
Evaluation of Cryptography Usage in Android Applications

Alexia Chatzikonstantinou

Mezza Group

ahatzikostantinou@imc.com.gr

Christoforos Ntantogian
Department of Digital Systems,

University of Piraeus

dadoyan@unipi.gr

Christos Xenakis
Department of Digital Systems,

University of Piraeus

xenakis@unipi.gr

Georgios Karopoulos
Department of Informatics and

Telecommunications, University of
Athens

gkarop@di.uoa.gr

ABSTRACT

Mobile application developers are using cryptography in their

products to protect sensitive data like passwords, short messages,

documents etc. In this paper, we study whether cryptography and

related techniques are employed in a proper way, in order to

protect these private data. To this end, we downloaded 49

Android applications from the Google Play marketplace and

performed static and dynamic analysis in an attempt to detect

possible cryptographic misuses. The results showed that 87.8% of

the applications present some kind of misuse, while for the rest of

them no cryptography usage was detected during the analysis.

Finally, we suggest countermeasures, mainly intended for

developers, to alleviate the issues identified by the analysis.

Categories and Subject Descriptors

E.3 [Data]: Data Encryption - code breaking, data encryption

standard (DES), public key cryptosystems, standards (e.g., DES,

PGP, RSA)

General Terms

Design, Experimentation, Security

Keywords

Software security, Android, Cryptography misuse

1. INTRODUCTION
The need to privately share information in a manner that would be

understandable to only a specific group of people exists for

thousands of years before computer’s invention and

establishment. The existence of cryptographic algorithms akin to

Caesar’s Cipher proves that contemporary cryptography has its

origins in Caesar’s era, when attempts to achieve information

security began to take place. Thus, the field of cryptography is not

new and efforts towards its improvement exist for many years.

The rapid technological progress in the last years has led to the

emergence of smartphones which, apart from voice and SMS,

support Internet access, standalone applications, and wireless

connectivity. The same devices are used by a large proportion of

users to install applications that store sensitive data like

passwords, location, and social network interactions.

The need for privacy imposes cryptography utilization in

applications that manage these sensitive data [12]. To this end

developers embed cryptographic techniques in their mobile

applications; and while cryptography is a long existing field,

developers rarely have knowledge of information security. As a

consequence, incidents of data breaching and disclosure are very

frequent, while there are cases of popular products that claim to

be secure although they utilize practically no security; a recent

infamous example is NQ Mobile Vault application [18], which

was discovered that it uses a simple XOR function to perform

secure sensitive users’ data.

Regarding the academic activity in the specific domain, a lot of

research has been conducted and many studies have been realized;

however, none of them has yet concentrated on a set of good and

bad practices, as each work aims at giving prominence to the

specific cryptographic mistakes of the applications and not at

developers training. Our contributions, in this paper, are: (a) to

evaluate the use of cryptographic techniques in real world

Android applications and feature the most common misuses, and

(b) to provide a list of good practices for developers in order to

alleviate the identified issues. The reason we focus on Android is

because it is one of the prominent smartphone platforms with a

relatively stable cryptographic API (Java’s Cipher), and has

numerous applications available.

Our approach regarding application analysis was to employ a

combination of both techniques of static and dynamic analysis, so

as to succeed in producing more accurate results. Generally, the

term Static Analysis refers to the process of detecting software

errors and defects or security flaws by examining the source code

of a program without executing it, and can also be utilized to

ensure conformance with specific programming requirements.

Static Analysis is considered as a part of code review process and

provides better perception of code structure [13]. Developers

frequently perform static analysis combining automated tools and

visual source code inspection [22].

On the other hand, Dynamic Analysis refers to the testing and

evaluation of a program based on its execution and it is usually

performed with a view to detecting subtle defects or

vulnerabilities manifested during runtime, the cause of which is

too perplex to be detected via static analysis [27]. Developers,

through a dynamic test, are capable of monitoring system

memory, functional behavior, response time, and overall

performance of the system [26]. Therefore, there are cases where a

single component from the abovementioned list is selected to be

examined (e.g. system memory) in order to seek only for specific

types of errors.

Regarding the advantages of the two methods, Static Analysis is

the most thorough technique and the developers using it are

capable of identifying the exact location of weaknesses in the

code, as well as of examining all possible execution paths and

variable values and not just those invoked during execution.

Moreover, Static Analysis reveals errors in the initial stages of the

development life cycle, reducing the cost to fix and preventing

errors from manifesting themselves and triggering any incident.

Dynamic Analysis is more flexible regarding the possibility to test

the application for apropos specified error categories only, for

instance security flaws. What is more, via Dynamic Analysis it is

technically feasible to test applications even if there is no access

to their source code. Finally, Dynamic Analysis can be utilized as

a validation of Static Analysis results.

