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Abstract 
Recently, gait recognition has attracted much attention as a biometric 

feature for real-time person authentication. The main advantage of gait is 

that it can be observed at a distance in an unobtrusive manner. However, the 

security of an authentication system, based only on gait features, can be 

easily broken. A malicious actor can observe the gait of an unsuspicious 

person and extract the related biometric template in a trivial manner and 

without being noticed. Another major issue of gait as an identifier has to do 

with their high intra-variance, since human silhouettes can be significantly 

modified, when for example the user holds a bag or wears a coat. This paper 

proposes gaithashing, a two-factor authentication that interpolates between 

the security features of biohash and the recognition capabilities of gait 

features to provide a high accuracy and secure authentication system. A 

novel characteristic of gaithashing is that it enrolls three different human 

silhouettes types. During authentication, the new extracted gait features and 

the enrollment ones are fused using weighted sums. By selecting appropriate 

weight values, the proposed scheme eliminates the noise and distortions 

caused by different silhouette types and achieves to authenticate a user 

independently of his/her silhouette. Apart from high accuracy, the proposed 

scheme provides revocability in case of a biometric template compromise. 

The performance of the proposed scheme is evaluated by carrying out a 

comprehensive set of experiments. Numerical results show that gaithashing 

outperforms existing solutions in terms of authentication performance, while 

at the same time achieves to secure the gait features. 
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1 Introduction  

Currently, users authentication and access control is mainly carried out 

based on the usage of passwords or tokens. However, these mechanisms 

present fundamental limitations in terms of both security and usability. 

More specifically, short length passwords are usually of low entropy, 

which means that an attacker may guess them, while lengthy passwords 

are difficult to remember. It is also hard for users to remember a lengthy, 

secure password for each employed service. This results in the usage of 

the same or similar passwords to each service, which increases 

significantly the risk of a password to be broken and the associated 

services to be compromised. Moreover, tokens can be easily misplaced or 

stolen.  

To overcome these limitations, biometric technology has emerged, 

which is defined as: “automated recognition of individuals based on their 

behavioral and biological characteristics” [8]. The authentication 

systems that employ biometrics include two fundamental procedures: a) 

enrollment and b) authentication. During enrollment, distinctive biometric 

features are extracted from an underlying user of the system to form its 

biometric template, which is stored in a database or token. In the 

authentication procedure, the system extracts the considered biometric 

features of a tentative user and creates its biometric template, which is 



compared against the initial (i.e., the template created and stored during 

enrollment) for user’s acceptance or rejection. 

A major challenge in biometrics is the protection of the extracted 

templates, in order to prevent malicious actors to perform impersonation 

attacks. Due to the fact that biometric characteristics are immutable, a 

security breach of the biometric templates renders the subjects’ biometrics 

useless. For this reason, prior to their storage to a physical medium (e.g., 

hard disk, USB token), a protection scheme should be applied to secure 

them. In general, the protection schemes for biometric templates should be 

designed to fulfill the following requirements: 

 Irreversibility: It should be computationally hard to reconstruct the 

original biometric features from a secure biometric template. 

 Revocability: Different versions of secure biometric templates can 

be generated, based on the same biometric data. Thus, if a biometric 

template is compromised, then it can be replaced with a new one.  

 Unlinkability: Secure biometric templates of the same subject, 

which are used in different authentication systems, should not allow cross-

matching.  

Apart from security, another important issue that need to be 

addressed is the intrinsic intra-variance that biometrics present. That is, 

the biometric features of the same subject cannot be extracted exactly the 

same, twice. As a result, the authentication of a valid user may fail, in case 

the extracted gait features differ significantly from the enrollment ones. 

As a matter of fact, the application of protection schemes may increase 

even more the intra-variance of biometrics, resulting in poor recognition 

results. Thus, the considered biometric template protection schemes seek 

to achieve an optimal balance between security and performance. 

A prominent template protection scheme is biohash [10], which 

transforms a biometric feature to a non-invertible bitstream, using 

tokenized random data. Biohash involves two authentication factors to 

verify a user:  

1. Proof by possession: The user is authenticated by proving the 

possession of a token, which is unique for each user of the system.  

2. Proof by property: The user is authenticated by his/her biometric 

feature.  

The biohash scheme has been successfully applied to various biometric 

features, including face [21], fingerprint [10] and palmprints [2]. In all 

these studies, biohash exhibits very good authentication performance, 

protecting, at the same time, the employed biometric features. 

Recently, gait recognition has attracted much attention as a biometric 

feature, for real-time person authentication. The main advantage of gait is 

that it can be observed at a distance, in an unobtrusive manner. For this 

reason, it is very suitable for surveillance applications or in environments 

where the application of other biometric traits (such as fingerprints or iris) 

is constrained. However, the security of an authentication system that 

employs, only, gait features can be easily broken. That is, a malicious 



actor may observe and record the gait of an unsuspicious person, and then, 

try to extract the related biometric template in a trivial manner, without 

being noticed. This compromised template can be used for authenticating 

a malicious in controlled environments gaining unauthorized access. 

Another major issue of gait features has to do with their high intra-

variance. This is attributed to the fact that gait features are extracted from 

human silhouettes, which can be significantly modified, when, for 

example, the user holds a bag or wears a coat. The introduced noise, due 

to changes in human silhouettes, distorts the gait features, resulting in 

poor authentication performance. 

This paper proposes gaithashing, a two-factor authentication scheme 

that secures gait features and addresses their intra-variance, using fusion 

methods. The proposed scheme interpolates between the security features 

of biohash and the recognition capabilities of gait features to provide a 

high accuracy and secure authentication system. A novel characteristic of 

gaithashing is that it enrolls three different human silhouettes types. That 

is: a) straight (i.e., the user wears trousers, blouse and shoes), b) coat 

(similar to straight silhouette, but the user also wears a coat), and, c) bag 

(similar to straight silhouette, but the user carries also a briefcase). During 

authentication, the new extracted gait features are fused with each one of 

the enrollment templates, using weighted sums. By selecting appropriate 

weight values, gaithashing performs comparison between gait features of 

the same silhouette type, eliminating in this way the noise and distortions 

caused by different silhouette types. Apart from high accuracy, the 

proposed scheme provides revocability in case of a biometric template 

compromise. The gaithashing scheme is evaluated by carrying out a 

comprehensive set of experiments. Numerical results show that 

gaithashing outperforms existing solutions in terms of authentication 

performance, while at the same time achieves to secure the gait features. 

Moreover, a comparative analysis of the performance of gaithashing with 

other state-of-the-art protection schemes is carried out, in order to 

highlight the advantageous characteristics of gaithashing. Overall, the 

contributions of this paper are twofold: 

 We propose a two-factor authentication scheme that extracts gait 

features and converts them to non-invertible bitstreams, without 

affecting the authentication accuracy.  

 We implement gaithashing and conduct comprehensive sets of 

experiments to evaluate and fine-tune the proposed scheme.  

The rest of the article is organized as follows. Section 2 provides the 

background for biometric template security and performance, as well as 

analyzes the related work. Section 3 presents the gait feature extraction 

and protection procedure. Section 4 describes and evaluates two different 

enrollment and authentication schemes, while section 5 analyzes the 

proposed scheme named gaithashing. Section 6 evaluates gaithashing by 

elaborating on its authentication performance and comparing it to other 

state-of-the-art schemes. Finally, section 7 includes the conclusions. 



