

Δευτέρα 27 Απριλίου. 18:00-21:00 στην Αίθουσα Συνεδρίων (Πορτοκαλί Αμφιθέατρο) του Πανεπιστημίου Πειραιώς, Καραολή & Δημητρίου 80 στον Πειραιά.

Prof. Christos Xenakis,

System Security Laboratory, Department of Digital Systems School of Information Communication Technologies University of Piraeus, Greece

Invited speaker

- Arjen Kamphuis
 - Co-founder & Chief Technology Officer of Gendo
 - management consultancy firm specializing in technological innovation.
 - Holds a degree on Science & Policy from Utrecht University
 - Worked on IBM as computer engineer
 - He is expert in Information Security
 - He is the **co-author** of the book **entitled**:

"Information Security for Journalists, Protecting your story, your source and yourself online"

http://www.tcij.org/resources/handbooks/infosec

Arjen's presentation

- 1. Privacy and control over information processing within Greece
- 2. How open source software can help Greece
 - Promote knowledge and innovation
 - Develop new market & business
 - Create jobs
- 3. Tips on cryptography and security

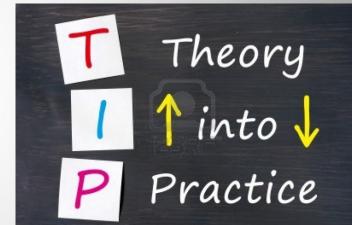

What we are doing for Innovation on Privacy in Greece ???

Research & Development in the Field of Security and Privacy

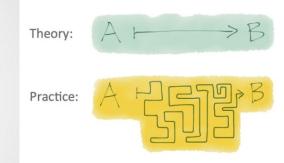
Before R&D !

A few words about us ...

- University of Piraeus, Greece
- School of Information and Communication Technologies
- Department of Digital Systems
- <u>System Security Laboratory</u> founded in 2008
- Research Development & Education
 - systems security, network security
 - computer security, forensics
 - risk analysis & management


Piraeus

- Undergraduate studies
 - Security Policies and Security Management
 - Information Systems Security
 - Network Security
 - Cryptography
 - Mobile, wireless network security
 - Privacy enhancing technologies
 - Bachelor Thesis



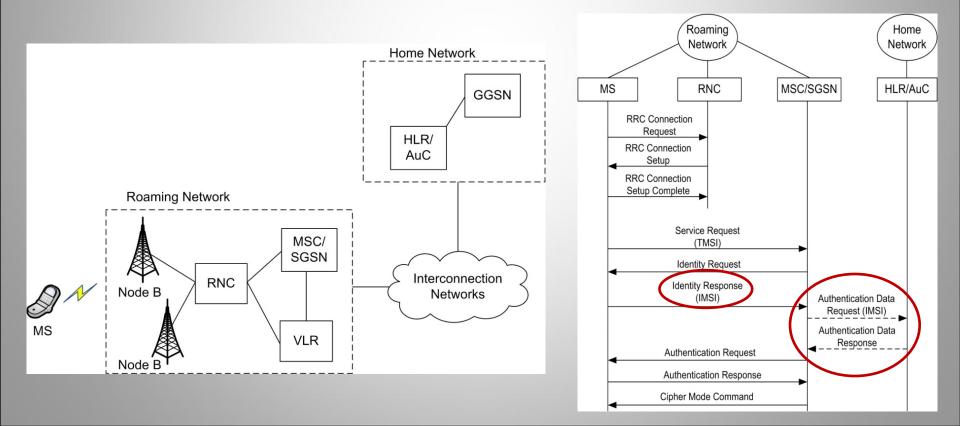
- Postgraduate studies in Digital Systems Security
- 1st semester
 - Security Management
 - Applied Cryptography
 - Information Systems Security
 - Network Security

Security Assessment and Vulnerability Exploitation

- Postgraduate studies in Digital Systems Security
- 2nd semester
 - Mobile Internet Security
 - Privacy Enhancing Technologies
 - Digital Forensics and Web Security
 - Advanced Security Technologies
 - Legal Aspects of Security

- Postgraduate studies in Digital Systems Security
- 3rd semester
 - Master Thesis

- ISO 27001


- Certified Information Security Manager (CISM)