Nevertheless, the two methods of analysis have many

disadvantages both due to their nature per se, but also due to the

fact that the use of automated tools for analysis is widespread. In

cases where automated tools are utilized, the significant number

of false positives and false negatives constitute the main drawback

in both types of analysis as the tools’ efficiency is highly

dependent on the rules defined for software scanning. This

specific fact remarks the necessity for the human factor

involvement for understanding whether the tool alerted a real

error or not. Additionally, Static Analysis cannot provide

satisfactory results regarding memory leaks and concurrency

errors. In order to detect this type of faults it is necessary to

execute the software. Lastly, when Static Analysis is performed by

a tool, there is a limitation regarding the programming languages

that can be supported. Consequently, we can deduce that the two

approaches are complementary as no single approach can find

every possible type of error. Moreover, taking into account

automated tools’ inefficiencies, we have chosen to use manual

static analysis in combination with dynamic analysis, so as to have

more accurate results.

Using a combination of static and dynamic analysis, we evaluated

a total of 49 Android applications downloaded from the Google

Play marketplace. Our overall results feature that 87.8% of the

applications show evidence of cryptography misuse, while for the

rest 12.2% no cryptography was detected from our analyses. This

high proportion of misuse amplifies our previous argument that

developers rarely understand how to correctly incorporate

cryptography in their applications.

The rest of our paper is organized as follows. Section 2 briefly

presents important cryptographic concepts, while section 3

analyzes the related work. Section 4 elaborates on a set of

cryptographic weaknesses that we will be used to evaluate the

cryptographic security of the examined applications. Section 5

analyzes the carried out experiments by presenting the

methodology for static and dynamic analysis. Section 6 evaluates

the cryptographic security of the mobile application by analyzing

the numerical results, while section 7 concludes the article.

2. CRYPTOGRAPHIC CONCEPTS
The key goal of encryption is to provide confidentiality and

privacy; nonetheless, applications which employ cryptography can

be attacked in many different ways. The most usual way is

breaking encryption schemes incorporated in the application.

This particular class of attacks consists of three basic

subcategories: the ciphertext only, the known plaintext and the

chosen plaintext attacks. In a ciphertext only attack, the adversary

has access to a specific ciphertext which he tries to decrypt

searching in the set of all possible keys, while in a known

plaintext attack the attacker has in his possession a pair of

plaintext and ciphertext. In a chosen plaintext attack, the

adversary can access any possible plaintext with its corresponding

ciphertext.

A secure cryptosystem should resist all the above mentioned sorts

of attacks. In our work we will mainly consider ciphertext

indistinguishability. This property, also known as

Indistinguishability under Chosen Plaintext Attack (IND-CPA),

ensures that a potential adversary will not be able to distinguish

pairs of ciphertext based on the plaintext they encrypt.

A secure cryptosystem constitutes any entity employing

cryptography, in hardware or software level, which, given the

ciphertext, averts the threat of an adversary to discern even a

single bit of information describing the plaintext in polynomial

time. Taking this into consideration, we should only consider an

encryption scheme to be secure if and only if it is IND-CPA

secure. Moreover, an encryption scheme must be either

probabilistic or stateful to be IND-CPA secure [2]. Otherwise, the

adversary will be able to discern if the same message was sent

twice. It is noted that in a stateful encryption scheme the keys are

updated in each encryption, while in a probabilistic encryption

scheme randomness is used in the encryption algorithm which

satisfies collision resistance and hides all the information related

to its input [5].

As for the existent types of encryption, Password Based

Encryption (PBE) is highly widespread in Android applications.

PBE is a cryptographic technique where a secret key is generated

based on a user-generated passphrase. This particular technique is

proposed to be used with a high entropy password, as PBE is

usually used in applications where the adversary is able to apply

brute force attack to retrieve the password without being detected.

3. RELATED WORK
This section provides an overview of previous work realized in

static analysis, dynamic analysis, and techniques for combined

static and dynamic analysis.

The first methodical attempt that constitutes a key milestone in the

specific domain is Manuel Egele’s et al. study [4], the main

purpose of which was to test whether developers use the

cryptographic APIs in a fashion that provides typical

cryptographic notions of security (e.g. IND-CPA security). Their

system, namely CryptoLint, uses static program slicing and

analyzes compiled Android applications having no access to the

source code. The results showed that 88% of applications that use

cryptographic APIs make at least one mistake.

One of the drawbacks of this approach is that the tool is not open

source so it is not possible to repeat the experiments. Moreover,

the list of checked applications is not available. Also, CryptoLint

lacks the capability of analyzing cryptographic primitives’

invocation from native code (i.e. code written in other language

than Java, for example C and C++), as its functionality focuses on

Dalvik bytecode investigation. CryptoLint also does not include

the identification of all types of non-predictable IVs, as the static

IV's recognized by the tool refer to a subcategory of non-

predictable IVs. A general drawback of automated tools is false

alarms [25]. Thus, manual static analysis seems to be a more

proper approach, guaranteeing more accurate results as well as the

ability to cover a greater extent of cryptographic rules.

Yong Li et al. introduced iCryptoTracer [11], a tool similar to

CryptoLint, though its function is based on a combination of both

static and dynamic analysis techniques and its focus is on iOS

applications. This tool first uses static analysis to scan and record

the APIs’ locations of cryptographic functions. Then, during the

dynamic analysis phase, it monitors those API calls at runtime.

