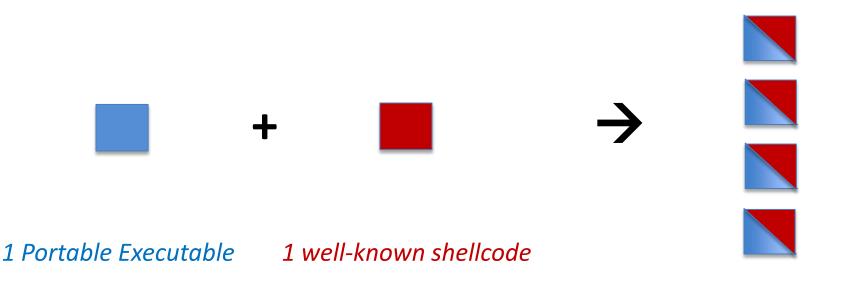
black hat USA 2015

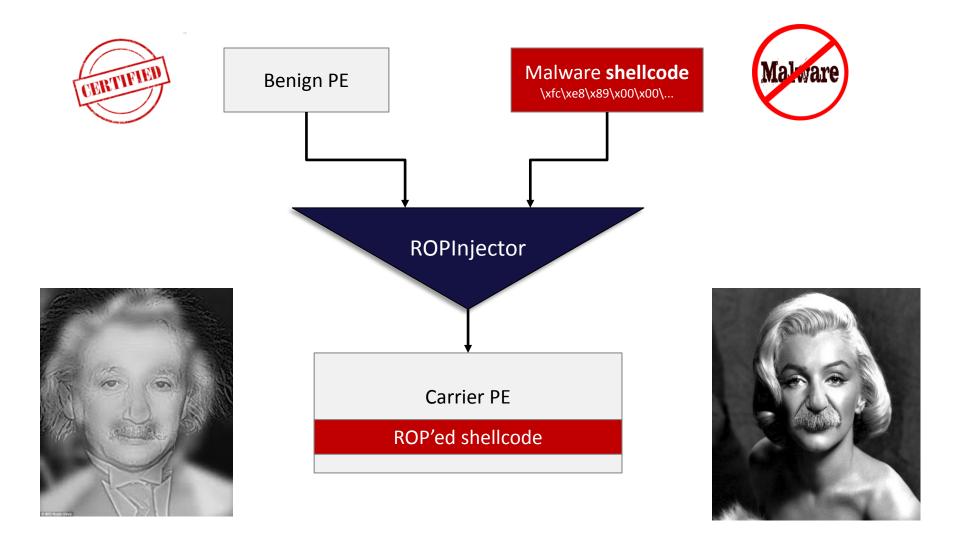
ROPInjector: Using Return-Oriented Programming for Polymorphism and AV Evasion

G. Poulios, C. Ntantogian, C. Xenakis {gpoulios, dadoyan, xenakis}@unipi.gr

• **ROP** is an **exploitation technique** that allows an attacker to execute:


A sequence of machine instructions named "gadgets"

- Each **gadget** is a part of **borrowed code** that **ends** with the instruction **return**
- A sequence of gadgets allows an attacker to perform arbitrary operations



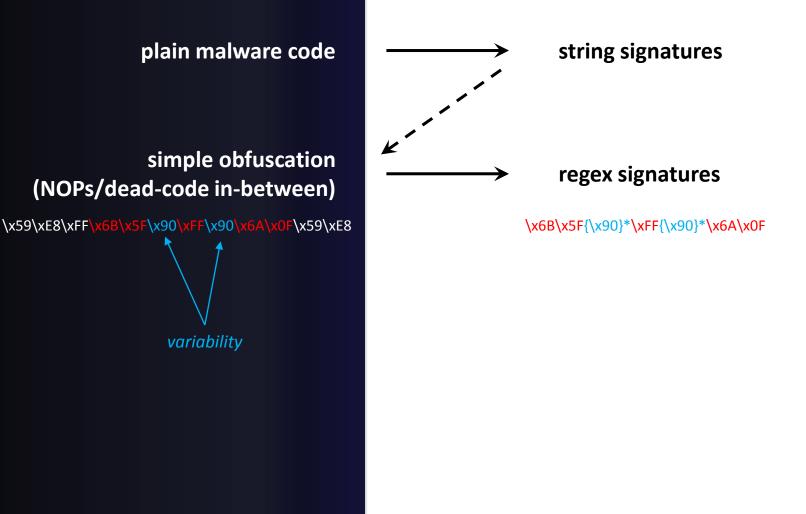
- ROP has been mainly used to bypass the nonexecutable memory defense mechanism.
- We propose **ROP** as a **polymorphic alternative** to achieve **AntiVirus (AV) evasion**.