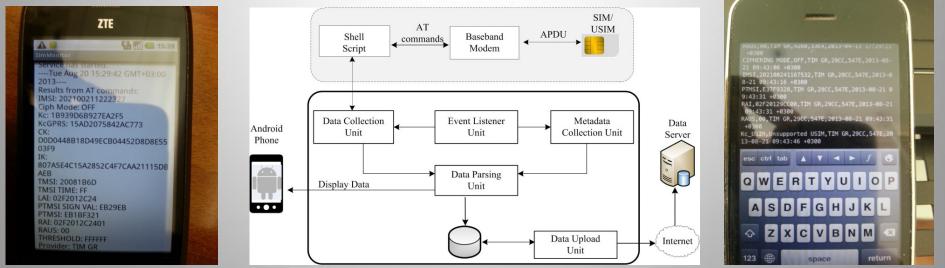
R&D Achievements

- Cellular technology, 2G, 3G, 4G
- Authentication & Biometrics
- Forensics investigations & data remnants
- Web security
- Current projects

An APT in 3G Networks

- We have discovered and proved the existence of a <u>0-day</u> <u>vulnerability</u> by carrying out <u>actual experiments</u> in <u>3G networks</u>
- The **exploitation** may lead to a **DDoS** attack to an **HLR/AuC**

Publication – Press


- Christos Xenakis, Christoforos Ntantogian, <u>"An advanced persistent</u> threat in 3G networks: Attacking the home network from roaming networks," Computers & Security, Elsevier Science, Vol. 40, Issue 1, pp:84-94, February 2014
- Jesse Emspak, <u>How Hackers Could Crash a Cellular Network</u>, Tom's Guide, February 18, 2014
 - <u>http://news.yahoo.com/hackers-could-crash-cellular-network-183120897.html</u>
 - http://www.secnews.gr/archives/75518

-

- Bruce Schneier, <u>DDoSing a Cell Phone Network</u>, Schneier on Security, February 26, 2014
- <u>New Findings from University of Piraeus in the Area of Security</u> <u>Research</u>, www.4-traders.com, March 19, 2014.

(U)SimMonitor

- We have invented a new type of mobile malware for both Android and iPhone devices, which attacks the baseband modems.
- It is capable of stealing security credentials and sensitive information of the cellular technology (i.e., permanent and temporary identities, encryption keys, location of users, etc.).

Security evaluation of cellular networks

- Processing the data acquired by (U)SimMonitor is able to answer to the following questions:
 - What is the network technology that serves MS?
 - How frequently or under what usage and behavior conditions the user is authenticated/re-authenticated?
 - How frequently the employed encryption keys change or what is the maximum time of a key usage?
 - How frequently the assigned temporary identities change or what is the maximum time that a temporary identity is used?
 - How frequently or under what conditions the serving network asks from MS the subscriber's permanent identity?

Security evaluation of cellular networks

• We have **evaluated** the **security policy** and **configurations** of the three **major mobile operators** in Greece

Operator	GSM/GPRS	GSM/EDGE	UMTS	HSDPA	UNKNOWN
Vodafone	8.38%	1.35%	78.75%	11.5%	0.02%
Wind	0.17%	27.35%	14.13%	53.72%	4.62%
Cosmote	3.43%	2.49%	86.06%	8.02%	0%

							PS d
		CS domain			Operator	Static users	Mobile users
Operator	Static users (consequetive	Mobile users	Power-off/on	Typical users (max-		Static users	Wioble users
Operator	requests for AKA)	wioble users	r ower-on/on	average use time)	Vodafone	0%	0%
Vodafone	16	6.5%	6.5% in 2G 55% in 3G	1798 - 145 (minutes)	Wind	0%	0%
Wind	6 SIM 1 USIM	55% SIM 100% USIM	100% SIM 57% USIM	1380 - 77 (minutes)	Cosmote	0%	0%
Cosmote	10 (average)	57%	100%	1680 - 128 (minutes)			
		PS domain					
Orearter	Static users (consequetive	Mobile users	Power-off/on	Typical users (max-			Fili
Operator	requests for AKA)	WIODIle users	Power-on/on	average use time)			94 6
Vodafone	1 in 2G 11 in 3G	91%	100% in 2G 16% in 3G	829 - 37 (minutes)			Aduki Odos
Wind	1 in 2G 11 in 3G	83% in 2G 23% in 3G	100% in 2G 18% in 3G	1238 - 90 (minutes)		-	opirgos
Cosmote	1	43% in 2G 92% in 3G	100%	940 - 47 (minutes)			Na.

