An Advanced Persistent Threat in 3G Networks: Attacking the Home Network from Roaming Networks

Prof. Christos Xenakis Systems Security Laboratory Department of Digital Systems, University of Piraeus, Greece

Our profile

- University of Piraeus, Greece
- Department of Digital Systems

- Systems Security Laboratory founded in 2008
- Research, Development & Education
 - systems security, network security
 - computer security, forensics
 - risk analysis & management

MSc course on "<u>Digital Systems Security</u>" since 2009

Publication – Press

- Christos Xenakis, Christoforos Ntantogian, <u>"An advanced persistent</u> threat in 3G networks: Attacking the home network from roaming networks," Computers & Security, Elsevier Science, Vol. 40, Issue 1, pp:84-94, February 2014
- Jesse Emspak, <u>How Hackers Could Crash a Cellular Network</u>, Tom's Guide, February 18, 2014
 - <u>http://news.yahoo.com/hackers-could-crash-cellular-network-183120897.html</u>
 - <u>http://www.secnews.gr/archives/75518</u>

—

- Bruce Schneier, <u>DDoSing a Cell Phone Network</u>, Schneier on Security, February 26, 2014
- <u>New Findings from University of Piraeus in the Area of Security</u> <u>Research</u>, www.4-traders.com, March 19, 2014.

Outline

- Related work our motivation
- Cellular technology
 - 3G network architecture
 - Identification, registration & authentication
- Experiments (1st & 2nd)
- The discovered attack
- Impact of the attack

Related work

- <u>Consume</u> the available control and signalling channels at the radio layer
- <u>DDoS</u> attack to HLR/AuC, coordinated by a botnet of infected mobile devices
- **<u>SMS</u>** DoS attack
- <u>Limitations</u> → <u>our motivation</u>
 - Studied only at a theoretical level
 - Their feasibility may be questionable
 - There are no technical details on how to practically exploit the discovered vulnerabilities

In this work.....

 We have proved the existence of a discovered <u>0-day</u> <u>vulnerability</u> by carrying out <u>an actual experiment</u> on a mobile operator

 We exploit this 0-day vulnerability to perform a <u>DDoS</u> attack to <u>HLR/AuC</u>

• We have **implemented** the <u>equipment</u> for an adversary to launch the presented attack

3G Network Architecture

Identification & Registration

- Each cellular subscriber is assigned a unique identity
 - International Mobile Subscriber Identity (IMSI)
 - For anonymity is identified by a Temporary Mobile Subscriber Identity <u>(TMSI)</u>
- Before a roaming user initiates a phone call/data session
 - 1. RRC (layer2) connection between MS and RNC.
 - 2. MS sends *service request* to the roaming MSC/SGSN including its TMSI
 - 3. The MSC/SGSN <u>cannot recognize the received TMSI</u>, the MS is forced to send the IMSI in plaintext.

Registration & Authentication

- After that, the cellular network (roaming & home)
 - 1. The roaming MSC/SGSN initiates an <u>authentication data</u> request (ADR) to the home HLR/AuC.
 - 2. The home HLR/AuC generates L different authentication credentials named Authentication Vectors (AV).
 - 3. The home HLR/AuC sends AVs to the roaming MSC/SGSN.
 - The roaming MSC/SGSN selects the first AV and sends it to MS for mutual authentication, while it caches the remaining (L-1) AVs for future use.

Identification, Registration & Authentication

Ch. Xenakis

1st experiment

 Goal: Verify that the home HLR/AuC always accepts and proceeds an ADR from a roaming network.

Steps:

- We cloned a SIM card of a Greek mobile operator 1.
- We powered on a mobile device using the original SIM in 2. Athens/Greece, and we initiated phone calls to register the **IMSI** of the SIM card in the HLR/AuC of its home network
- 3. Then, powered on a mobile device with the cloned SIM in Lisbon/Portugal.
- Captured the network traffic using a tool named Nokia Net 4. monitor.
- 5. Analysed the captured packets using the protocol analyser Wireshark Infocom Security 2014

1st experiment - Wireshark

*	out1_temp.xml [Wireshark 1.8.2]							
<u>File Edit View Go Capture Analyze Statistics</u>	Telephony <u>T</u> ools	Interna	als <u>H</u> elp					
■ ■ ■ ● ● ● = × っ	₽ < ◆	+	.₽. ∓		€	ର୍ ପ୍	F -	🏹 🗹 🍢
Source Destination	Protocol	Length	Info					
MS BTS	LAPDm	23	U P, func	=SABM(DTAP) (M	M) Loca	ation Upd	dating Re	equest
BTS MS	LAPDm	23	I, N(R)=1	, N(S)=0(DTAP)	(MM) I	Identity	Request	
MS BTS	LAPDm	23	I, N(R)=1	, N(S)=1(DTAP)	(MM) I	Identi	Response	2
BTS MS	LAPDm	23	I, N(R)=2	, N(S)=1(DTAP)	(MM) A	Authentic	cation Re	equest
MS BTS	LAPDm	23	I, N(R)=2	, N(S)=2(DTAP)	(MM) A	Authentic	cation Re	esponse
BTS MS	LAPDm	23	I, N(R)=3	, N(S)=2(DTAP)	(MM) L	ocation	Updating	g Accept
<pre> Frame 533: 23 bytes on wire (184 bits), 23 bytes captured (184 bits) GSM Um Interface </pre>								
+ Link Access Procedure, Channel Dm (LAPDm)								
GSM A-I/F DTAP - Identity Response								
Protocol Discriminator: Mobility Management messages								
01 = Sequence number: 1								
01 1001 = DTAP Mobility Management Message Type: Identity Response (0x19)								
- Mobile Identity - IMSI								
Length: 8								
0010 = Identity vigit 1: 2								
I = Oud/even indication: Odd number of identity digits								
PCD Digite								
BUD DIGIUS:								

2nd experiment

 <u>Goal</u>: Study the behaviour of the home network to various management procedures that <u>refer to already</u> <u>registered mobile subscribers to the network</u>, which are originated from other serving/roaming networks.

• <u>Steps</u>:

- We simultaneously made several outgoing calls using the two SIM cards.
- 2. We made incoming calls to the cloned phone number
 - Both the cloned & the original SIM have the same number
- The mobile device that rang was the one that had made the last outgoing call

The discovered DDoS attack

- The discovered a **DDoS** attack **aims to flood HLR/AuC**
 - The adversary first collects <u>IMSIs</u> of the <u>targeted operator</u>
 - A group of adversaries perform continuous registrations from roaming networks
 - Each registration attempt should use a different IMSI
- It is an **Advanced Persistent Threat (APT)** in cellular:
 - 1. Exploits a series of vulnerabilities of 3G networks.
 - 2. The adversaries can easily evade detection.
 - 3. Once launched it cannot be blocked in any trivial manner.

Infocom Security 2014

Impact of the attack !

- The functionality of HLR/AuC
 - Delivery of all phone calls
 - Delivery of text messages
 - Authentication server
 - Billing

—

Unavailability of HLR/AuC → Devastate nearly all services in the network of the mobile operator.

Impact of the attack !

Ch. Xenakis

Thank you

Christos Xenakis

Systems Security Laboratory, Department of Digital Systems

University of Piraeus, Greece

http://ssl.ds.unipi.gr/

http://cgi.di.uoa.gr/~xenakis/

email: xenakis@unipi.gr