2 Background  

2.1 Biometric template security and performance  

Protection schemes for biometric templates can be categorized as follows: 

a) biometric cryptosystems, and b) cancelable biometrics. Biometric 

cryptosystems are designed to securely bind a key to a biometric feature 

or generate a key from a biometric feature. On the other hand, cancelable 

biometrics consists of intentional, repeatable distortions of biometric 

features, based on one-way transforms, where the comparison of biometric 

templates takes place in the transformed domain. A comprehensive 

overview of biometric template protection schemes is presented in [17]. 

One of the most widely used cancellable biometrics algorithm is biohash 

and its variations [10], [13]. The one-way transformation of biohash is 

based on random projections [20]. The mathematical properties of random 

projections ensure the security of the protected template, while at the same 

time the authentication performance is not deteriorated. For this reason, 

the proposed scheme of this paper adopts a simple variation of biohash to 

secure the extracted gait features (see section 3.2).  

As mentioned previously, biometric systems include two procedures: 

a) enrollment and b) authentication. During enrollment, biometric features 

are extracted from a user of the system to form its biometric template, 

which is stored in a database or token. During authentication, the system 

extracts the considered biometric features of a user and creates a new 

biometric template, which is compared against the enrolled one for user’s 

acceptance or rejection. Due to the intrinsic noise of biometric features, 

the authentication and enrollment template cannot perfectly match. For 

this reason, biometrics systems compare the distance ((i.e., Euclidean, 

Hamming, or any other metric) between the enrolled and authentication 

template of a user against a predetermined threshold. If the distance is 

lower than the threshold value, then the user is successfully authenticated; 

otherwise he/she is rejected. 

The performance of a biometric system can be estimated and 

quantified using the following two metrics: i) false acceptance rate (FAR) 

and ii) false rejection rate (FRR). FAR represents the probability that an 

authentication system will incorrectly accept an authentication attempt by 

an impostor (i.e., a non-valid user that does not have an enrolled biometric 

template in the system); whereas FRR represents the probability that the 

system will incorrectly reject an authentication attempt by a genuine user 

(i.e., a valid and registered user of the system with an enrolled biometric 

template). As we analyze below, the exact value of FAR and FRR depend 

on the predetermined threshold value of the system. Another important 

metric that can be used to evaluate the authentication performance of a 

biometric system, is the Equal Error Rate (EER). The latter is the rate at 

which both acceptance and rejection errors are equal (i.e., 

EER=FAR=FRR). It is evident that the lower the value of EER is, the 

higher the accuracy of the biometric system. 



 

Figure 1: Genuine and impostor distributions as a function of distance between 

enrollment and authentication templates  

To gain better understanding of the FAR, FRR and EER metrics, 

figure 1 plots genuine and impostor distributions of a generic biometric 

system as a function of the distance between the enrolled and 

authentication templates. As expected, genuine users have small distances, 

while impostors have high distances. We can also observe that the two 

distribution curves have an overlapping area. This means that in this 

overlapping area the system cannot distinguish genuine users from 

impostors. Moreover, as shown in figure 1, the threshold value is set at the 

intersection point of the two curves. The threshold value divides the 

overlapping area into two sub-areas. The left sub-area represent the FAR, 

while the right sub-area represents the FRR. The intersection point of the 

two curves defines the EER value (see figure 1), since at this point the 

FAR and FRR are equal (i.e., EER=FAR=FRR). Moreover, it is evident 

that a biometric system presents optimum results (i.e., FAR and FRR 

equal to 0) when the genuine and impostor curves do not overall at all. On 

the other hand, as the overlapping area between the genuine and impostor 

curves increases, then the authentication performance is deteriorated.  

2.2 Related work  

Over the last years, several studies have been performed to consider gait 

signatures, by using shape analysis and extracting features from the 

silhouette of the human body. Here, we provide a brief overview of the 

most recent works in this area. In [22], the authors pinpoint that temporal 

information is critical to the performance of gait recognition. To address 

this, they propose a novel temporal template, named chrono-gait image 

(CGI) in order to retain temporal information in a gait sequence. 

Moreover, the authors of [5] argue that the change of viewing angle of the 

sensor causes significant distortion to the extracted features. Based on this 

observation, they formulate a new patch distribution feature (PDF) to 

address this issue. The same viewing angle problem is addressed in [12]. 

The authors propose a transformation framework of the walking 

silhouettes to normalize gaits from arbitrary views. In [15], the proposed 

method is based on the idea that the problem of human gait recognition 

can be transformed from the spatiotemporal into the spatial domain, 

specifically, the 2D image domain. This is achieved by representing a 

sample of a human gait as a still image. 



Towards this direction, [11] argues that variations of walking speed 

may lead to significant changes of human walking patterns. Based on this 

observation, a differential composition model (DCM) is proposed that 

differentiates the effects caused by walking speed changes on various 

human body parts; while at the same time it balances the different 

discriminabilities of each body part on the overall gait similarity 

measurements. In [19], the concept of the gait energy image (GEI) is 

extended from 2D to 3D images, creating gait energy volume (GEV). The 

obtained numerical results show that the GEV performance is improved, 

compared to the GEI baseline and fused multi-view GEI approaches. 

Next, in [18] the authors instead of using human silhouette images from 

moving picture, they apply 3D point clouds data of human body obtained 

from stereo camera, which has the scale-invariant property. In this way, 

they achieve significant performance improvement in terms of gait 

recognition. In [6], the authors propose a multi-view, multi-stance gait 

identification method, using unified multi-view population hidden Markov 

models, in which all the models share the same transition probabilities. 

Hence, the gait dynamics in each view can be normalized into fixed-

length stances by Viterbi decoding. [14] provides an extensive overview 

of the methods used for accelerometer-based gait analysis, using mobile 

devices. In [7], the extraction of distinguishable gait features is proposed 

using the radial integration transform (RIT), the circular integration 

transform (CIT), and the weighted Krawtchouk moments. In our proposed 

scheme, we use the CIT and RIT transformations for gait feature 

extraction, due to their excellent recognition capabilities (see section 3.1 

for analysis). 

On the other hand, the related work in protection schemes for gait 

features is rather limited. In [4], the authors propose an authentication 

system that protects gait features using biometric cryptosystems. Gait 

features are extracted using an accelerometer attached to the user’s body. 

Experimental results show that the proposed scheme achieves small EER 

values, only, for small key sizes. Thus, high accuracy is achieved without 

providing an adequate level of security. Finally, in [1], the authors 

propose a template protection scheme for gait features, based on channel 

coding (i.e., LDPC codes). Their approach, achieves EER=6% for straight 

silhouette types, but 20% and 30% for bag and coat types respectively. 

A common limitation of the majority of previous works is that they 

focus, only, on the extraction and not on the protection of the gait features. 

On the contrary, in this paper we propose and integrate feature extraction 

and protection into one system, providing a complete solution for 

biometric authentication based on gait features. Moreover, the previous 

works [1] and [4] that attempt to secure gait features, fail to achieve an 

optimum tradeoff between security and performance (see section 6.2). On 

the hand, in this paper, by interpolating between the security of biohash 

and the recognition capabilities of gait features, we achieve to outperform 

existing solutions, without undermining the provided security. Finally, it 

is important to mention that biohash has been successfully applied to 

various biometric features including fingerprints [10] [16], face [21] [9], 

singatures [13], palmprints and palm veins [2] [3], but to the best of our 



knowledge it has not been applied to gait features.  

