
ROPInjector: Using Return-
Oriented Programming for
Polymorphism and AV Evasion

G. Poulios, C. Ntantogian, C. Xenakis
{gpoulios, dadoyan, xenakis}@unipi.gr

What is Return Oriented Programming

• ROP is an exploitation technique that allows an
attacker to execute:

A sequence of machine instructions named “gadgets”

• Each gadget is a part of borrowed code that ends with
the instruction return

• A sequence of gadgets allows an attacker
to perform arbitrary operations

Objective of this research

• ROP has been mainly used to bypass the non-
executable memory defense mechanism.

• We propose ROP as a polymorphic alternative to
achieve AntiVirus (AV) evasion.

+

1 Portable Executable 1 well-known shellcode

Many different variations

Our Tool: ROPInjector

Benign PE Malware shellcode
\xfc\xe8\x89\x00\x00\...

ROPInjector

Carrier PE

ROP’ed shellcode

Presenter
Presentation Notes
We have implemented a tool named ROPInjector.

Why use ROP for AV evasion?

a) We use borrowed code (i.e., ROP gadgets)
 Not raise any suspicious !

• A possible footprint: the instructions that insert

the addresses of the ROP gadgets into the stack.

b) May transform any given shellcode to a ROP-
based equivalent Generic

c) May use different ROP gadgets or the same
found in different address Polymorphism

Presenter
Presentation Notes
nothing suspicious about pushing values on the stack

A quick historical overview

plain malware code string signatures
\x59\xE8\xFF\x6B\x5F\xFF\x6A\x0F\x59\xE8\xFF \x6B\x5F\xFF\x6A\x0F

A quick historical overview

plain malware code string signatures

simple obfuscation
(NOPs/dead-code in-between) regex signatures

\x59\xE8\xFF\x6B\x5F\x90\xFF\x90\x6A\x0F\x59\xE8 \x6B\x5F{\x90}*\xFF{\x90}*\x6A\x0F

variability

A quick historical overview

plain malware code string signatures

simple obfuscation
(NOPs/dead-code in-between) regex signatures

oligomorphism static analysis
(disassembly, CFGs)

\x6A\x0F\x59\xE8\0xFF \x6B\x5F**************

decoder encoded
payload

. . . PC PC if RWX and performs
then alarm

A quick historical overview

plain malware code string signatures

simple obfuscation
(NOPs/dead-code in-between) regex signatures

oligomorphism static analysis
(disassembly, CFGs)

self-modifying code
metamorphism

dynamic analysis
(emulation, sandboxing,
behavior-based signatures)

push eax
mov [esp-4],eax
sub esp,4

Presenter
Presentation Notes
Oligomorphismrequires a writeable code section in memory (W⊕X rule)marked a priori as writable (very suspicious)or at runtime, VirtualProtectEx() etc, (subj. to behavioral profiling)encoding methods are simplistic and reversiblemultiple passes to increase evasion ratedecoding routine is still subject to signature generationDynamic analysis and behavioral profilingthe most promising approachtime consuming tricky to perform exhaustively for all the possible control flow paths

Challenges for our Tool

1. The new resulting PE should evade AV detection

2. PE should not be corrupted/damaged

3. The tool should be generic and automated

4. Should not require a writeable
code section to mutate
(i.e., execute ROP chain)

Steps of ROPInjector

1. Analyze the shellcode

2. Find ROP gadgets in the PE

3. Transform the shellcode to an equivalent ROP chain

4. Inject into the PE missing ROP gadgets (if required)

5. Assemble a ROP chain building code in the PE

6. Patch the chain building code into the PE

STEP 1: Shellcode Analysis (1/3)

• Aims to obtain the necessary information to safely replace
shellcode instructions with gadgets

• For each instruction, ROPInjector likes to know:
– what registers it reads, writes or sets

– what registers are free to modify

– its bitness (a mov al,X or a mov eax,X ?)

– whether it is a branch (jmp, conditional, ret, call)

• and if so, where it lands

– whether it is a privileged instruction (e.g., sysenter, iret)

– whether it contains a VA reference

– whether it uses indirect addressing mode (e.g., mov [edi+4], esi)

STEP 1: Shellcode analysis (2/3)

• Scaled Index Byte (SIB) enables complex indirect
addressing modes

 mov eax, [ebx+ecx*2]

• We want to avoid SIBs in the shellcode since

• long: >3 bytes

• unlikely to be found in gadgets

• rarely reusable

• reserve at least 2 registers

STEP 1: Shellcode analysis (3/3)

• ROPInjector transforms SIB into simpler instructions:
 unrolling of SIBs

• With unrolling of SIBs, we achieve:

– increased chances of finding suitable gadgets
– less gadgets being injected

 mov eax, [ebx+ecx*2]

 mov eax, ecx
 sal eax, 1
 add eax, ebx
 mov eax, [eax]

• ecx is freed at this point
• shorter instructions
• reusable gadgets

(either found or injected)

STEP 2: Find ROP Gadgets in PE (1/2)

1. First, find returns of type:

– ret(n) or

– pop regX
jmp regX or

– jmp regX

2. Then, search backwards for more candidate gadgets

Presenter
Presentation Notes
possible question:Q: what do you do with stack-modifying instructions & un/conditional branches?A: There are two options:	a) encode unconditionals into “add/sub esp imm” and conditionals using “cmov”…	b) or don’t encode them to ROP, and have them jump around ROP code (i.e. chain building instructions)We did (b) in this version.