Finally, iCryptoTracer, combining the information gathered on the

previous steps with its diagnosis engine, decides whether a

cryptographic misuse exists or not in the application. The results

showed that approximately 65.3% of the applications examined

contain various degrees of security flaws caused by cryptographic

misuse. The main drawback of this method is that an insufficient

set of rules is provided, according to which applications are

classified into Healthy, Weak or Critical.

A quite similar study has been also conducted by Somak Das et

al. [3], who systematically compared the APIs of cryptographic

libraries across different programming languages (C, C++, Java,

Python and Go) and evaluated their potential for misuse. In this

report the possibility to have data security breaches is considered

irrespective of the security of cryptography library in use, and it

depends on the manner that the developer uses the library and

consequently, on the properties of each particular library that

encourage or discourage cryptographic misuse.

The purpose was to derive recommendations for library designers

to follow so as to reduce this misuse. The paper illustrates the

comparison of 6 particular cryptographic libraries (OpenSSL in C,

Crypto++ and NaCl in C++, PyCrypto in Python, JCA in Java and

Go Crypto package in GO) resulting in NaCl being the safest. The

authors also developed a linter tool (pycrypto_lint) which applies

to any application using PyCrypto library, checking the source

code during runtime in order to detect various misuses of the

library. The specific study however does not incorporate a

specifically defined method according to which each library was

examined, and although the source code of the tool is publicly

available, the report does not include proper sections concerning

the description of system design and implementation, as well as

the tool’s evaluation.

A literature review of cryptography on Android message

applications has been presented by Nishika and Rahul Kumar

Yadav [16], who surveyed and illustrated the most common and

widely used SMS encryption techniques, inferring that there is a

need for an efficient encryption algorithm.

The most recent work in this field of study is that realized by

Shuai et al. [24]. In their study, the authors initially define

specific models of cryptographic misuse, in which they are based

so as to build a tool of auto detection (CMA). CMA employs both

static and dynamic analysis techniques in order to detect

cryptographic vulnerabilities and it is tested in 45 Android

applications downloaded from the Chinese application store

Baidu. However, CMA misses cases where cryptography is

employed but is not included in the specific API (when, for

example, the developer has implemented a custom cryptographic

algorithm). This fact also indicates the need for including more

models for cryptographic misuse in the list. CMA’s paper includes

a quite satisfying number of cryptographic primitives that have to

be taken into consideration in such an analysis, which is

something that similar papers lack. Nevertheless, the tool created

is not designed to locate all the models of cryptographic misuse

mentioned in the paper, as for example the key management

category of flaws is omitted. Additionally, there are models that,

according to the results, are not violated by any of the applications

under examination, which makes the proper functionality of the

tool for the specific models and the necessity of the specific

models doubtful. As a result, there are only results for the trivial

cryptographic principles misuses. Last but not least, it has to be

remarked the fact that the applications were not downloaded from

the official Android marketplace but instead they used the

Chinese application store Baidu.

The majority of the related works are based on automated static or

dynamic analysis tools; however, although automated tools offer

the advantage of being able to examine a large number of

applications, it is always possible to miss certain types of flaws.

Moreover, automated static analysis tools have proven to generate

a fair number of false positives while in manual static analysis the

findings can be verified. Taking into account automated tools’

inefficiencies, we have chosen to use manual static analysis in

combination with dynamic analysis, so as to have more accurate

results. Our purpose is to cover a detailed list of cryptographic

flaws and misuses, something that developers’ community lacks,

with a view to helping programmers avoid common cryptographic

misuses.

4. CRYPTOGRAPHIC WEAKNESSES
In this section, we evaluate the cryptographic security of the

examined applications. To this end, we classify and analyze

cryptographic weaknesses using four categories: (a) use of weak

cryptography, (b) weak implementations, (c) use of weak keys,

and (d) use of weak cryptographic parameters.

Weak cryptography. This category comprises cryptographic

algorithms that are used in applications despite the fact that it is

well known that they are not secure.

C1. Use of weak cryptographic algorithms or hash functions.

Programmers should not use algorithms proven to be broken

or weak. For example, MD4, MD5, SHA1, DES and RC4

are considered to be obsolete [10].

C2. Use of custom cryptographic algorithms. The security

offered by non-publicly reviewed algorithms invented by

programmers themselves is questionable and their

employment is considered to be insecure [23].

C3. Use of cryptographic algorithms in ECB mode. It does

not constitute a secure cryptographic mode, as it cannot be

IND-CPA secure [4].

C4. Use of non-Cryptographically Secure PseudoRandom

Number Generators (CSPRNGs). CSPRNGs seed data

with the required entropy in order to make it much more

difficult for adversaries to guess the produced random

numbers [30]. The factor of randomness should also be

introduced in any kind of password, salt and seed. Java

provides for Android Development the SecureRandom class

which implements a PseudoRandom Number Generator

(PRNG) for keys production [10, 23]; the Random class,

however, is not considered secure and should not be used

for key generation.