3 Gait feature extraction and protection 

The key functionality of the proposed biometric system is the caption and 

extraction of gait features from a human silhouette as well as the 

protection of the extracted gait features. As we analyze below, the 

extraction of the gait features is based on the CIT and RIT transformations 

which converts the human walking to gait vectors. Next, the extracted gait 

vectors are converted to bitstreams with the help of the user’s token based 

on the biohash algorithm.  

3.1 CIT and RIT transformations  

For the extraction of gait features, this paper considers three different 

types of human silhouettes: 1) straight (i.e., the user wears trousers, blouse 

and shoes), 2) coat (similar to straight silhouette, but the user also wears a 

coat), and, 3) bag (similar to straight silhouette, but the user carries also a 

briefcase). It is worth noting that although the current work considers only 

the above three types of silhouettes, the proposed authentication system 

can be easily extended to take into account other types of silhouettes (e.g., 

the user wears a hat) or various combinations (e.g., a user wearing a coat 

and a hat).  

The extraction of gait features is based on two feature-based 

algorithms: the RIT and CIT transformations. These algorithms are 

selected due to their capability to represent important shape characteristics 

[2]. That is, during human movement, there is a considerably large 

diversity in the angles of lower parts of the body (e.g. arms, legs), which 

vary among individuals. Both RIT and CIT transformations ensure that the 

important dynamics of human shape are captured, thus enabling the 

correct classification of individuals. Moreover, these algorithms are less 

sensitive to the presence of noise on the silhouette image, compared to 

other schemes [2].  

At this point, we provide a brief presentation of these 

transformations, where additional details can be found in [7]. The first 

step in gait analysis is the extraction of the walking subject's silhouette 

from the input image sequence. The normalized silhouettes are defined as 

 ̃       where transformations are applied. More specifically, the RIT 

transform of a function        is defined as the integral of        along a 

line starting from the center of the silhouette       , which forms angle   

with the horizontal axis. The discrete form of RIT, which computes the 

transform in steps of    is given by: 

         
 

 
∑   ̃                                     

   , 

where            and    are constant step sizes of distance   and 

angle  ,   is the number of silhouette pixels that coincides with the line 

that has orientation   and are positioned between the center of the 

silhouette and the end of the silhouette in that direction, and                   



         . 

In a similar manner, CIT is defined as the integral of a function 

       along a circle curve      with center         and radius  . The 

discrete form of the CIT transform is given by: 

         
 

 
∑   ̃                                     

   , 

where           and    are the constant step sizes of the radius and 

angle variables,     is the radius of the smallest circle that encloses the 

binary silhouette image  ̃ , and          . The output of the CIT and 

RIT transformations are the fixed-length vectors      and      of size 

      and        respectively. 

3.2 Biohash 

After the extraction of the gait features (using the CIT and RIT 
transformations), the biohash algorithm is applied to secure them. The 
biohash algorithm is a two factor authentication scheme that identifies a 
user based on what he/she is (i.e., biometrics) and what he/she has under 
his/her possession (i.e., token). In the context of our proposed scheme, the 
biohash algorithm converts the gait feature vectors      and      (see 
section 3.1) to non-invertible bitstreams, using a token that the user 
possess. Since the application of biohash is similar to both CIT and RIT 
vectors, here we present the biohash algorithm in a generic way. More 

specifically, we present the application of biohash to a vector   of size  , 

which is converted to a bitstream  . Biohash includes the following 
phases [20]: 

1. The token of the user generates a set of orthonormal pseudorandom 

vectors 

{     |       }, 

2. A vector Z of size n with elements    is computed such as: 

   〈 |  〉      {     }, 

where ⟨ | ⟩ indicates the inner product operation. This procedure is 

also known as random projection. 

3. The mean value   and standard deviation   of    are computed. 

4. The final step is the binarization of   . As shown in table 1, first it 

divides the real-space of    into 8 segments. Next, each segment is 

mapped to a three bit digit value    {   } , so that two successive 

segments have only one bit difference between them (see table 1). In 

this way, it transforms the elements of vector   into a bitstream 

  {       } of    bits length.  

 

 

 

 



Table 1: Conversion of    to bi 

Segment       

1            000 

2              001 

3             011 

4          010 

5          110 

6             111 

7              101 

8            100 

4 Initial experiments and observations 

In this section we propose and evaluate experimentally two initial 

enrollment and authentication schemes. As we analyze below, despite the 

fact that these two schemes proved inadequate, due to their poor 

authentication performance, they provided useful observations and 

insights that allowed us to fine-tune and design and optimal enrollment 

and authentication scheme that is presented in section 5.  

As we mentioned in section 3.1, in this work we consider three types 

of gait features that are extracted from three types of human silhouettes: i) 

straight Gstraight, ii) coat Gcoat, and, iii) bag Gbag. Thus, an important 

question that arises here is: Which one of the three considered gait 

features the authentication system should enroll? To answer this question, 

we consider the following two enrollment and authentication schemes 

each of which encompasses a different technical approach: 

1
st
 scheme: Enrollment of one of the three considered gait feature 

vectors. The selection of the specific silhouette type that will be used 

for enrollment is arbitrary. 

2
nd

 scheme: First, a feature-level fusion of all three gait feature 

vectors is performed. Next, we enroll the single vector generated from 

the fusion. 

In the sections below, we present and evaluate through experiments the 

two above mentioned enrollment and authentication schemes. 

4.1 1
st
 scheme 

In the first scheme, we enroll gait features that are extracted only from one 

of the three considered types of human silhouettes. The specific gait 

feature that will be used for enrollment is selected arbitrary. In this 

analysis, we consider gait features from a straight human silhouette to be 

used for enrollment (note that the same procedure is followed, if another 

type of human silhouette is selected for enrollment). In this case, the CIT 

and RIT transformations are applied to extract the gait features from a 

straight silhouette Gstraight. That is,  

                                                       , 

                                            (         )  

Next, the biohash algorithm is applied to the two feature vectors (i.e., one 



for CIT and one for RIT), in order to generate two different enrollment 

bitstreams, denoted Ebits(cit, straight) and Ebits(rit, straight), respectively, which 

are stored in the enrollment database. That is: 

                           (                               ), 

                           (                               )  

In the authentication procedure, the silhouette G of the user can be 

one of the three types (i.e., straight, coat, bag). First, the CIT and RIT 

transformation are applied to extract two gait feature vectors (i.e., one 

from CIT and one from RIT) as follows: 

                                     , 

                                       

Next, using the user’s token and the extracted feature vectors, biohash is 

applied to generate two different authentication bitstreams Abits(cit) and 

Abits(rit). That is: 

                   (                      ), 

                   (                      ). 

At this point, the hamming distance between the authentication and the 

enrollment bitstreams is computed, separately for each transformation. 

Finally, the sum of the two hamming distances is computed as follows: 

                     (                               )    

                       (                               ) 

Finally, a user is accepted if FinalResult is less than a predetermined 

threshold, otherwise he/she is rejected. 

4.2 2
nd

 scheme 

In the second scheme, we apply feature-level fusion [23], in order to 

enroll gait features from all the three considered human silhouettes. In 

particular, the CIT and RIT transformations are applied to extract the gait 

features from the three considered human silhouettes: i) straight, ii) coat, 

and, iii) bag. Next, we fuse the extracted feature vectors to create two 

mean feature vectors                       and                      as 

follows: 

                      
                                                                 

 
 , 

                      
                                                                 

 
 . 