STEP 2: Find ROP Gadgets in PE (2/2)

• ROPInjector automatically resolves redundant instructions
in ROP gadgets

– Avoid errors during the execution of ROP code

• Maximize reusability of ROP gadgets

• Avoid injecting unsafe ROP gadgets

– modify non-free registers

– are branches

– write to the stack or modify esp

– are privileged

– use indirect addressing mode

STEP 3: Transform shellcode to ROP chain

• Initially, it translates shellcode instructions to an
Intermediate Representation (IR).

• Next, it translates the ROP gadgets found in PE to an IR.

• Finally, it provides a mapping between the two IRs

– 1 to 1

or

– 1 to many

STEP 3: Intermediate Representation

IR Type (20 in total) Semantics Eligible instructions

ADD_IMM regA += imm add r8/16/32, imm8/16/32
add (e)ax/al, imm8/16/32
xor r8/16/32, 0
cmp r8/16/32, 0
inc r8/16/32
test ra32, rb32 (with ra == rb)
test r8/16/32, 0xFF/FFFF/FFFFFFFF
test (e)ax/al, 0xFF/FFFF/FFFFFFFF
or ra32, rb32 (with ra == rb)

MOV_REG_IMM
.
.
.

mov regA, imm mov r8/16/32, imm8/16/32
imul r16/32, r16/32, 0
xor ra8/16/32, ra8/16/32
and r8/16/32, 0
and (e)ax/al, 0
or r8/16/32, 0xFF/FFFF/FFFFFFFF
or (e)ax/al, 0xFF/FFFF/FFFFFFFF

STEP 3: Mapping examples

• 1-1 mapping example
– Shellcode:

mov eax, 0

– Gadget in PE:
and eax, 0
ret

• 1-many mapping example
– Shellcode:

add eax, 2

– Gadget in PE:
inc eax
ret

 MOV_REG_IMM(eax, 0)

 MOV_REG_IMM(eax, 0)

 1 to 1
 IR
mapping

 ADD_IMM(eax, 2)

 ADD_IMM(eax, 1)

 1 to 2
 IR
mapping

STEP 4: Gadget Injection

• If the PE does not include the required ROP gadgets

• By simply injecting ROP gadgets would raise alarms

 Statistics (presence of successive ret instructions)

• Therefore, we insert ROP gadgets in a benign looking way
(scattered) avoiding alarms:

– 0xCC caves in .text section of PEs (padding space left by the linker)

– Often preceded by a ret (due to function epilogue)

Presenter
Presentation Notes
Return C3

STEP 4: Gadget Injection

• Assuming the missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>

epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCCCCCCCCCCCCCCCC

STEP 4: Gadget Injection

• Assuming the missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

STEP 4: Gadget Injection

• Assuming the missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

N
orm

al flow

STEP 4: Gadget Injection

• Assuming the missing gadget is mov ecx, eax and we find the following
0xCC cave:

 <other instructions>
 jmp epilogue
 mov ecx, eax
 jmp return
epilogue:
 mov esp, ebp
 pop ebp
return:
 ret(n)
 CCCCCCCC

RO
P flow

N
orm

al flow

STEP 5 and 6: Assemble and patch the
ROP chain into the PE

• Step 5: Insert the code that loads the ROP chain into the stack (mainly

PUSH instructions)

• Step 6 patch the new PE: Extends the .text section (instead of adding

a new one), and, then, repair all RVAs and relocations in the PE.

• ROPInjector includes two different methods to pass control to the

ROPed shellcode

– Run first

– Run last

Presenter
Presentation Notes
Step 6 is the process of correcting all references/pointers automatically by ROP INJECTOR

STEP 6: PE Patching (1/2)

.text

Before
injection

After
Injection

Section Header
(.text)

Section Header
(.data)

Section Header
(.rsrc)

NT Header

.data

.rsrc

.text

Section Header
(.text)

Section Header
(.data)

Section Header
(.rsrc)

NT Header

.data

.rsrc

NT header
checksum

recalculated

Presenter
Presentation Notes
And many more corrections	

STEP 6: PE Patching (2/2)

Section .text

[malware code]

jmp-back

jmp-to-malware

[replaced code]

NT Header

AddressOfEntryPoint

. . . (1)

(2)

(3)

Run first:

Section .text

[malware code]

jmp-to-malware

ExitProcess()

jmp-to-malware

Previous calls to
ExitProcess()

/ exit()

(very good anti-emulation results)

Run last:

Presenter
Presentation Notes
2 options to give control to malwarefor option (1), we don’t modify addressOfEntryPoint to point directly to malware as we found that it is considered suspicious by some AVs.