CS domain											
Operator	Static users	Mobile user	Power-off/on	Typical user (max-average use time)							
Vodafone	No	100%	1513 - 66 (minutes)								
Wind	No	41% SIM 55% USIM	55% in SIM 100% in USIM	1780 - 89 (minutes)							
Cosmote	240 (minutes)	100%	100%	240 - 39 (minutes)							
	PS domain										
Operator	Static user	Mobile user	Power-off/on	Typical user (max-average use time)							
Vodafone	No	100%	100%	1513 - 66 (minutes)							
Wind	enakisNo	100%	100%	1610 77 (minutes)							
Cosmote	240 (minutes)	100%	100%	240 - 34 (minutes)							

CS domain

domain

Power-off/on

4% in 2G | 41% in 3G

55% SIM | 0.6% USIM

0%

Power-off/on

0% in 2G | 10% in 3G

0% in 2G | 5% in 3G

0% in 2G | 10% in 3G

Typical users

1 in a day

13 in a day

4 in 30 days

Typical users

3 in 30 days

2 in 30 days

3 in 30 days

Mobile users

4%

41% SIM | 55% USIM

0.6%

Static users

0%

0%

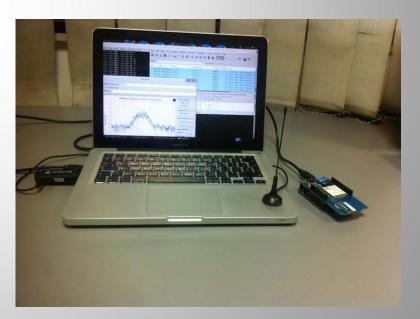
0%

Operator

Vodafone

Wind

Cosmote


(U)SimMonitor & Security Evaluation

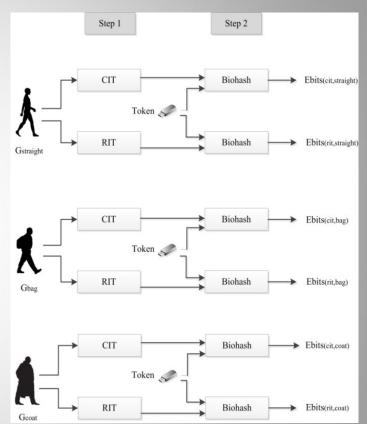
 Christos Xenakis, Christoforos Ntantogian, <u>"Attacking the Baseband</u> <u>Modem of Mobile Phones to Breach the Users' Privacy and Network</u> <u>Security,"</u> In Proc. 7th International Conference on Cyber Conflict (CyCon 2015), 27-29 May 2015 in Tallinn, Estonia.

 Christos Xenakis, Christoforos Ntantogian, Orestis Panos, <u>"(U)SimMonitor:</u> <u>A Mobile Application for Security Evaluation of Cellular"</u> Computers & Security, Elsevier Science, March 2015, [submitted]

Attacking GSM using commodity Hardware

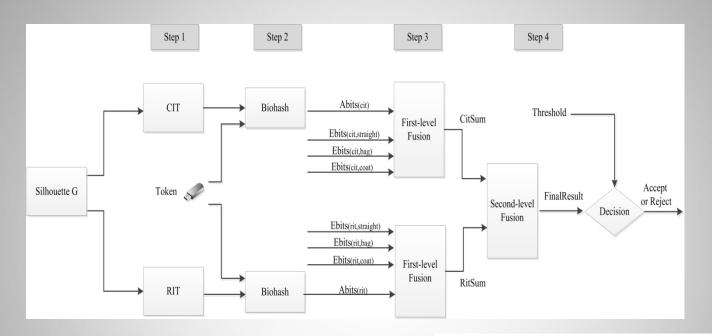
- We have performed attacks in GSM using commodity and off-the-shelf hardware as well as open source software.
- Testbed (~ \$150)
 - Arduino + GSM shield
 - RTL TV tuner
 - Software Defined Radio/Linux
 - Wireshark