Subsequently, biohash is applied to the two mean feature vectors, in order 

to generate two different enrollment bitstreams denoted Ebits(cit, fusion) and 

Ebits(rit, fusion), respectively, which are stored in the enrollment database. 

The computation of the enrollment bitstreams is performed as follows: 



                                                , 

                         (          (         ))  

Similarly to the first scheme, in the authentication procedure, the 

silhouette G of the user can be one of the three types that were captured in 

the enrollment procedure (i.e., straight, coat, bag). First, the CIT and RIT 

transformations are applied to extract two gait feature vectors (i.e., one 

from CIT and one from RIT). As previously, using the user’s token and 

the gait features vectors, biohash is applied to generate two different 

authentication bitstreams Abits(cit) and Abits(rit). Next, the hamming 

distance between the authentication and the enrollment bitstreams is 

computed, separately, for each transformation. After that, the final score 

named FinalResult is computed, which is the sum of the two previsouly 

computed hamming distances. That is: 

                     (                             )   

                         (                             ) 

4.3 Experiments and numerical results 

In this section, we evaluate the authentication performance of the two 

enrollment and authentication schemes. To this end, we have implemented 

in C++ programming language the following software modules: i) the CIT 

and RIT transformation algorithms, ii) the biohash algorithm, and iii) the 

above two enrollment and authentication schemes. In the carried out 

experiments, we captured silhouettes of 75 subjects (i.e., users). Three 

different human silhouette categories were considered: a) straight, b) coat, 

and, c) bag. The relative position of the camera and the subject was 

vertical. Thus, the angle of the direction of the camera and the face of the 

subject was 90 degrees. 

The evaluation of the two schemes is performed by computing the 

genuine and impostor distributions. More specifically, to investigate the 

authentication performance of the proposed scheme, we classify the users 

as: a) genuine and b) impostors. Let user A be a genuine user with a token 

denoted as TRNA, while his/her biometric data is denoted as GAITA. 

Assume now that an impostor has his/her own biometric data GAITimpostor 

and his/her own token TRNimpostor. The goal of the impostor is to be 

authenticated as user A. We identify three different attack scenarios for 

the impostor: i) a type 1 impostor uses his own biometric data GAIT 

impostor and his own TRNimpostor; ii) a type 2 impostor has stolen and uses 

user’s A token TRNA but uses his/her own biometric data GAITimpostor; 

and iii) a type 3 impostor has stolen and uses the biometric data of user A 

GAITA and uses his/her own TRNimpostor. Impostors of type 1 are weaker 

(in terms of probability of successful authentication as genuine users) than 

impostors of type 2 and 3, since they do not possess any authentication 

credential (token or gait features). It is evident that in case that an 

impostor possesses both gait features and the token of a valid user, then 

he/she can be successfully authenticated as a genuine user. 

Figure 2 shows the genuine and impostor distributions for the first 

scheme (recall that the straight silhouette has been selected to enroll gait 



features). Note that since the genuine bag and coat distributions had 

exactly the same curves they are presented as one curve named genuine 

bag/coat. The same applies also for type 1 and 3 impostors distributions 

and, therefore, their curves are represented by a single one named type 

1/3. Figure 2 shows that the type 1/3 impostors are clearly separated (i.e., 

no overlap) from the genuine distributions, which means that the 1
st
 

scheme achieves EER=FAR=FFR=0%. We also observe that the genuine 

straight distributions have a very small overlap with type 2 impostors. We 

have estimated that the EER value for type 2 impostors and genuine 

straight is equal to 9%. However, it can be deduced from figure 2 that 

genuine bag/coat distributions overlap greatly with type 2 impostor 

distribution, which means that the system cannot distinguish them. As a 

matter of fact, we have derived the EER value equal to 34% for type 2 

impostors and genuine bag/coat, which is considerably high and 

unacceptable.  

It is worth noting that we repeated the experiments using this time 

gait features extracted from a bag silhouette as enrollment. Again, the 

same distribution behavior was observed with the difference that this time 

genuine bag distributions had a small overlap with type 2 impostors, while 

straight/coat curves overlapped greatly with type 2 impostors. In this case, 

the Type 2 EER value was derived equal to 33%. Note that similar results 

we observed using a coat silhouette as enrollment. From the above 

analysis, we deduce the following observation: 

 

Figure 2. Distributions of the FinalResult values of the first scheme for genuine users and 

impostors. 

Observation 1: Gait features that are extracted from the same user are 

similar only when they are extracted from the same silhouette type. On the 

contrary, gait features that are extracted from different silhouette types of 

the same user have great differences. 



The above observation indicates that if, for example, we use 

enrollment templates generated from a straight silhouette type, then a 

valid user may be rejected if his/her authentication templates are 

generated from bag or coat types. Similarly, if we use gait features 

extracted from bag silhouette as enrollment template, then a valid user 

may be rejected, if the silhouette type for authentication is straight or coat. 

This happens because when the enrollment and authentication templates 

(i.e., gait features) are generated from different silhouette types, the 

extracted gait vectors differ significantly, due to distortions that are caused 

by the different captured silhouette type. The above leads to the more 

generic observation: 

Observation 2: If we use enrollment templates only from one silhouette 

type, then the authentication performance is significantly deteriorated. 

Figure 3 shows the genuine and impostor distributions for the second 

enrollment and authentication scheme. First, we observed that all three 

genuine silhouette types had exactly the same distribution curve. For this 

reason, figure 3 shows one genuine distribution curve that represents all 

silhouette types. It is observed again that the type 1/3 and genuine 

distributions are clearly separated and thus EER=FAR=FFR=0% is 

achieved for these types of impostors. On the other hand, the type 2 

impostor distribution overlaps almost entirely with the genuine one, 

resulting in a very high EER value equal to 45% for type 2 impostors. 

This means that if we use feature fusion at the enrollment phase, the 

authentication performance is worse than the first scheme for all silhouette 

types. 

 

Figure 3. Distributions of the FinalResult values of the second scheme for genuine 

users and impostors. 

From the above analysis, we deduce the following observation:  



Observation 3: Feature-level fusion has adverse impact on the 

authentication performance. 

5 Gaithashing 

In this section, we describe the final enrollment and authentication scheme 

called gaithashing that yields the best numerical results. Unlike the 

previous two schemes that enroll only one feature gait vector (i.e., from a 

specific type of silhouette or fused), gaithashing enrolls separately gait 

feature vectors from all the three considered human silhouette types. 

Moreover, in the authentication process of gaithashing, the new extracted 

gait features are fused with each one of the enrollment templates, using 

weighted sums. By selecting appropriate weight values, gaithashing 

performs comparison between gait features of the same silhouette type, in 

order to increase the authentication performance and avoid the pitfalls of 

the previously mentioned schemes. 

 
Figure 4: Gaithashing enrollment procedure 

 

Algorithm 1: Enrollment Algorithm  

Input: Three gait silhouettes (Gstraight, Gbag, Gcoat), Token 

Output:Six enrollment Bitstreams (Ebits(cit,straight), Ebits(cit,bag), Ebits(cit,coat), 

Ebits(rit,straight), Ebits(rit,bag) , Ebits(rit,coat) ) 

1:               {                 } 
2:                           

3:                                                    

4:                                                    

5:                            (                        )   

6:                            (                        )     

7:    end 

 

Figure 5: Gaithashing enrollment algorithm 



More specifically, as shown in Figure 4, the first step of the 

enrollment procedure in gaithashing is to capture the aforementioned three 

distinct silhouettes of the user: a) straight Gstraight, b) coat Gcoat, and, iii) 

bag Gbag. Next, the CIT and RIT transformations are applied, separately, 

to each one of the three silhouettes of the user to extract the gait features. 