C5. Use of CBC combined with PKCS5Padding. This mode is

vulnerable to padding oracle attacks, while PKCS7Padding

is considered to be the best option for the specific

encryption mode [1, 8, 9, 19, 21, 28, 29].

C6. No cryptography usage observed. This weakness

comprises the cases where no cryptographic operation was

identified during the static and dynamic analysis. This

includes cases where either obscure cryptography is used or

no cryptography is used at all.

Weak implementations. The utilization or implementation of

cryptographic algorithms in a non-standard manner or not

following best practices can result in unsafe applications.

I1. Re-implementing standard algorithms (e.g. AES). Re-

implementations of well-known algorithms are also possible

to be incorrect and insecure. Thus, developers should not

use other than well-known cryptographic algorithm

implementations [23].

I2. Use of PBE with no salt. It is recommended to use PBE

with random salts in order to avoid brute force attacks [4].

I3. Use of PBE with fewer than 1,000 iterations. This should

also be avoided in order to prevent brute force attacks [4].

I4. Use of static or reuse of PRNG seed. A PRNG seed must

not be reused in the same context as it is a best practice to

use independent random numbers in all stages of a

cryptographic procedure. Specifically for the

SecureRandom class, it is known that a static seed will

produce the same PRNG output [4, 10].

I5. Not processing the internal buffers after encryption or

decryption. When Java’s Cipher is used for cryptography,

the proper call of the dofinal() function, which processes the

last block in the buffer (i.e. ciphertext or plaintext), should

not be omitted for both the encryption and the decryption

phase. The internal mechanism of the algorithm

implementation, depending on its encryption mode (ECB,

CBC, or other), keeps an internal buffer which must also be

discarded [6].

I6. Use of RSA with a padding other than OAEP. This

should be avoided due to the fact that the use of a padding,

such as PKCS1Padding, which does not use random bytes,

will delay the adversary to decrypt the data or infer patterns

from the ciphertext less than the OAEP padding will [14].

Weak keys. This category includes those cases where weak

cryptographic keys are used, a practice that can put in risk the

security of users and applications.

K1. Use of short keys. Yet another possible vulnerability of a

cryptographic algorithm is short keys employment.

According to the contemporary cryptographic standards

[17], a key is weak when its length is less than 128 bits. The

usage of a suchlike cryptographic key weakens the

encryption and must be strictly avoided. For example, DES

is known to have a set of weak keys, as it uses a 56-bits key,

which does not provide sufficient security [10].

K2. Use of hard-coded encryption keys. The secrecy of

encryption keys is an important factor and this practice can

result even in the disclosure of the key to the adversary [10].

The encryption keys must be dynamically generated and

developers should strictly avoid exposing them in the

application’s code [4, 11].

K3. The use of static/constant encryption keys. It is possible

for an encryption key to be static without being hard-coded,

e.g. when a byte array is initialized and remains the same for

the whole process. The randomness of the encryption keys

is the major factor contributing to encryption schemes

security, thus cryptographic keys should not be constant [4,

11].

K4. The use of hard-coded passwords for PBE. Although PBE

is usually based on a password given by the user as an input

to the Android application, there are cases where developers

use a specific value defined statically. In this way,

developers make the application use the same password for

each execution, while the password value can easily be

accessed by the adversary.

Weak cryptographic parameters. This category comprises

weaknesses related to poor choice of cryptographic parameters,

like cryptographic modes, IVs, and seeds.

P1. Use of block ciphers with Java’s default cryptographic

mode. When only the cipher algorithm is invoked (without

a specific mode defined), the default cryptographic mode

used in specific providers (SunJCE and SunPKCS11) is the

ECB, which is considered unsafe.

P2. Use of CBC encryption mode together with a non-

random IV. An IV should be neither static nor predictable

(for example an IV consisting of 0’s or sequential numbers)

[4, 11], otherwise the resulting cryptographic scheme is not

considered safe.

P3. Use of CTR encryption mode together with a static

counter value. It does not constitute a safe cryptographic

scheme as it is not IND-CPA secure.

P4. Use of hard-coded IVs. Developers have to generate IVs

dynamically for two reasons: (a) preventing adversaries

from obtaining the specific primitive’s value, and (b)

generating different values for the IV in each cryptographic

stage [4].

P5. Use of constant IV. A constant IV or an IV reuse renders

many cryptographic schemes IND-CPA insecure, as the IV

constitutes the only primitive introducing randomness in a

cryptographic procedure and using a constant or a static IV

frequently results in producing the same ciphertext. An IV

can be constant without being hard-coded if, for example, is

randomly generated but used more than once.

P6. Deriving IVs from keys or messages. This practice makes

the IV non-random and predictable [4, 11] and is

considered to be insecure.

P7. Generating IVs from cipher’s blocksize, based on byte

array creation. Many developers generate the IVs manually

by initializing a vector having the size of cipher’s blocksize

with the default values of the creation of a byte array

(bytearray = new byte[]), in combination with nextbytes()

method of Random class. There are also cases where not

even the Random class is utilized. It has to be noted that

Random class use is not a proper practice, while deriving

the IV without introducing any randomness, using Java

default values to a byte array, makes the IV non-random and

predictable [4, 11].