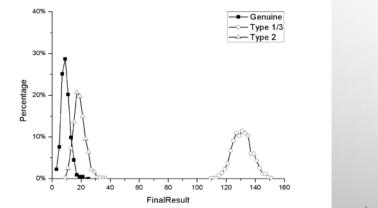
Attacking GSM using commodity Hardware

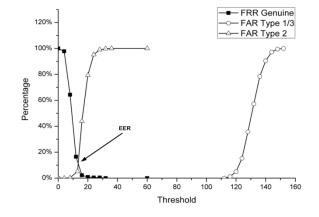

- 1. We can perform a **stealthy denial of service attack** to **any mobile phone**.
- 2. We can track mobile users with granularity of a Base Station (BS) coverage area.
- We can sniff the downlink of the GSM radio and read sensitive data (e.g., IMSI identities)

CONT.				reason. Det	-			
	Tena	Banation	Gastroutian	Protected	Langet			
100.00	294.3007120		WEAR'S	Loger or				Paging Persent Type 1
	254.1210790		127.0.0.1	colett and				Syntan Deformation Tap
	234,100800		127.0.0.1	contract.				Realing Research Type 1
	2014 Junior and		107.8.4.1	10000-007				Augury Parament Type 1
	254.2524008		127.6.6.3	10045.000				Paging Paravert Fame 1
10.11	294.3Mettical	127.4.0.1	139.0.0.1	1000.00		10000e	(mail)	Paulos Personal faite 1
10104	204.275930	127.8.8.1	127.8.4.1	contract out	10	100343	(m)	Personal Property I
10.01	214,3174020	127.0.0.5	127.0.0.1	coper an		10004	1941	Happing Request Type 1
0534	234, 2077490	127.0.0.1	127.0.0.1	1000.00	105	100Del	1940	Augurey Hermont Type 1
10.07	258, 344503	127.8-8-1	127.8.8.1	10041-004	101	DODH	0400	Huging Nematt Type 1
10134	234, 200348	127.0.0.1	327,0.0.1	coper an	83	1000344	(185)	Paging Repart Type 1
	Intel Addresses	127.0.0.1	127.0.0.1	COMPANY.	- 41	ALCOHOME.	Crept I	Suphase Deformation Tup

Christoforos Ntantogian, Grigoris Valtas, Nikos Kapetanakis, Faidon Lalagiannis, Christos Xenakis, <u>"Attacking GSM Networks as a Script Kiddie</u> <u>Using Commodity Hardware and Software"</u> [submitted for publication], March 2015


Gaithashing: a two-factor authentication scheme based on gait features


- Interpolates the security features of Biohash
- With the recognition capabilities of Gait features
- It is a high accuracy and secure authentication system
- It enrolls three different human silhouettes types
- it employs fusion using weighted sums



Christoforos Ntantogian, Stefanos Malliaros, <u>Christos Xenakis</u>, "<u>Gaithashing: a</u> <u>two-factor authentication scheme based on gait features</u>," Computers & Security, Elsevier Science, Vol. 52, Issue 1, pp:17-32, July 2015.

Gaithashing: a two-factor authentication scheme based on gait features – under revision

Infocom Security 2014

Live Android RAM Mobile Forensics

- We have investigated whether we can discover authentication credentials of mobile applications in the volatile memory of mobile devices
 - 13 security critical applications
 - 30 different scenarios

- − 2 sets of experiments → In total, 403 experiments !
- We have used **open-source**, **free forensic tools**
 - LiME and Autopsy

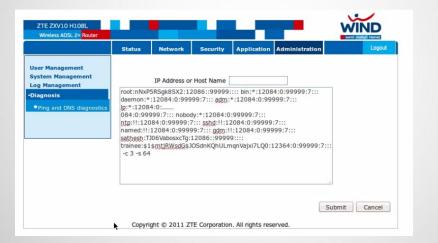
Live Android RAM Mobile Forensics

- The examined applications belong to four (4) categories which elaborate sensitive users' data:
 - i. mobile banking,
 - ii. e-shopping/financial applications,
 - iii. password managers,
 - iv. encryption/data hiding applications.

Live RAM Android Mobile Forensics

Dimitris Apostolopoulos, Giannis Marinakis, Christoforos Ntantogian, Christos Xenakis, "Discovering authentication credentials in volatile memory of Android mobile devices", In Proc. 12th IFIP Conference on e-Business, e-Services, e-Society (I3E 2013), Athens, Greece, April 2013.