In this way, in total, six different gait features are extracted: three from the 

CIT transformation and three from RIT. In the second step, biohash is 

applied to each one of the six gait features using the token of the user, 

generating six different enrollment bitstreams. That is, three enrollment 

bitstreams for the CIT transformation Ebits(cit,straight), Ebits(cit,bag), 

Ebits(cit,coat), and three enrollment bitstreams for RIT Ebits(rit,straight), 

Ebits(rit,bag), Ebits(rit,coat), which are stored in the enrollment database. The 

algorithm of the enrollment procedure is presented in figure 5. 

The authentication procedure includes four distinct steps. Note that 

in the authentication procedure, the silhouette G of the user can be one of 

the three types that were captured in the enrollment procedure (i.e., 

straight, coat, bag). In the first step, the CIT and RIT transformation are 

applied to extract two different gait features (i.e., one from CIT and one 

from RIT). In the second step, using the user’s token and the extracted 

features, biohash is applied to generate two different authentication 

bitstreams Abits(cit) and Abits(rit). During the third step, the authentication 

and the enrollment bitstreams are compared and fused, separately, for 

each transformation to produce the intermediate scores CitSum and 

RitSum (i.e., first-level fusion as shown in figure 6). Finally, in the fourth 

step, the CitSum and RitSum are fused (i.e., second-level fusion as shown 

in figure 6) to generate the final score named as FinalResult. At this point, 

the user is accepted if FinalResult is less than a predetermined threshold; 

otherwise he/she is rejected. As mentioned below, the first and second 

level fusions are based on weighted sums. The exact values of the 

employed weights as well as the predetermined threshold are derived 

experimentally (see section 6.1), maximizing the authentication 

performance. 

 
Figure 6: Gaithashing authentication procedure 

 

5.1 First-level fusion  

The first-level fusion module is invoked in the authentication procedure, 

right after the generation of the authentication bitstreams. This module, 

calculates the hamming distances between each authentication and 

enrollment bitstream of the user. Note that the hamming distance 



represents the number of different bits between two bitstreams. In total, 

three hamming distances are computed for each transformation (CIT and 

RIT) as follows: 

                             (                               ), 

                        (                          ), 

                         (                           )  

and 

                             (                               ), 

                        (                          ), 

                                                      . 

A small hamming distance value between the authentication and 

enrollment bitstreams means that the compared bitstreams are similar. On 

the contrary, a high hamming distance value means that the compared 

bitstreams are different and they do not share similarities.  

Since the user’s silhouette type should match with one of the three 

enrollment types, it is evident that one of the previously generated scores 

from the RIT transformation and one from CIT have small hamming 

distance values (see observation 1), while the remaining scores have high 

hamming distance. Let X1 be the minimum between the three scores of 

CIT, that is, 

                                                           , 

and X2, X3 the remaining two scores. Similarly, we assign Y1 the 

minimum between the three scores of RIT: 

      (                                                   ), 

and Y2, Y3 the remaining two scores. In essence, X1 and Y1 represent the 

hamming distance between authentication and enrollment bitstreams of 

the same silhouette type, while X2, X3 and Y2,Y3 represent the hamming 

distance between authentication and enrollment bitstreams of different 

silhouette types. In other words, the values of X2, X3 and Y2,Y3 are 

considered to be noise. At this point, the first-level fusion module fuses 

the hamming distances of each transformation using weighted sums and 

generates two intermediate scores, CitSum and RitSum such as: 

                            

                            

where          and          are weight values such as          and 

         ,while it is            and           . Note 

that the impact of X1 and Y1 on the value of CitSum and RitSum 

respectively is greater than the other scores. This happens because their 

corresponding weight values (i.e.,    and   ) are greater than the other 

weight values. In this way, the noise introduced by X2, X3 and Y2,Y3 do 

not affect, significantly, the value of CitSum and RitSum. 



5.2 Second-level fusion and decision  

In this step, first a final score (denoted as FinalResult) is computed by 

fusing the CitSum and RitSum values, using weighted sums such as: 

                                , 

where   and    are weights such as        . Finally, the user is 

accepted or rejected based on the following simple rule: If FinalResult is 

less than a predetermined threshold, then the user is authenticated 

successfully; otherwise the user is rejected. The algorithm of the 

authentication procedure is presented in figure 7. 

Algorithm 2: Authentication Algorithm  

 

Input: An authentication gait silhouette (G), Six Enrollment Bitstreams,  

           Token, Threshold. 

Output: Acceptance or rejection of the user. 

1:               {                 } 
2:                                           

3:                                           

4:                       (                      )  

5:                       (                      )  

6:                           

7:                                                         

8:                                                         

9:    end 

10:                                                              and 

        X2, X3 the remaining two scores; 

11:                                                              and 

        Y2, Y3 the remaining two scores; 

12:                              
13:                              
14:                                  ; 

15:  if                       then 

16:      User is accepted; 

17:  else 

18:      User is rejected; 

19:  end 

Figure 7: Gaithashing authentication algorithm 

6 Evaluation of the proposed scheme 

6.1 Authentication performance  

To evaluate the authentication performance of the proposed scheme, we 

have implemented the two-level fusion and decision algorithm of 

gaithashing. The parameters of the carried out experiments are the same as 

in section 4.3. That is, three different human silhouette categories were 

considered: a) straight, b) coat, and, c) bag. Moreover, we classify the 

users as: a) genuine and b) impostors. We identify three different attack 

scenarios for the impostor: i) a type 1 impostor uses his own biometric 

data and his/her own token; ii) a type 2 impostor has stolen and uses a 

valid token of a genuine user but uses his/her own biometric data; and iii) 



a type 3 impostor has stolen and uses the biometric data of a genuine user 

but uses his/her own token.  

We have conducted two set of experiments. The aim of the first set is 

to derive the distributions of the FinalResult values for both genuine users 

and impostors (all three types). The FinalResult is the most important 

parameter in the proposed scheme, since the authentication of a user is 

based on its value. By investigating the distribution of FinalResult values, 

we gain insights for the behavior of the gaithashing scheme and whether it 

can distinguish impostors from genuine users. In the second set of 

experiments, the goal is to estimate the FAR, FRR and EER values. As 

mentioned previously (see section 2.1), FAR represents the probability 

that the authentication system will incorrectly accept an authentication 

attempt by an impostor, whereas FRR represents the probability that the 

authentication system will incorrectly reject an authentication attempt by a 

genuine user. This experiment allows us to estimate an appropriate 

threshold value that can minimize both FAR and FRR, at the same time. 

In the carried out experiments, the values of weights were set as 

follows:                                (first-level fusion) 

and                (second-level fusion). As we analyze below, these 

values were selected after trying various combinations and experiments, in 

order to achieve the best authentication performance (i.e., minimize the 

EER value). 