Many different variations

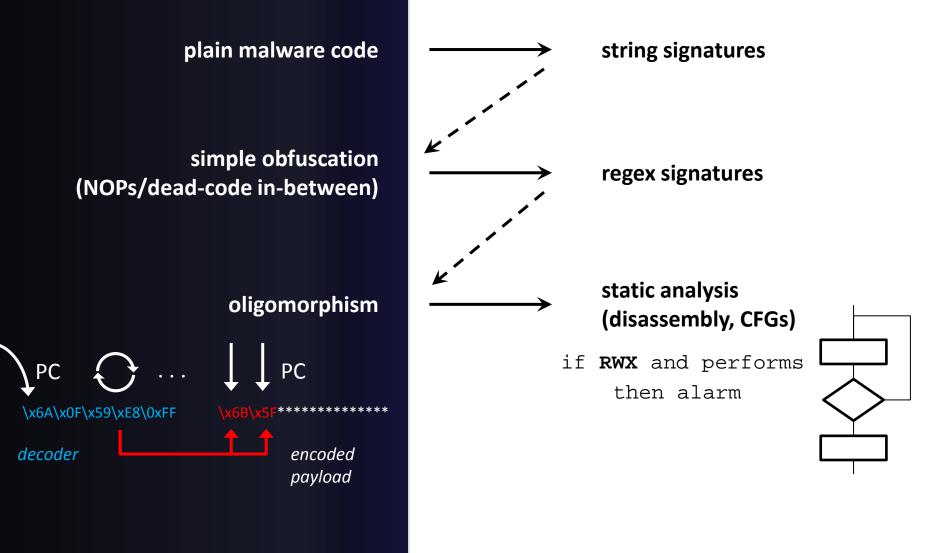
blackhat Our Tool: ROPInjector

- a) We use **borrowed code** (i.e., ROP gadgets)
 - ➔ Not raise any suspicious !
 - <u>A possible footprint</u>: the instructions that insert the addresses of the ROP gadgets into the stack.
- b) May transform any given shellcode to a ROPbased equivalent → Generic
- c) May use different ROP gadgets or the same
 found in different address → Polymorphism