P8. Use of predictable PRNG seeds. The seed of the PRNG

constitutes an important factor in constructing a secure

cryptographic scheme. Developers should use non

predictable seeds with PRNGs, so as to generate a high

entropy key and not weaken PRNG’s strength [10]. It is also

essential to note that the setSeed() method of the

SecureRandom Java class produces a predictable seed and

must not be used in the key generation process [15].

5. METHODOLOGY & EXPERIMENTS
Our approach is organized in four main phases:

1. Application collection

2. Application utilization

3. Static analysis

4. Dynamic analysis

The first phase describes the particular Android applications that

were collected in order to be audited, while the second includes

applications’ testing through their graphical user interface (GUI).

The core of our study, however, is detailed in the phases three and

four where static and dynamic analyses are conducted with a view

to discovering possible cryptographic misuses.

5.1 Application Collection
We have selected randomly 49 Android applications that employ

cryptography to protect user’s data. Based on the provided

functionality, the underlying mobile applications can be divided

into four categories:

1. Secure messaging: This category includes applications that

exchange encrypted data either via SMS, or through Bluetooth

and Internet services (chat, social media and email). This

category comprises 23 applications.

2. Document encryption: Document encryption describes

applications that are involved with any kind of document

encryption, like file encryption, directory encryption,

multimedia content encryption, and note encryption. We

downloaded 7 applications belonging to this category.

3. Sensitive data exchange & storage: Applications that

appertain to this particular category are those handling any

type of sensitive data (passwords, credit card numbers, pins

etc.). 13 applications belong to this category.

4. Multipurpose encryption utility: This particular class contains

applications offering more than one operations such as

generating passwords, document encryption, text encryption,

sensitive data storage, password vaults etc. This category

comprises 5 applications.

All applications were downloaded from the official Google Play

marketplace between June and November 2014. This particular

aggregation of applications was considered to be a representative

sample of developers’ predilection for certain cryptographic

primitives and strategies.

5.2 Application Utilization
After collecting the application .apk files and prior to static and

dynamic analysis, we installed each application in at least 2

different Android devices. The purpose was to run the

applications and test them through their graphical environment so

as to recognize any parameters used that are possibly involved in

the cryptographic procedures employed. Moreover, in the

particular case of applications that appertain to the “Secure

messaging” category, we are able to form an opinion regarding the

general legitimacy of cryptographic practices employed, as the

cipher is directly available via the graphical user interface.

One of the checked parameters for all applications is the

utilization of a password. Applications encompassing encryption

usually utilize a password consisting of letters, digits, or

alphanumeric characters. A password is introduced by the user

and commonly takes part in the process of the plaintext

encryption. There are many cases, however, where the password is

only used as a pin.

The parameter that we particularly checked in “Secure messaging”

applications was the output of the same ciphertext, when the same

plaintext was given as an input. When this finding is detected, we

can deduce that the cryptographic scheme used is not IND-CPA

secure. The output of the same ciphertext implies the usage of

wrong cryptographic primitives, for example the use of the same

IV for each encryption. The same stands also in the case of

password usage (i.e., if for the same combination of plaintext and

password the same ciphertext is produced).

In order to ascertain ciphertext’s indistinguishability through each

application’s graphical environment, we considered three different

scenarios:

1. input of the same plaintext twice in the application under

examination, without disrupting its operation

2. input of the same plaintext once before and once after

application and device reboot, and

3. execution of the application in two different Android devices,

inserting in both cases the same plaintext.

5.3 Static Analysis
In the third phase of our study we proceeded in the manual source

code auditing of each one of the 49 applications with the intention

of inspecting in full detail the cryptographic primitives in use (i.e.

the general encryption scheme employed, the cryptographic

algorithms, their parameters and specific modes of operation).

Static analysis involves the following three steps:

1. Obtaining the target application’s .apk file. We

downloaded and installed the mobile application Root File

Explorer in a rooted Android phone, so as to be able to

explore the device’s files and copy the target application’s

.apk from /data/app/ to the SD card.

2. Extracting the source code of the application by apk

decompilation. For this step, we used dex2jar [20] toolset

as well as JD-GUI tool from Java Decompiler project [7].

Specifically, dex2jar is a set of tools to convert Android

.dex files into Java .class files, while JD-GUI is a standalone

graphical utility that displays Java .class files source code.

The step sequence followed in this stage for each

application was the following (see Figure 1):

 Add the extension “.zip” to the .apk file (so that

example.apk becomes example.apk.zip) and extract the

zip file into folder example_folder.

 Copy the files of the toolset dex2jar into

example_folder.

 From the command prompt, execute the command

dex2jar classes.dex. This command will generate the file

clasess.dex.dex2jar into the example_folder.

 Finally, we obtain access to Java source code by

opening the classes.dex.dex2jar file using the JD-GUI

application.

3. Source code analysis and reviewing. The last and most

important step is the manual (i.e., without the use of

automation tools) examination of the obtained source code

of the applications, in order to evaluate their security based

on the list of the cryptographic weaknesses discussed in the

previous section.