 

Figure 8: Distributions of the FinalResult values of gaithashing for genuine users and 

three impostor types 

Figure 8 shows the distribution of the FinalResult values for both 

impostors 1, 2, 3 and genuine users. Note that the distributions of 

impostors type 1 and 3 were identical and are presented in one curve. It is 

observed that the FinalResult values of type 1 and type 3 impostors is 

considerably higher than the genuine. In fact, the highest value of 

FinalResult for genuine users is 25, while the values of FinalResult for 

impostors type 1/3 begins at 110. As a result, the distribution curves of the 

genuine users and type 1/3 impostors do not overlap at all. This means 



that gaithashing can always distinguish between impostors type 1/3 and 

genuine users. In other words, an impostor of type 1 and 3 cannot be 

authenticated as genuine user. For example, if we set the threshold value 

equal to 60, then the FinalResult value for all genuine users is less than the 

threshold value, while all impostors of type 1 and 3 have FinalResult 

value higher than the threshold, which means that they will be rejected. 

On the other hand, we observe that the type 2 impostor distribution 

marginally overlaps with the genuine one. The intersection area of the two 

curves (i.e., genuine and impostor type 2 distribution) begins for 

FinalResult equal to 10 and ends for FinalResult equal to 25. In this area, 

gaithashing cannot distinguish between genuine users and type 2 

impostors, since they share the same FinalResult values. The above results 

indicate that depending on the value of the selected threshold, an impostor 

type 2 may be authenticated, successfully, as a genuine user or a genuine 

user may be rejected, incorrectly. For example, if we set threshold equal to 

10, then as shown in figure 8, no impostor of type 2 will be accepted. 

However, a small percentage of genuine users will be rejected, because 

their FinalResult value is greater than the threshold. 

 

Figure 9: Gaithashing FRR-FAR values as functions of the threshold value 

To quantify and investigate further the authentication performance of 

gaithashing, we have estimated the FAR and FRR values, as a function of 

threshold values (see figure 9). As expected, the value of FRR decreases, 

as the threshold increases. On the other hand, the values of FAR for the 

three impostors types increases as the threshold increases. Thus, the value 

of the threshold regulates a tradeoff between FAR and FRR. A small 

threshold value may minimize FAR, but the FRR may be very high. On 

the contrary, a high threshold value may minimize FRR, but the value of 

FAR can be very high. For this reason, we have to estimate the EER value 

(see section 2.1), where the FAR and FRR are equal (i.e., 

EER=FAR=FRR). Evidently, the value of EER should be as low as 

possible, since a low value of EER entails a low value of FAR and FRR. 

This value can be easily estimated, since it is the intersection point of the 

FAR and FRR curves. Thus, as shown in figure 9, for impostors of type 2, 

the EER equals to 10.8% which is obtained for threshold value equal to 



14. This means that if we set the threshold equal to 14, then for 100 

authentication attempts, the proposed scheme presents in total 10 false 

rejections of a genuine user or false acceptance of a type 2 impostor. 

Moreover, the EER for impostors of type 1/3 is equal to 0%, since the 

FRR and FAR curves do not intersect. This means that gaithashing is able 

to always detect type 1/3 impostors. Thus, we can deduce that the 

proposed scheme attains very high performance for all impostor scenarios, 

while false alarms are kept to minimal. 

It is important to mention that the employed weight values for the 

first and second level fusion play a key role in the performance of 

gaithashing. These were derived after a fine tuning procedure in which we 

performed several trials in order to minimize the EER value. More 

specifically, table 2 shows various weight values that we tested and the 

corresponding EER value for impostors of type 2 (note that the EER value 

for impostors type 1/3 was equal to 0% independently of weight values). 

Recall that          and          , while it is           , 

           and   +    . First, we randomly selected weights 

values for the first-level fusion, while the weights for the second level 

fusion were constant and equal to          . Initially, we tested the 

following weight values:       ,            and       ,       
    , (1

st
 trial). Numerical results showed that gaithashing achieved 

EER=11.4%. Next, in the 2
nd

 trial we increased the values of    (i.e., 

      ) and    (i.e.,       ) and we observed that the EER value 

increased (i.e., EER=13.2%), which was not acceptable. In the third trial 

we increased only the value of    (i.e.,       ), while    was equal to its 

initial value (i.e.,       ). Again, we observed that the value of EER was 

higher compared to the first trial (i.e., EER=12.5%). In the fourth trial, we 

reduced    (i.e.,       ) and    (i.e.,       ). We observed that the 

value of EER did not modified, significantly, but it was higher than the 

first trial (i.e., EER=13.2%).  

Table 2: Gaithashing tested weight values and corresponding EER of type 2 impostors 

Trials      ,         ,          EER 

1 0.5 0.25 0.5 0.25 0.5 0.5 11.4% 

2 0.6 0.2 0.6 0.2 0.5 0.5 13.2% 

3 0.6 0.2 0.5 0.25 0.5 0.5 12.5% 

4 0.4 0.3 0.4 0.3 0.5 0.5 13.2% 

5 0.5 0.25 0.5 0.25 0.6 0.4 11.6% 

6 0.5 0.25 0.5 0.25 0.4 0.6 10.8% 

Next, we modified the weight values of the second level fusion    

and   , while the weight values of the first-level fusion are constant and 

equal to the first trial. As shown in table 2, in the 5
th

 trial we assigned 

        and        and observed that the value of EER was not 

significantly modified, compared to the first trial (i.e., EER=11.6%). In 

the 6
th

 trial, we selected         and       . This time we observed 

that the value of EER was decreased, compared to the first trial and it was 

equal to 10.8%. Although we performed several other trials, the value of 

EER was not reduced further. Thus, we concluded that the weight values 

of the sixth trial should be selected in order to achieve the minimum EER 

value (i.e., EER=10.8%).  



Apart from the aforementioned experiments, it is important to mention 

that we tried to further improve the EER value of gaithashing for type 2 

impostors, using decision based fusion. In particular, we have 

implemented a scheme that performs two-level fusion. The first-level 

fusion is identical with gaithashing. That is, the hamming distances 

between each authentication and enrollment bitstreams of the subject are 

calculated and the CitSum and RitSum are derived using weights. In the 

second-level fusion, the CitSum and RitSum values are compared to two 

pre-defined thresholds (i.e.,              and               respectively) 

to derive a binary decision (i.e., TRUE or FALSE). That is: 

        {
                           

                           
      

        {
                           

                           
 

The final result denoted as FinalAuth is calculated by performing a 

decision-level fusion using the AND or OR logical rules. In particular, 

using the OR logical rule, a user is successfully authenticated if either the 

CitAuth or RitAuth value is TRUE, whereas using the AND rule, both 

CitAuth and RitAuth values should be TRUE. To obtain numerical results 

(i.e., EER), we tested various values for the              and 

             . The lowest EER values that we achieved for type 2 

impostors were equal to 48% and 19% for the OR and AND rules 

respectively. On the other hand, as we mentioned previously gaitashing 

achieved EER =10.8%.  Thus, it is evident that the decision based fusion 

approach does not improve the EER of gaithashing and as a matter of fact, 

it deteriorates the authentication performance [41]. 

To summarize, the EER values of the three proposed schemes are shown 

in Table 3. We conclude that all schemes achieve 0% EER for both Type 

1 and 3 impostors. However, for type 2 impostors, we obtained EER = 

34% for straight silhouette enrollment, as well as 27% and 32% for coat 

and bag enrollment respectively. Moreover, in the second scheme the EER 

was equal to 45%. However, the third scheme achieves EER = 10.8%, 

which is a significant improvement over the previous two schemes. This 

result means that for every 100 authentication attempts, the third scheme 

has in average 10 false acceptances of type 2 impostors and 10 false 

rejections of genuine users.  