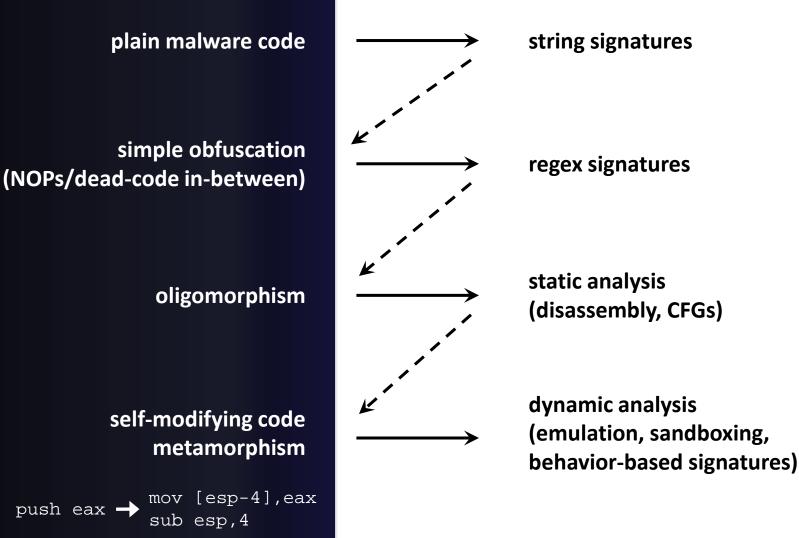
blackhat A quick historical overview


string signatures

\x6B\x5F\xFF\x6A\x0F


plain malware code

\x59\xE8\xFF\<mark>x6B\x5F\xFF\x6A\x0F</mark>\x59\xE8\xFF



black hat A quick historical overview

- 1. The new **resulting PE** should **evade AV detection**
- 2. PE should <u>not</u> be corrupted/damaged
- 3. The tool should be generic and automated
- 4. Should <u>not</u> require a writeable code section to mutate (i.e., execute ROP chain)

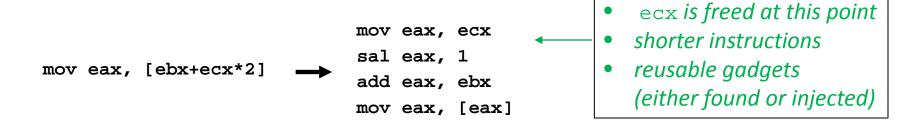
- 1. Analyze the shellcode
- 2. Find ROP gadgets in the PE
- 3. Transform the shellcode to an equivalent ROP chain
- 4. Inject into the PE missing ROP gadgets (if required)
- 5. Assemble a ROP chain building code in the PE
- 6. Patch the chain building code into the PE

black hat STEP 1: Shellcode Analysis (1/3)

- Aims to obtain the necessary information to safely replace shellcode instructions with gadgets
- For each **instruction**, **ROPInjector** likes to know:
 - what registers it reads, writes or sets
 - what registers are free to modify
 - its bitness (a mov al, x or a mov eax, x ?)
 - whether it is a branch (jmp, conditional, ret, call)
 - and if so, where it lands
 - whether it is a privileged instruction (e.g., sysenter, iret)
 - whether it contains a VA reference
 - whether it uses indirect addressing mode (e.g., mov [edi+4], esi)

 Scaled Index Byte (SIB) enables complex indirect addressing modes

mov eax, [ebx+ecx*2]


- We want to avoid **SIBs** in the **shellcode** since
 - Iong: >3 bytes
 - unlikely to be found in gadgets
 - rarely reusable
 - reserve at least 2 registers

black hat STEP 1: Shellcode analysis (3/3)

• ROPInjector transforms SIB into simpler instructions:

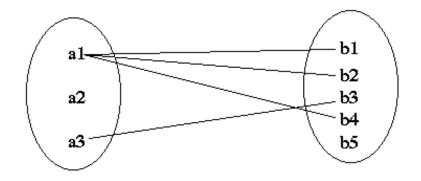
unrolling of SIBs

- With **unrolling of SIBs**, we achieve:
 - increased chances of finding suitable gadgets
 - less gadgets being injected

- 1. First, find **returns** of type:
 - ret(n) or
 - pop regX
 jmp regX or
 - jmp regX

2. Then, search backwards for more candidate gadgets

- ROPInjector automatically resolves redundant instructions in ROP gadgets
 - Avoid errors during the execution of ROP code
- Maximize **reusability** of **ROP gadgets**
- Avoid injecting unsafe ROP gadgets
 - modify non-free registers
 - are branches
 - write to the stack or modify esp
 - are privileged
 - use indirect addressing mode



- Initially, it translates shellcode instructions to an Intermediate Representation (IR).
- Next, it translates the **ROP gadgets** found in PE to an **IR**.
- Finally, it provides a **mapping between** the two **IRs**