Figure 1. apk decompilation

5.4 Dynamic Analysis
In this phase we performed dynamic analysis in order to verify the

obtained results from the static analysis or to examine cases where

the results of the static analysis were inconclusive. That is, static

analysis cannot always cover the whole functionality of the

application. The reason behind this is that many Android

applications make use of native code, which is not available after

the apk decompilation process that we followed in the previous

phase. What is more, there is always the possibility to include in

the source code functions that are not actually called during

application’s execution. With a view to include in our research

these cases as well and have more accurate results, we have

performed also a simple yet effective dynamic analysis technique.

In particular, in this phase we have examined the cryptographic

security of the Android applications under examination using the

Dalvik Debug Monitor Server (DDMS). The latter is a GUI based

debugging application that allows the examination of running

processes. Although it’s primary goal is to help developers to

identify bugs in Android applications, for our purposes we have

used DDMS as a tool to examine the cryptographic libraries that

are invoked during runtime of Android applications. To this end,

we have used the Track Memory Allocation functionality of

DDMS, which detects and shows all invoked cryptographic

libraries of an Android application. In this way, we were able to

discover which cryptographic functions are being called during

the runtime of the application.

It is evident that for applications that implement a custom

algorithm and do not use standard cryptographic libraries (such as

Caesar’s Cipher or any other substitution cipher), we could not

deduce any meaningful result using DDMS.

6. RESULTS & EVALUATION
This section presents the results produced by the static and

dynamic analyses we performed in the selected 49 Android

applications. The findings of our study are shown in Table 1,

which presents the number and the categories of cryptographic

flaws discovered.

Table 1. Individual weaknesses per application category

Category

Weakness

SM MEU DE SDES Total

C1 17 6 7 2 32

C2 3 1 4

C3 9 4 3 16

C4 2 2

C5 8 3 11

C6 2 3 1 6

I1 3 3

I2 5 1 2 8

I3 2 1 3 6

I4 2 2

I5 1 1

I6 2 2

K1 2 2 2 1 7

K2 2 1 1 4

K3 1 2 1 4

K4 1 1 2

P1 2 4 1 7

P2 3 3

P3 2 2

P4 1 1 2

P5 1 1 2

P6 0

P7 1 1 2

P8 3 1 4

Legend:

SM: Secure messaging

MEU: Multipurpose encryption utilities

DE: Document encryption

SDES: Sensitive data exchange & storage

One of the first observations is that the most common weaknesses

are: C1 (weak cryptographic algorithm or hash function) which is

detected in 32 applications (65.3%), C3 (cryptographic algorithm

in ECB mode) in 16 applications (32.7%), and C5 (CBC mode

with PKCS5Padding) in 11 applications (22.4%). Interestingly

enough, these three weaknesses belong to the same category

(weak cryptography). By grouping weaknesses into the categories

presented in Section 4, it can be seen (Table 2) that most observed

misuses in Android applications are related to weak cryptography,

followed by weak implementations of the algorithms and weak

cryptographic parameters selection; the least observed weaknesses

are related to the selection of weak cryptographic keys.

Table 2. Grouped weaknesses per application category

Category

Weakness

SM MEU DE SDES Total

Weak crypto 41 6 18 6 71

Weak

implementations
14 2 6 0 22

Weak keys 6 2 6 3 17

Weak

parameters
11 4 6 1 22

The results of the application testing scenarios discussed in

Section 5.2 are presented in Table 3 and concern those

applications that are non IND-CPA secure based on their output.

We deduced that the 30.6% of applications (i.e. 15 out of 49

applications) are not IND-CPA secure. From these non IND-CPA

secure applications, 80% of them fail in all three scenarios, i.e.

given the same plaintext as input, the same ciphertext is produced

regardless if the user restarts the application or the device, or use

another device, or not.

Table 3. Non IND-CPA secure applications

Scenarios not satisfied No of apps

1, 2 and 3 12

1 and 2 1

1 2

The vast majority of Android applications’ source code

encompasses at least one cryptographic misuse, not always

relevant to cryptographic algorithm and mode selection.

Nonetheless, there are many cases where no cryptography is

detected or out of date algorithms are invoked, for instance Caesar

Cipher, Columnar Transposition, AtBash Cipher and Playfair

Cipher along with others, even by applications bearing a name

that implies the use of strong cryptography.

Although the majority of applications use AES in CBC mode,

there is a significant number of Android applications that include

either ECB mode or at least one obsolete algorithm. As far as a

more comprehensive and statistical analysis of the results is

concerned, it seems that the applications presenting a weakness

related to cryptography misuse (i.e. all weaknesses apart C6)

reach a percentage of 87.8% (i.e. 43 out of 49 applications). At

the same time, the applications in which no cryptography was

detected (i.e. weakness C6) reach the 12.2% (i.e. 6 out of 49

applications). Consequently, the percentage of the applications

that seem to have no weakness is 0% (i.e. 0 out of 49

applications).