Evaluation

• ROPInjector is implemented in native Win32 C
• Nine (9) 32bit Portable Executables

– firefox.exe, java.exe, AcroRd32.exe, cmd.exe, notepad++.exe and more

• Various combinations – scenarios
– Original-file (no patching at all)

– ROPShellocode-Exit (ROP’ed shellcode and run last)

– Shellcode-Exit (intact shellcode passed control during exit)

– ROPShellcode-First-d20 (ROP’ed shellcode and delayed execution, 20 secs)

– Shellcode (intact shellcode)

• 2 of the most popular Metasploit payloads
– reverse TCP shell

– meterpreter reverse TCP

• VirusTotal
– at the time it employed 57 AVs

Evasion rate: reverse TCP shell

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe Acrobat.exe cmd.exe Rainmeter.exe firefox.exe java.exe wmplayer.exe nam.exe notepad++.exe

Ev
as

io
n

ra
tio

Original file ROP-Exit Exit ROP-d20 Shellcode

Evasion rate: meterpreter reverse TCP

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe Acrobat.exe cmd.exe Rainmeter.exe firefox.exe java.exe wmplayer.exe nam.exe notepad++.exe

Ev
as

io
n

ra
tio

Original file ROP-Exit Exit ROP-d20 Shellcode

Overall evasion results

• 100% most of the times
• 99.31% on average

10
0%

99
,3

1%

88
,9

9%

83
,7

1%

74
,3

3%

40%

50%

60%

70%

80%

90%

100%

Average evasion ratio

Ev
as

io
n

ra
tio

Original file ROP-Exit Exit ROP-d20 Shellcode

Presenter
Presentation Notes
Interesting to note that “Exit” case (i.e. without ROP) has also very good results

Outcomes

• Signature-based detection can be bypassed by
techniques like ROP’ed shellcodes

• Behavioral analysis can also be bypassed by
techniques like running right before process exit

• Checksums and certificates provide poor protection

Presenter
Presentation Notes
Behavioral analysis is performed mostly during entrybest evasion rates come from “Exit” casesimpressive how easy to bypassDelaying execution via Sleep() had absolutely no impact to behavioral analysisprobably being traced and cancelled during emulation (possibly to speed it up)If added randomization/encryption capability, it will be too hard to detectchecksum/certify all PEs and “default distrust all” policy

Proposals

• Engagement of certificates and checksums

• Enhancement of behavioral analysis

• Execution of behavior analysis until the program
really ends

Presenter
Presentation Notes
Behavioral analysis is performed mostly during entrybest evasion rates come from “Exit” casesimpressive how easy to bypassDelaying execution via Sleep() had absolutely no impact to behavioral analysisprobably being traced and cancelled during emulation (possibly to speed it up)If added randomization/encryption capability, it will be too hard to detectchecksum/certify all PEs and “default distrust all” policy

Prof. Christos Xenakis
 Systems Security Laboratory, Department of Digital Systems,

School of Information and Communication Technologies,
University of Piraeus, Greece

http://ssl.ds.unipi.gr/
http://cgi.di.uoa.gr/~xenakis/

email: xenakis@unipi.gr

Thank you!

 Questions?

http://ssl.ds.unipi.gr/
http://cgi.di.uoa.gr/%7Exenakis/
mailto:xenakis@unipi.gr

	Slide Number 1
	What is Return Oriented Programming
	Objective of this research
	Our Tool: ROPInjector
	Why use ROP for AV evasion?
	A quick historical overview
	A quick historical overview
	A quick historical overview
	A quick historical overview
	Challenges for our Tool
	Steps of ROPInjector
	STEP 1: Shellcode Analysis (1/3)
	STEP 1: Shellcode analysis (2/3)
	STEP 1: Shellcode analysis (3/3)
	STEP 2: Find ROP Gadgets in PE (1/2)
	STEP 2: Find ROP Gadgets in PE (2/2)
	STEP 3: Transform shellcode to ROP chain
	STEP 3: Intermediate Representation
	STEP 3: Mapping examples
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 4: Gadget Injection
	STEP 5 and 6: Assemble and patch the ROP chain into the PE
	STEP 6: PE Patching (1/2)
	STEP 6: PE Patching (2/2)
	Evaluation
	Evasion rate: reverse TCP shell
	Evasion rate: meterpreter reverse TCP
	Overall evasion results
	Outcomes
	Proposals
	Slide Number 34