- 1 to 1

or

- 1 to many

blackhat STEP 3: Intermediate Representation

IR Type (20 in total)	Semantics	Eligible instructions
ADD_IMM	regA += imm	add r8/16/32, imm8/16/32 add (e)ax/al, imm8/16/32 xor r8/16/32, 0 cmp r8/16/32, 0 inc r8/16/32 test $r_a 32$, $r_b 32$ (with $r_a == r_b$) test r8/16/32, 0xFF/FFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
MOV_REG_IMM	mov regA, imm	mov r8/16/32, imm8/16/32 imul r16/32, r16/32, 0 xor $r_a 8/16/32$, $r_a 8/16/32$ and r8/16/32, 0 and (e)ax/al, 0 or r8/16/32, 0xFF/FFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFFFF

blackhat STEP 3: Mapping examples

- 1-1 mapping example
 - Shellcode:

mov eax, $0 \rightarrow MOV_REG_IMM(eax, 0)$

- Gadget in PE:
 - and eax, 0 ret \rightarrow MOV_REG_IMM(eax, 0)
- 1 to 1 IR mapping

- 1-many mapping example
 - Shellcode:

add eax, 2 \rightarrow ADD_IMM(eax, 2)

- Gadget in PE:

 $ret eax \rightarrow$

 \rightarrow ADD_IMM(eax, 1)

1 to 2 IR mapping

blackhat STEP 4: Gadget Injection

- If the PE does not include the required ROP gadgets
- By simply injecting **ROP gadgets** would raise **alarms**

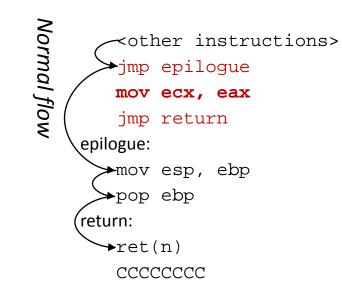
<u>Statistics</u> (presence of successive ret instructions)

- Therefore, we insert ROP gadgets in a benign looking way (scattered) avoiding alarms:
 - 0xCC caves in .text section of PEs (padding space left by the linker)
 - Often preceded by a ret (due to function epilogue)

00000640	FC 1E 00 00 E9 19 31 00	00 E9 44 09 00 00 CC CC	1 D
00000650	00 00 00 00 00 00 00 00	CC CC CC CC CC CC CC CC	
00000660	00 00 00 00 00 00 00 00	CC CC CC CC CC CC CC CC	
00000670	00 00 00 00 00 00 00 00	CC CC CC CC CC CC CC CC	

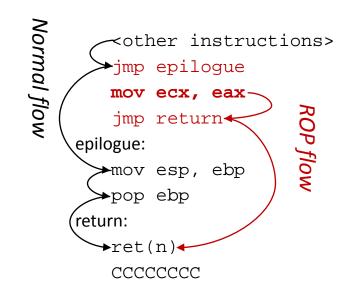
 Assuming the missing gadget is mov ecx, eax and we find the following 0xCC cave:

<other instructions>



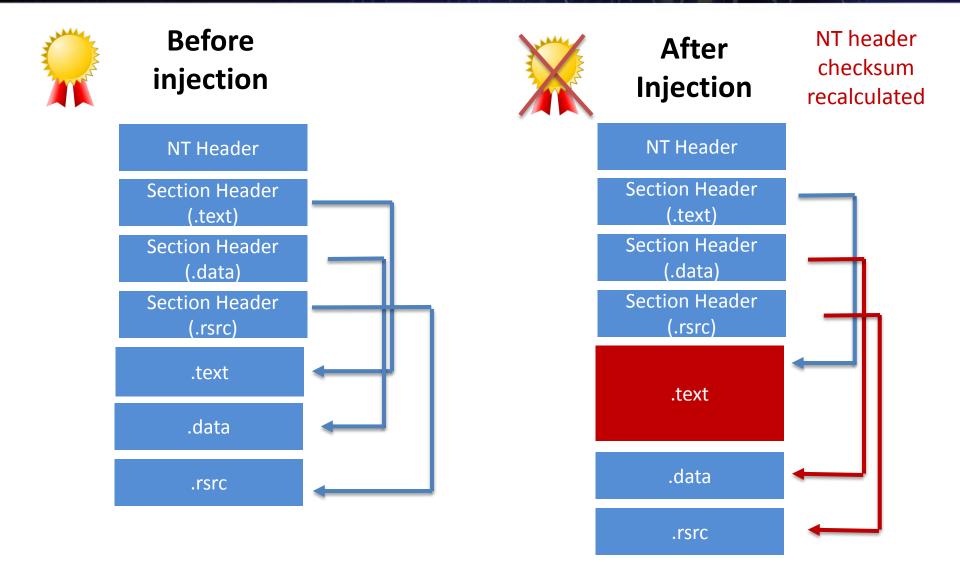
 Assuming the missing gadget is mov ecx, eax and we find the following 0xCC cave:

<other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

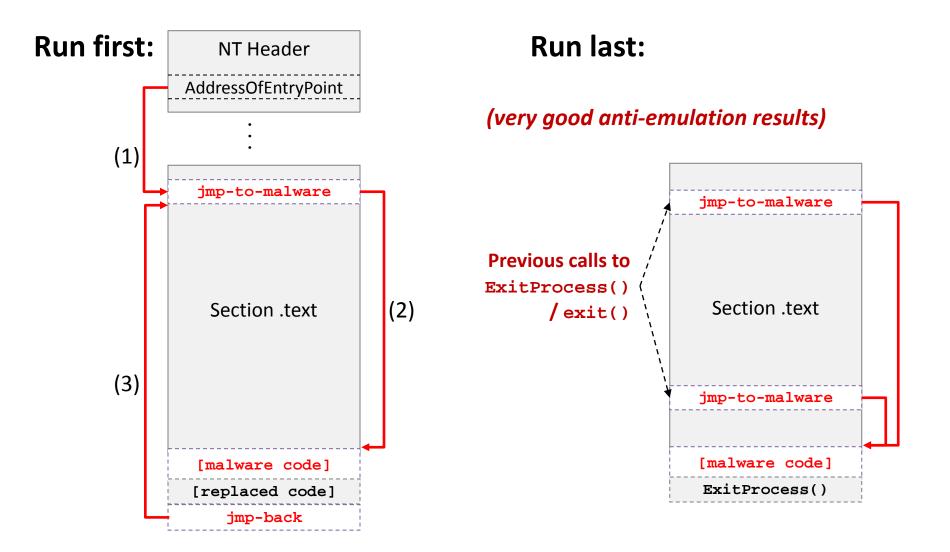


 Assuming the missing gadget is mov ecx, eax and we find the following 0xCC cave:

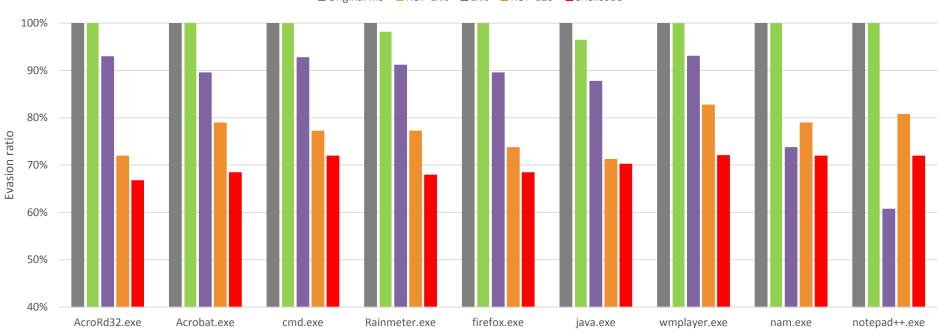
 Assuming the missing gadget is mov ecx, eax and we find the following 0xCC cave:

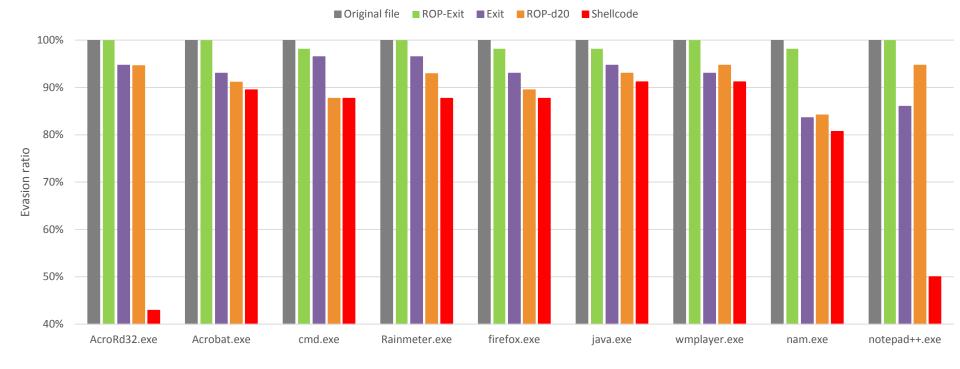


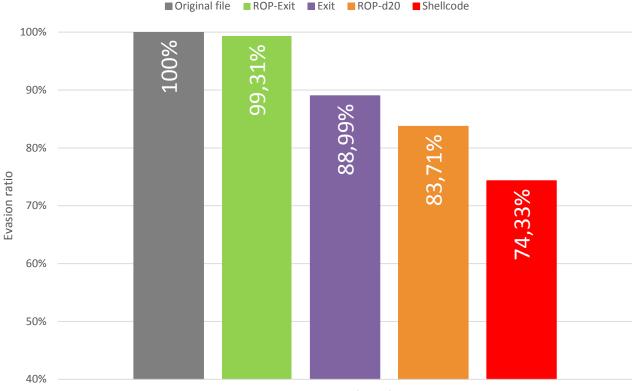
STEP 5 and 6: Assemble and patch the ROP chain into the PE


- <u>Step 5:</u> Insert the code that loads the ROP chain into the stack (mainly PUSH instructions)
- Step 6 patch the new PE: Extends the .text section (instead of adding a new one), and, then, repair all RVAs and relocations in the PE.
- ROPInjector includes two different methods to pass control to the ROPed shellcode
 - Run first
 - Run last

blackhat STEP 6: PE Patching (1/2)


black hat STEP 6: PE Patching (2/2)


- ROPInjector is implemented in **native Win32 C**
- Nine (9) 32bit Portable Executables
 - firefox.exe, java.exe, AcroRd32.exe, cmd.exe, notepad++.exe and more
- Various combinations scenarios
 - <u>Original-file</u> (no patching at all)
 - <u>ROPShellocode-Exit</u> (ROP'ed shellcode and run last)
 - <u>Shellcode-Exit</u> (intact shellcode passed control during exit)
 - <u>ROPShellcode-First-d20</u> (ROP'ed shellcode and delayed execution, 20 secs)
 - Shellcode (intact shellcode)
- 2 of the most popular Metasploit payloads
 - reverse TCP shell
 - meterpreter reverse TCP
- VirusTotal
 - at the time it employed 57 AVs


■ Original file ■ ROP-Exit ■ Exit ■ ROP-d20 ■ Shellcode

- 100% most of the times
- 99.31% on average

Average evasion ratio

 Signature-based detection can be bypassed by techniques like ROP'ed shellcodes

 Behavioral analysis can also be bypassed by techniques like running right before process exit

Checksums and certificates provide poor protection

• Engagement of certificates and checksums

• Enhancement of behavioral analysis

 Execution of behavior analysis until the program really ends

Thank you!

Questions?

Prof. Christos Xenakis

Systems Security Laboratory, Department of Digital Systems, School of Information and Communication Technologies, University of Piraeus, Greece <u>http://ssl.ds.unipi.gr/</u> <u>http://cgi.di.uoa.gr/~xenakis/</u> email: <u>xenakis@unipi.gr</u>