, “IE 8 XSS Filter Architecture/Implementation”,
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-
architecture-implementation.aspx

[9] Noscript, http://www.noscript.net.
[10] Daniel Bates, Adam Barth, and Collin Jackson, “Regular expressions

considered harmful in client-side xss filters”, Proceedings of the 19th
international conference on World wide web (www 2010), USA.

[11] sla.ckers.org, Chrome gets XSS filters,
http://sla.ckers.org/forum/read.php?13,31377

[12] Nick Nikiforakis, Bypassing Chrome’s Anti-XSS filter,
http://blog.securitee.org/?p=37

[13] Chromium, Issue 96616: Security: Google Chrome Anti-XSS filter
circumvention,
https://code.google.com/p/chromium/issues/detail?id=96616

[14] Issue 114641: XSS Auditor bypass with svg tags,
https://code.google.com/p/chromium/issues/detail?id=114641

[15] Issue 114346: XSS Auditor bypass with U+2028/2029,
https://code.google.com/p/chromium/issues/detail?id=114346

[16] Sebastian Lekies, Ben Stock, Martin Johns, “A tale of the weaknesses
of current client-side XSS filtering”, BlackHat USA 2014.

[17] Keith Makan, “Bypassing NoScript's XSS filters via Error Basd
SQLi”, http://blog.k3170makan.com/2012/07/nonoscript-bypassing-
noscripts-xss.html

[18] R.T. Waysea's Blog, “Of Trusted And Untrusted Data”,
http://rtwaysea.net/blog/blog-2013-10-18-long.html

[19] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius and
Edward Z. Yang, mXSS Attacks: Attacking well-secured Web-
Applications by using innerHTML Mutations, Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security
(CCS 13), Berlin, Germany.

[20] html5rocks, “How Browsers Work: Behind the scenes of modern web
browsers”.
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

[21] Mozilla, “The Nan Property”, https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/NaN

[22] OWASP, “XSS (Cross Site Scripting) Prevention Cheat Sheet”,
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29
_Prevention_Cheat_Sheet

[23] PHP, “htmlspecialchars() – Convert special characters to HTML
entities”, http://php.net/manual/en/function.htmlspecialchars.php

[24] Chris Shiflett, “Google's XSS Vulnerability”,
http://shiflett.org/blog/2005/dec/googles-xss-vulnerability

[25] https://github.com/stasinopoulos/webkit/commit/557d41ba23781cd53
dedc4d2e40c5af220e8b966

http://php.net/manual/en/function.htmlspecialchars.php

	I. Introduction
	II. Background
	A. Related Work
	B. XSS Auditor

	III. Bypassing XSS Auditor
	A. The PHP Arracy Injection Attack
	1) The Quote-Jacking Technique

	B. The PHP Array-like Injection Attack
	<script>alert(1);"="</script>
	C. Impact

	IV. Countermeasures
	A. HTML Escaping
	Moreover, it is important to ensure that the web application specifies the character encoding for the HTML document as UTF-8 character-set in a header() function, or in a <meta> tag at the beginning of the <head> element. The <meta> tag provides meta-...

	B. Proper use of PHP Printing Functions
	C. Patching XSS Auditor

	V. Conclusions
	References