Table 3: EER values of the three proposed schemes 

Impostors type 1
st
 scheme 2

nd
 scheme 

3
rd

 scheme 

(Gaithashing) 

Type 1 0% 0% 0% 

Type 2 

34% straight enrollment 

27% coat enrollment 

32% bag enrollment 

45% 10.8% 

Type 3 0% 0% 0% 

 

Apart from the fusion techniques, there are some other methods that could 



possibly improve the authentication performance of the system. In 

particular: 

a) Use of multiple feature extraction algorithms: Apart from CIT and RIT 

transformation algorithms, we can extract gait features using other feature 

extraction algorithms proposed in the literature (such as the ones 

presented in [11] and [15]). As a matter of fact, we can use multiple 

extraction algorithms to extract multiple gait features for the same user. 

Since different algorithms capture different characteristics of a human 

silhouette, we can enroll all extracted features and perform a feature-level 

fusion, in order to improve the authentication performance. The negative 

side effect of this approach is that it increases the overall complexity as 

well as the processing and storage overhead, due to the extraction and 

enrollment of several gait features for each user. 

b) Use of multi-modal biometrics: The ISO/IEC standards propose the use 

of multiple biometric features (i.e., also named as multi-modal 

biometrics), in order to overcome the limitations imposed by uni-modal 

biometric systems [42]. In general, multi-modal biometric systems are 

considered to be more reliable and robust to attacks [43], since an 

impostor should compromise two or more biometric features of a genuine 

user. In the proposed gaithashing system, gait features can be combined 

with face or iris or any other biometric modality to create a feature vector 

for the user. The downside of this approach is that the proposed system 

will inherit the usability issues of the other biometric modalities. That is, 

gait is the only biometric modality that provides unconstructive access 

control and authentication at-a-distance. All other biometric modalities 

(including fingerprints, iris, face) have several usability issues (see section 

6.2). Therefore, on the one, hand multimodal biometrics may improve the 

EER results, but on the other hand it will reduce the usability of the 

system.  

c) Use of multiple sensors: Another improvement in the authentication 

performance may be achieved by using multiple sensors. That is, we can 

use different cameras to capture the human silhouette of a user and obtain 

multiple gait features (each one derived from a different camera) that can 

be used for enrollment. However, we have to notice that the use of 

multiple cameras may cause deployment issues and increase the overall 

cost. 

6.2 Comparison of gaithashing to previous works 

In this section, we compare the authentication performance of gaithashing 

to state-of-the-art template protection schemes. Recall that the proposed 

gaithashing is a cancellable biometric scheme (see section 2.1), based on 

the biohash algorithm to secure gait features. To this end, we compare 

gaithashing to: i) schemes that secure gait features, based on other 

algorithms than biohash; ii) schemes that secure biometric features other 

than gait, based on the biohash algorithm, and, iii) schemes that secure 

other biometric features (not gait), based on other two-factor 

authentications (i.e., not biohash). Note that to perform this comparative 

analysis, we present only the numerical results (i.e., EER values) of the 



previous schemes. The detailed analysis of the exact algorithms employed 

in the previous schemes is omitted, since it is out of the scope of the 

paper. 

Table 4: EER values of gaithashing and previous schemes that secure gait features 

Authors EER 

T. Hoang and D. Choi [4] 
7.84% for key size 50 bits 

16.9% for key size 55 bits 

S. Argyropoulos et al. [1] 

6% for straight 

20% for bag 

30% for coat 

Gaithashing 
10.8% for type 2 impostors 

0% for type 1/3 impostors 

Table 4 compares the EER values between the proposed scheme and 

previous schemes that secure gait features. Note that since these schemes 

are single-factor authentication (and not two-factor authentication like 

gaithashing), they estimate EER values considering one impostor type 

(i.e., a user that tries to be authenticated using his/her biometrics). The 

scheme presented in [4] applies fuzzy commitment to secure gait features 

using a cryptographic key. The authors have estimated the EER values of 

their scheme as a function of the cryptographic key size. On the other 

hand, gaithashing does not rely on cryptographic keys to secure gait 

features. As mentioned in [4], for a key size 50 bits, the scheme achieves 

EER equal to 7.84%. It is evident, that although EER is lower than 

gaithashing, it cannot provide adequate security, due to very small key 

size. Even worse, as the key size increases, then EER also increases. That 

is, for key size of 55 bits the EER value becomes 16.9%, which is 

significantly higher than 10.8% of our proposed scheme. Moreover, the 

work in [1] uses channel coding approach to secure gait features, 

achieving a very low value for EER, only, in the case of straight silhouette 

(i.e., 6%). On other hand, the EER values are unacceptably high for bag 

and coat silhouette types (i.e., 20% and 30% respectively). On the 

contrary, the performance of gaithashing and the EER value are 

independent of the silhouette type. This can be attributed to the fact that 

gaithashing uses all possible silhouette types for enrollment, while in the 

authentication procedure the proposed scheme performs score-level 

fusion, using weighted sums to compare gait features between the same 

silhouette type. In this way, gaithashing ensures that genuine users are 

authenticated successfully, independently of their sillouette type. Another 

reason that gaithashing yields these remarkable results is related to the fact 

that the proposed scheme inherits the recognition capabilities of the 

biohash algorithm. That is, by mixing the random numbers generated by 

the user’s token with gait features [18], gaithashing is capable of 

preserving the biometric intra-class variations (i.e., variation in the gait 

features between the same user), while at the same time enhances the 

biometric inter-class variations (i.e., variations in the gait features of 

different users). 

Moreover, compared to the previous schemes [1] and [4] of table 4, 

gaithashing protects the enrollment bitstreams in the sense that an 

attacker, even if he/she is able to access the database, it cannot revert the 

bitstreams back to gait features. This happens because the generated 



bitstreams are non-invertible, due to mathematics properties of the 

biohash algorithm [18]. Moreover, gaithashing provides unlinkability, 

meaning that an attacker cannot cross-match enrollment bitstreams of the 

same user, which are used in different authentication systems (assuming 

that the user is using a different token between authentication systems). 

Last but not least, in case of a database compromise, gaithashing provides 

a simple yet effective way to revoke the enrollment bitstreams. That is, the 

users should replace their tokens with new ones, in order to generate new 

enrollment bitstreams. 

Table 5: EER values of gaithashing and previous schemes that apply biohash to secure 

other biometric modalities (not gait). 

Authors 
Biometric 

Modality 

EER- Type 1 

Impostor 

EER - Type 2 

Impostor 

EER - Type 

3 Impostor 

A. Teoh et al. [20] Face 0% 1.77% 0% 

 A. Jin et al. [26] Face 0% 
Not 

considered 

Not 

considered 

D. Ling et al. [25] Face 0% 
Not 

considered 

Not 

considered 

T. Connie et al. [2] Palmprint 0% 
Not 

considered 

Not 

considered 

L. Hengjian et al. 

[24] 
Palmprint 0% 

Not 

considered 

Not 

considered 

A. T. B. Jin et al. 

[10] 
Fingerprint 0% 

Not 

considered 

Not 

considered 

A. Teoh et al. [27] Fingerprint 0% 2.39% 0.23% 

A. Lumini and L. 

Nanni [13] 