Table 4. Cryptographic misuses findings overview

Misuse
Percentage of

applications

Applications presenting at least one

cryptography misuse weakness
87.8%

Applications where no cryptography was

detected
12.2%

Applications where no weakness was detected 0%

Weak or no cryptography usage detected 95.9%

Weak implementations 32.7%

Weak cryptographic keys usage 26.5%

Incorrect cryptographic parameters

employment
30.6%

Use of ECB mode of encryption 32.7%

Another interesting point is that 95.9% of the tested applications

(i.e. 47 out of 49 applications) present a weakness of the weak

cryptography class (weaknesses C1 to C6). The percentage of

applications that incorporate poorly implemented cryptography

(weaknesses I1 to I6) is 32.7% (i.e. 16 out of 49 applications).

Also, the 26.5% (i.e. 13 out of 49) of applications use weak

cryptographic keys (weaknesses K1 to K4). Simultaneously, the

percentage of applications employing cryptographic techniques

with incorrect parameters (weaknesses P1 to P8) reach the 30.6%

of the applications examined (i.e. 15 out of 49 applications).

Another interesting conclusion is the fact that although the most

common cryptographic principle is that ECB mode of encryption

is not IND-CPA secure and should not be used, the 32.7 % (i.e.

16 out of 49 application) make use of the specific mode in their

cryptographic processes (weakness C3). An overview of all the

aforementioned misuses is presented in Table 4.

7. COUNTERMEASURES
At this point, it is necessary to design a list of countermeasures

and best practices that could be employed as a general

methodology for developing Android applications using solid

encryption. In the following we cite our proposals for specific

cryptographic primitives’ usage, emanating from our study:

1. Regarding encryption algorithms, developers should opt for

AES and RSA for symmetric and asymmetric encryption

respectively.

2. Depending on our previous selection, the most appropriate

encryption scheme for AES is CBC with PKCS7Padding,

while for RSA developers should select OAEP padding.

3. Another important practice that developers should certainly

take into consideration is using randomness for any

cryptographic parameter such as passwords, encryption keys,

initialization vectors, salts and seeds. The aforementioned

parameters must have the proper lengths and not be hard

coded or statically defined in the source code so as not to use

the same values for every execution of the application.

4. As for the random number generation, Cryptographically

Secure PseudoRandom Number Generators (CSPNGs)

should be used for encryption purposes.

5. As far as Password-Based Encryption (PBE) is concerned,

the usage of proper parameters is required on behalf of the

programmers. The password used for this particular procedure

should not be hard coded, the iterations defined should be

more than 1,000, and the salt should not be constant.

6. Last but not least, programmers should use only libraries that

are known to use proper cryptographic techniques and follow

all recommendations given by these libraries documentation

(e.g. internal buffers processing after encryption or

decryption).

The above guidelines and practices presented in this section

include essentially all types of cryptographic misuses observed in

the applications examined, and summarize the entire set of rules

in 6 principles. We hope that the developers’ community follows

these guidelines to avoid cryptographic flaws in mobile

applications.

8. CONCLUSIONS
In this paper, we have evaluated the use of cryptography in 49

Android applications whose operation is related to data

encryption. The results showed that the majority of applications

present at least one of those misuses. Developers’ community

lacks a specifically defined list of cryptographic misuses that must

be avoided, as well as a list of best practices for cryptographic

techniques. To this end, we provide guidelines, mainly intended

for developers, to help them build more secure applications.

9. ACKNOWLEDGMENTS
This research has been partially funded by the European

Commission in part of the SMART-NRG project (FP7-PEOPLE-

2013-IAPP GA number 612294), the UINFC2 project (GA

number HOME/2013/ISEC/AG/INT/4000005215), and the

ReCRED project (Horizon H2020 Framework Programme of the

European Union under GA number 653417).

10. REFERENCES
[1] Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel,

G. and Tsay, J.-K. 2012. Efficient Padding Oracle Attacks

on Cryptographic Hardware. Advances in Cryptology –

CRYPTO 2012. R. Safavi-Naini and R. Canetti, eds.

Springer Berlin Heidelberg. 608–625.

[2] Bellare, M., Desai, A., Pointcheval, D. and Rogaway, P.

1998. Relations among notions of security for public-key

encryption schemes. Advances in Cryptology — CRYPTO

’98. H. Krawczyk, ed. Springer Berlin Heidelberg. 26–45.

[3] Das, S., Gopal, V., King, K. and Venkatraman, A. 2014. IV

= 0 Security: Cryptographic Misuse of Libraries. Technical

Report #6.857 final project. MIT.

[4] Egele, M., Brumley, D., Fratantonio, Y. and Kruegel, C.

2013. An Empirical Study of Cryptographic Misuse in

Android Applications. Proceedings of the 2013 ACM

SIGSAC Conference on Computer & Communications

Security (New York, NY, USA, 2013), 73–84.

[5] Hofheinz, D. and Unruh, D. 2008. Towards Key-Dependent

Message Security in the Standard Model. Advances in

Cryptology – EUROCRYPT 2008. N. Smart, ed. Springer

Berlin Heidelberg. 108–126.