Christoforos Ntantogian, Dimitris Apostolopoulos, Giannis Marinakis, Christos Xenakis, "<u>Evaluating</u> the privacy of Android mobile applications under forensic analysis," *Computers & Security, Elsevier Science, Vol. 42, pp:66-76, May 2014*



		EXPORT CONTEN	TS ADD NOTE
	ASCII (display - re	eport) * Hex (display -	report) * ASCII Strings (display - report)
		File Ty	pe: data
Init:	176538		
28	0000000 0000000	0000000 0000000	····
44	00000000 00000000 0		
60	00000000 00000000 0		
76	01000000 00000000		
92	0000803f ffffffff		?
208	00000000 ffffffff	B08080ff 00000000	
24	16030801 17030801		
240	0000000 00000000	0000000 23010000	···· ··· ··· ··· #···
256	50180140 00000000	B3000000 0000000	P@
272	7b002200 63006f00 (5d006d00 61006e00	{.". c.o. m.m. a.n.
288	64002200 3a002200	51007500 74006800	d.". :.". a.u. t.h.
804	65006e00 74006900	53006100 74006500	e.n. t.i. c.a. t.e.
320	64005f00 70006900	5e006700 5f007500	d p.i. n.gu.
336	73006500 72002200	2c002200 70006100	s.e. r.". ,. <mark>".</mark> p.a.
352	73007300 77006f00		s.s. w.o. r.d. ".:.
868	22006400 73007300		".d. s.s. e.c. <mark>'</mark> .,.
384	22006100 70006900		".a. p.1v. e.r.
00	73006900 6f006e00 3		s.i. o.n. ".:. ".8.
16	22002c00 22007500		".,. ".u. s.e. r.n.
32	61006d00 65002200 :		a.m. e.". :.". d.r.
48	40006600 6f006f00 3		@.f. o.oc. o.m.
64	22007d00 00000000		".}
80 96	0000000 00000000		and and the second
		0000000 00000000	