Face 

Fingerprint 

0% 

0% 

2.4% 

6.8% 

0% 

0% 

Gaithashing Gait 0% 10.80% 0% 

Table 5 compares the EER values of gaithashing with a 

representative set of previous biometric template protection schemes that 

apply the biohash algorithm (or some modified version of biohash) to: i) 

face, ii) palmprints, and, iii) fingerprints. To the best of our knowledge, 

there is no previous work that applies biohash to gait features. As we 

notice in table 5, the majority of previous works (i.e., [26], [25], [2], [24], 

[10]) consider only type 1 impostors and overlooks to take into account 

type 2 and 3 impostors. Thus, the presented EER results of these schemes 

may be very low for type 1 impostors (in fact they achieve EER=0%), but 

they do not provide complete and realistic views of the overall 

authentication performance, since numerical results of EER for type 2 and 

3 impostors are missing. On the other hand, the proposed solutions in [20], 

[27] and [13] have considered type 2 and 3 impostors in their numerical 

results. As a matter of fact, their EER are lower than gaithashing. This is 

attributed to the fact that the previous works (i.e., [20], [27] and [13]) have 

significantly enhanced the initial biohash algorithm (as described in [10]) 

by using advanced binarization techniques that may improve the 

authentication performance, but at the same time increase the overall 

complexity of the system. Moreover, some of these previous works (e.g., 

[13]) do not analyze possible security implications of their binarization 

techniques. On the other hand, the aim of the proposed gaithashing is to 

achieve a relatively low EER value in a simple but effective manner by 

focusing on fusion techniques. However, we mention that gaithashing can 

http://link.springer.com/search?facet-author=%22Andrew+B.+J.+Teoh%22


be easily modified to adopt advanced binarization techniques to further 

reduce the EER values. 

Table 6: EER values of gaithashing and other protection schemes that are based on two-

factor authentication (not biohash) to secure other biometric modalities (not gait) 

Authors 
Biometric 

Modality 

EER - Type 

1 

Impostor 

EER - Type 2 

Impostor 

EER - Type 3 

Impostor 

P. Färberböck et 

al. [33] 
Iris 2.6% 

Not 

considered 

Not 

considered 

C. Rathgeb and 

A. Uhl [34] 
Iris 0.25% 

Not 

considered 

Not 

considered 

O. Ouda et al. 

[35] 
Iris 2.3% 

Not 

considered 

Not 

considered 

E. Anzaku, et al. 

[36] 
Fingerprint 0.31% 

Not 

considered 

Not 

considered 

C. Karabat and 

H. Erdogan [37] 
Face 0,145% 11.85% 

Not 

considered 

J. Zhe et al. [38] Fingerprint 0.20% 10% 
Not 

considered 

W. Song and H. 

Jiankun [39] 
Fingerprint 0% 

Variable 

(3.5% - 7.5%) 

Not 

considered 

J. Zhe et al. [40] Fingerprint 0% 

Variable 

(1.33% - 

24.71%) 

0% 

Gaithashing Gait 0% 10.8% 0% 

 

Finally, we compare gaithashing to other protection schemes that are 

based on two-factor authentication (not biohash) to secure other biometric 

features (not gait) (see table 6). Note that the EER results of schemes [39] 

and [40] are variable, because they have used multiple datasets to evaluate 

their performance and derive results. From table 6 we observe again that 

the majority of the previous schemes (i.e., [33], [34], [35], [36]) 

erroneously do not take into account type 2 and 3 impostors and estimate 

EER values, only, for impostors of type 1. We observe also that even for 

type 1 impostors, these schemes have higher EER values compared to 

gaithashing. For instance, in the work of [33] the EER value for type 1 

impostors is equal to 2.6%. Moreover, we observe that the schemes of 

[37] and [38], which take into account impostors of type 2 (but not type 

3), present almost the same or higher EER values (11.85% and 10% 

respectively). Finally, the schemes of [39] and [40] have variable EER 

values for type 2 impostors and their minimum EER is lower than our 

proposed gaithashing (i.e., 3.5%, and 1.33% respectively). On the other 

hand, the maximum EER value of [40] is considerably higher than 

gaithashing (i.e., 24.71%), while in [39] the maximum EER value is equal 

to 7.5%, which is little lower than our proposed gaithashing.  

Unlike the previous schemes of Table 5 and 6 that secure biometric 

features such as fingerprints, face and palmprints, the proposed 

gaithashing specifically focus on securing gait features, which offer 

significant advantages compared to the other biometric features. Generally 

speaking, gait features have some unique characteristics that make them 

suitable for various applications, such as non-invasive physical access 

control, covert security, and visual surveillance. In particular, gait is the 

http://link.springer.com/search?facet-author=%22Zhe+Jin%22


only biometric modality that provides unobtrusive identification at a 

distance, so that unauthorized or suspicious persons can be remotely 

recognized when they enter a surveillance area. Moreover, most 

biometrics features including iris, face, and fingerprint require specialized 

and expensive scanners, in order to extract high-resolution images to 

achieve an acceptable recognition performance [29]. On the other hand, 

gait features can be captured using off-the-shelf camcorders [31]. As a 

matter of fact, gait features extraction can be performed even with mobile 

devices using their accelerometer and gyroscope sensors [28]. In [32] an 

Android application is developed that captures gait features, using 

accelerometer sensors, which are commonly found in the majority of 

today’s smartphones and tablets. On the other hand, the extraction of other 

biometric features using mobile devices faces some challenging issues. 

For instance, fingerprint scanner technology in mobile devices (e.g., 

Apple touch ID [30]) should use large sensors, in order to acquire high 

quality images and increase accuracy. However, the incorporation of large 

sensors in mobile devices increases their total cost as well as their 

thickness [29], which is not desirable by consumers. 

Moreover, unlike other biometrics like fingerprint or iris, which 

require careful and close contact with the scanner, the extraction of gait 

features does not require much cooperation from the users. It is also worth 

noting that fingerprints and palmprint scanners tend to be fragile and 

susceptible to performance degradation over time caused by dust, 

moisture, and electrostatic discharge. Finally, the performance of 

fingerprint and palmprint recognition is significantly deteriorated when 

hands are too moist or oily. On the other hand, gait recognition is in 

general more robust and it is not affected by environmental or other 

external factors. 

7 Conclusions  

This paper proposed gaithashing, a two-factor authentication scheme that 

secures gait features in an efficient manner. The proposed scheme 

combines the security features of biohash and the recognition capabilities 

of gait features to provide a high accuracy authentication system. In 

gaithashing, a user is authenticated only if he/she possesses a valid token 

and a valid gait feature. The performance of the gaithashing scheme is 

evaluated by carrying out two sets of experiments. The obtained numerical 

results and the carried out evaluation allow us to derive the following 

generic observations: 

 Gaithashing achieves EER=0% for type 1 and 3 impostors (i.e., 

type 1 impostor uses his/her own gait features and his/her own 

token, while type 3 impostors use compromised gait features and 

they own token for authentication). This means that the proposed 

scheme always detects type 1 and 3 impostors. 

 It achieves very high accuracy (EER=10.8%) for type 2 impostors 

(i.e., an impostor that uses a compromised token and his/her own 

gait features for authentication).  

 Gaithashing addresses the distortions caused when the subject 



wears a coat or holds a bag, by enrolling three different types of 

human silhouettes (i.e., straight, coat, bag). The proposed scheme 

can be easily extended to take into account other types of human 

silhouettes (e.g., a user wearing a hat). 

 The proposed scheme secures gait features by converting them to 

non-invertible bitstreams using the biohash algorithm and a user's 

token.   

 Gaithashing provides unlinkability and easy revocability of the 

gait templates, simply by replacing the user's token with a new 

one. 
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