[6] How to encrypt files in Java with AES, CBC mode, using

Bouncy Castle API and NetBeans or Eclipse | IT&C

Solutions: http://www.itcsolutions.eu/2011/08/24/how-to-

encrypt-decrypt-files-in-java-with-aes-in-cbc-mode-using-

bouncy-castle-api-and-netbeans-or-eclipse/. Accessed:

2015-10-20.

[7] Java Decompiler: http://jd.benow.ca/. Accessed: 2015-10-

20.

[8] John’s Cryptography Blog: AES CBC Padding Oracle

Attack: http://johnx.blogspot.gr/2010/10/aes-cbc-padding-

oracle.html. Accessed: 2015-09-10.

[9] Klima, V. and Rosa, T. 2003. Side Channel Attacks on CBC

Encrypted Messages in the PKCS#7 Format. Cryptology

ePrint Archive, Report 2003/098 (2003).

[10] Lazar, D., Chen, H., Wang, X. and Zeldovich, N. 2014. Why

Does Cryptographic Software Fail?: A Case Study and Open

Problems. Proceedings of 5th Asia-Pacific Workshop on

Systems (New York, NY, USA, 2014), 7:1–7:7.

[11] Li, Y., Zhang, Y., Li, J. and Gu, D. 2014. iCryptoTracer:

Dynamic Analysis on Misuse of Cryptography Functions in

iOS Applications. Network and System Security. M.H. Au,

B. Carminati, and C.-C.J. Kuo, eds. Springer International

Publishing. 349–362.

[12] Markantonakis, K., Akram, R.N. and Msgna, M.G. 2015.

Secure and Trusted Application Execution on Embedded

Devices. Proceedings of the 8th International Conference on

Security for Information Technology and Communications

(Bucharest, Romania, Jun. 2015).

[13] McConnell, S. 2004. Code Complete: A Practical Handbook

of Software Construction, Second Edition. Microsoft Press.

[14] MITRE - CWE-780: Use of RSA Algorithm without OAEP

(2.8): http://cwe.mitre.org/data/definitions/780.html.

Accessed: 2015-09-10.

[15] MOTOROLA 2012. Βest practices for encryption in

Αndroid. White Paper.

[16] Nishika and Yadav, R.K. 2013. Cryptography on Android

Message Applications – A Review. International Journal on

Computer Science and Engineering. (2013), 362–367.

[17] NIST Cryptographic Standards and Guidelines Development

Process: http://www.nist.gov/director/vcat/cryptographic-

standards-guidelines-process.cfm. Accessed: 2015-09-09.

[18] NQ Mobile Vault: The popular encryption app has laughably

crackable encryption.:

http://www.slate.com/articles/technology/bitwise/2015/04/nq

_mobile_vault_the_popular_encryption_app_has_laughably

_crackable_encryption.html. Accessed: 2015-10-20.

[19] Padding oracle attacks: in depth:

https://blog.skullsecurity.org/2013/padding-oracle-attacks-

in-depth. Accessed: 2015-09-10.

[20] pxb1988/dex2jar · GitHub:

https://github.com/pxb1988/dex2jar. Accessed: 2015-10-20.

[21] Rizzo, J. and Duong, T. 2010. Practical Padding Oracle

Attacks. Proceedings of the 4th USENIX Conference on

Offensive Technologies (Berkeley, CA, USA, 2010), 1–8.

[22] RSA/ECB/<SomePaddingScheme> - How block operation

modes and asymmetric ciphers fit together:

http://armoredbarista.blogspot.gr/2012/09/rsaecb-how-

block-operation-modes-and.html. Accessed: 2015-10-20.

[23] Security Tips | Android Developers:

http://developer.android.com/training/articles/security-

tips.html. Accessed: 2015-09-09.

[24] Shuai, S., Guowei, D., Tao, G., Tianchang, Y. and Chenjie,

S. 2014. Modelling Analysis and Auto-detection of

Cryptographic Misuse in Android Applications. IEEE 12th

International Conference on Dependable, Autonomic and

Secure Computing (DASC) (Aug. 2014), 75–80.

[25] Static Code Analysis - OWASP:

https://www.owasp.org/index.php/Static_Code_Analysis.

Accessed: 2015-10-20.

[26] Static Testing vs. Dynamic Testing | Veracode:

https://www.veracode.com/blog/2013/12/static-testing-vs-

dynamic-testing. Accessed: 2015-10-20.

[27] Static vs. dynamic code analysis -- GCN:

https://gcn.com/articles/2009/02/09/static-vs-dynamic-code-

analysis.aspx. Accessed: 2015-10-20.

[28] The Padding Oracle Attack - why crypto is terrifying:

http://robertheaton.com/2013/07/29/padding-oracle-attack/.

Accessed: 2015-09-10.

[29] Vaudenay, S. 2002. Security Flaws Induced by CBC

Padding — Applications to SSL, IPSEC, WTLS... Advances

in Cryptology — EUROCRYPT 2002. L.R. Knudsen, ed.

Springer Berlin Heidelberg. 534–545.

[30] Viega, J. 2003. Practical random number generation in

software. Computer Security Applications Conference, 2003.

Proceedings. 19th Annual (Dec. 2003), 129–140.