	F							Applications																			Total p		
	- 1						m-ba	nking							fis	ancial/	e-shapp	àng		pa	ssword	manage	ers	e	acryptic	on/hidir	g .	Total	scenar
		ba	nki.	ba	nk2	ba	nki	ba	nkł	ba	rkő	ba	rkó	fnar	rcal	fra	ncia/2	fra	ticia B	pass	uordi	pass	νoriΩ	eray	ption1	eroy	ption2		
Tenensis I	sLa	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Ρ	X	X	U	Ρ	U	Ρ	U	Ρ	-	Ρ	•	Р	•	Р	•	Р	20/22	
SCOMPO	\$1.b	U	P	U	P	U	Ρ	U	9	U	P	X	X	U	P	U	P	U	X		P		р	· ·	Р	· .	Р	19/22	71/8
1	s1.c	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Р	X	X	U	X	U	Р	U	X	•	Ρ	•	Р	•	Р	•	Р	18/22	809
	s1.d	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Ρ	X	X	U	X	X	X	X	X	-	Ρ	•	Ρ	•	X	•	Р	14/22	
	\$2.2	U	P	U	P	U	Ρ	U	Ρ	U	P	X	X	U	P	U	P	U	X		P		Р	1.1	р		р	19/22	51/6
Scenario 2	52.b	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Р	X	X	U	X	U	P	U	X		Ρ	•	P	•	Р	•	Р	18/22	m
	\$2.0	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Ρ	X	X	U	X	X	X	X	X	•	Ρ	•	Ρ	•	X	•	Р	14/22	
	s3.a	X	X	U	P	U	P	U	P	U	P	X	X	U	X	U	X	U	X		X		X	1.	р		р	13/22	32/6
Scenario 3	s3.b	X	X	U	Ρ	U	X	U	Ρ	U	Р	X	X	U	X	U	X	U	X		X		X	•	P	•	Р	12/22	489
-	\$3.0	X	X	X	X	U	X	X	X	U	Ρ	X	X	U	X	U	X	U	X	•	X	•	X	•	X	•	Р	7/22	101
	s4.a	U	P	U	P	U	Ρ	U	Ρ	U	Ρ	U	P	U	P	U	P	U	P		P	1	P		Р		Р	m/m	
Scenario	s4.b	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Ρ	X	X	U	Ρ	U	Ρ	U	Ρ	•	Ρ	•	Х	•	Ρ	•	Р	19/22	22 80%
4	54.C	U	Ρ	U	Ρ	U	Ρ	U	Ρ	U	Ρ	X	X	U	Ρ	U	P	U	Р		Р	•	X	•	Р	•	Р	19/22	
	54.đ	U	P	U	P	U	X	X	X	U	P	X	X	U	X	U	X	X	X		Р		X		X		р	11/22	
	s5.a	U	P	U	P	U	Ρ	U	P	U	P	X	X	U	P	U	P	U	P		P		X		р		р	19/22	19/22 49/66 74%
Scenario 5	s5.b	U	P	U	P	U	Р	U	P	U	Р	X	X	U	р	U	P	U	р		р	•	X		р	•	р	19/22	
	\$5.C	U	Р	U	P	U	X	X	X	U	Р	X	X	U	X	U	X	X	X		Р		X		X		Р	11/22	
	\$6.a	U	P	U	P	U	P	U	P	U	P	X	X	U	P	U	P	U	P		р		X		р		р	19/22	
Scenario 6	s6.b	U	P	U	P	U	Р	U	P	U	Р	X	X	U	P	U	P	U	P		P		X		р	•	р	19/22	48/6
	\$6.C	U	P	U	P	U	X	X	X	U	P	X	X	U	X	X	X	X	X		p		X		X		р	10/22	729
Scenario 7	s7	U	P	U	Р	U	Р	U	Р	U	р	x	x	x	x	U	р	x	x		р		р		р		р	16/22	16/2 729
	sta	U	Р	U	P	U	P	U	P	U	P	x	x	U	Р	X	×	U	X		X		X		X		р	14/22	ne.
	58.b	U	P	U	P	U	P	U	P	U	P	X	X	U	Y	X	X	U	X		X		X	<u>.</u>	X	-	P	13/22	51/8
	\$8.c	U	P	U	P	U	P	U	P	U	P	X	X	U	X	X	X	U	X		X		X		X		P	13/22	589
	sa.c	U	P	U	P	U	P	U	p	U	P	X	X	X	X	X	X	x	X		X		X	÷.	X		P	13/22	1
_	50.0 59.a	v	X	v	X	X	Y	X	x	U	P	X	X	A U	X	X	X	A U	X		X		X		X		P	5/22	⊢
Secondrin 1	\$9.b	×	x	×	x	X	×	X	X	U	P	X	X	X	×	X	×	x	X		X	-	X		X		P	3/22	11/
7	59.C	×	Ŷ	×	Ŷ	x	÷	X	×	U	P	Y	Y	Y	× ×	X	×	Y	X		X		X		X		P	3/22	169
\rightarrow	594		^		<u> </u>		^	~			ŕ			^	^	^	^	^	^				<u> </u>	<u> </u>	~	<u> </u>	۴	3/22	0/2
kenario 10	\$10	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	X	•	X	•	X	•	X	0/22	0%
kenario 11	s11	X	X	X	x	x	x	X	x	x	x	X	X	X	x	x	x	x	X		X		х		х		x	0/22	0/2
Total iotal per cate		22/30	22/30	24/30	24/30	25/30	20/30	21/30	21/30	28/30	28/30	1/30	1/30	24/30	11/30	18/30 93/180	13/30		8/30		18/30 27/60		9/30	•	15/30 43/60		28/30		

Security Evaluation

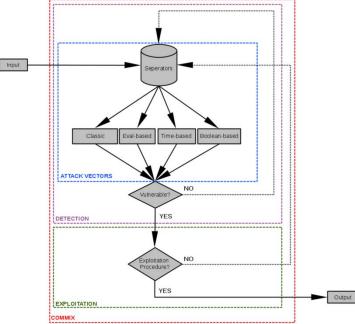
- We have evaluated the security of ADSL routers and identify the potential of attacks
- We discovered two **0-day vulnerabilities** in the web management interface of a popular ADSL router

 Anastasios Stasinopoulos, Christoforos Ntantogian, Christos Xenakis, "<u>The weakest</u> <u>link on the network: exploiting ADSL routers to perform cyber-attacks</u>," In Proc. 13th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT 2013), Athens, Greece, December 2013.

Bypassing XSS Auditor

- We have presented two identified attacks, that take advantage of poorly written PHP code to bypass the XSS filter of WebKit engine named XSS Auditor and perform XSS attacks.
- 1. The first attack is called PHP Array Injection,
- 2. The **second attack** (*a variant of the first one*) is named as **PHP Array-like Injection**.

The page at localhost says:	×
XSS Auditor, got PWNED!	
	ОК


• We have committed the patches to the **official repository of WebKit** on GitHub.

https://github.com/stasinopoulos/webkit/commit/557d41ba23781cd53dedc4d2e40c5af220e8b966

Anastasios Stasinopoulos, Christoforos Ntantogian, Christos Xenakis, "<u>Bypassing XSS</u> <u>Auditor: Taking Advantage of Badly Written PHP Code</u>, " In Proc. 14th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT 2014), Noida, India, Dec 2014.

Commix : Detecting and exploiting command injection flaws

- We designed and implemented a pentesting tool named commix that detects whether a web application is vulnerable to command injection attacks.
 - Developed in Python
 - Released as open source
 - Modular architecture
 - Extensible
 - Automatic exploitation

Commix : Detecting and exploiting command injection flaws

- We have also identified a new command injection attack named as Blind Command Injection (BCI)
- Key characteristic of Commix: High detection rate with very low false alarms
- Using commix we have evaluated a set of open source web applications
- We have discovered **several 0-day command injection vulnerabilities** (blind and classic).

A ROP-based polymorphic engine to bypass AVs

 Return Oriented Programming (ROP) is used to bypass software security protections (i.e., DEP security policy)

- We have identified that ROP can be used for other (malicious) purposes
- Specifically, we have identified that ROP can be used also to generate undetectable executables that include a backdoor

A ROP-based polymorphic engine to bypass AVs

- We have **designed** and **implemented** in **C programming** language a **ROP-based backdoor binder**
- Results: 0/57 AV detection in Virustotal using shellcodes of Metasploit!!
- AV should focus on behavioral (dynamic) analysis and not on signatures!

Giorgos Poulios, Christoforos Ntantogian, Christos Xenakis, <u>"ROPInjector: Using Return</u> Oriented Programming for Polymorphism and Antivirus Evasion," [submitted] Backhat 2015

- Security and Privacy in E-Government Services, (SPAGOS), GSRT, National, (2013 – 2015).
- We are involved in
 - Design and development of a Public key infrastructure for eGoverment services (EBJCA)
 - Design and development of a Single Sign On solution for eGoverment services

http://research.icbnet.ntua.gr/spagos/home/

- Engaging Users in Preventing and Fighting Cyber Crime, (<u>UINFC2</u>), EU-DGHOME, (2014 – 2016).
- We are involved in

http://www.uinfc2.eu/wp/en/

- Data analytics for child exploitation material processing
- Machine learning algorithms to facilitate decisions

- From Real-world Identities to Privacy-preserving and Attribute-based CREDentials for Device-centric Access Control, (<u>ReCRED</u>) EU HORIZON 2020, (2015 – 2018)
 - ReCRED's ultimate goal is to promote the user's personal mobile device to the role of a unified authentication and authorization proxy towards the digital world
 - Biometric Authentication
 - Attribute-based access control
 - Trust platform module for secure computation

Participant No*	Participant organisation name	Short Name	Country
1 (Project Coordinator)	UNIVERSITY OF PIRAEUS RESEARCH CENTER	UPRC	GREECE
2	TELEFONICA INVESTIGACION Y DESARROLLO SA	TID	SPAIN
3	VERIZON NEDERLAND B.V.	VERIZON	NETHERLANDS
4	CERTSIGN SRL	CSGN	ROMANIA
5	WEDIA LIMITED (SME)	WEDIA	GREECE
6	EXUS SOFTWARE LTD (SME)	EXUS	UK
7	UPCOM BVBA (SME)	UPCOM	BELGIUM
8	DE PRODUCTIZERS B.V. (SME)	PROD	NETHERLANDS
9	CYPRUS UNIVERSITY OF TECHNOLOGY	CUT	CYPRUS
10	UNIVERSIDAD CARLOS III DE MADRID	UC3M	SPAIN
11	CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI	CNIT	ITALY
12	STUDIO PROFESSIONALE ASSOCIATO A BAKER & McKENZIE	BAK	ITALY

Greece exports tourism and various agricultural products

Are they enough ??

Cars made in Greece look like these !!

Technology could be exported !

Thank you

Christos Xenakis Systems Security Laboratory, Department of Digital Systems University of Piraeus, Greece <u>http://ssl.ds.unipi.gr/</u> <u>http://cgi.di.uoa.gr/~xenakis/</u> email: <u>xenakis@unipi.gr</u>