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Abstract

We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra,
by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on
methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely
by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm
works even in the presence of base points but, in this case, the implicit equation shall be obtained as a
factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well,
and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our
approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns
out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building
a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude
that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are
employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We
compare our prototype to existing software and find that it is rather competitive.

1 Introduction

Implicitization is the problem of changing the representation of parametric objects to implicit form. It lies at
the heart of several questions in computer-aided geometric design (CAGD) and geometric modeling, including
intersection problems and membership queries. In several situations, it is important to have both representations
available. Implicit representations encompass a larger class of shapes than parametric ones. Implicitization is
also of independent interest, since certain questions in areas as diverse as robotics or statistics reduce to deriving
the implicit form. For instance, in [CTY10] they implicitize a 16-dimensional hypersurface by interpolation,
once they have computed the implicit polytope. Another motivation is to compute the dual of a curve by
interpolation [Vol97]: our approach would exploit structure to yield a faster method in sparse cases.

Here we follow a classical symbolic-numeric method, which reduces implicitization to interpolating the
coefficients of the defining equation. We implement interpolation by exact or numeric linear algebra following
an exact phase which computes a (super)set of the monomials appearing in the implicit equation. These
monomials are then suitably evaluated to build a numeric matrix, ideally of corank 1, whose kernel vector
contains their coefficients in the implicit equation. We give techniques for handling the case of higher corank.

One contribution of this paper is to exploit sparse (or toric) variable elimination theory to predict the Newton
polytope of the implicit equation.

Definition 1. Given a polynomial∑
a∈Ai

ciat
a ∈ R[t1, . . . , tn], ta = ta1

1 · · · tann , a ∈ Nn, cia ∈ R− {0},

its support is the set Ai = {a ∈ Nn : cia 6= 0}; its Newton polytope is the convex hull of the support. We shall
call the support of the implicit equation, implicit support, and its Newton polytope, implicit polytope.

One reason for revisiting interpolation of the implicit coefficients is the current increase of activity around
various approaches capable of predicting the implicit support. Our team has been focusing on sparse elimination
theory [EFKP12, EKP10, EK03, EKK11]. Theorem 4 settles the general case by showing that this approach
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Figure 1: Examples of Newton polygons N(fi) of polynomials fi ∈ Z[x, y].

yields a superset of the implicit support. Recent support prediction methods notably include tropical geometry
methods, e.g. [Cue10, DS10, JY11, STY07, SY08]; see section 3. The present work can use the implicit support
predicted by any method. In fact, [SY08, sec.4] states that “Knowing the Newton polytopes reduces computing
the [implicit] equation to numerical linear algebra. The numerical mathematics of this problem is interesting
and challenging [...] ” Our implementations interface linear algebra interpolation with the implicit support
predictors of [EFKP12, EKP10]. In the sequel, we juxtapose the use of exact and numerical linear algebra.

In practical applications of CAGD, precise implicitization often can be impossible or very expensive to ob-
tain. Approximate implicitization over floating-point numbers appears to be an effective solution [DT03, SJ08,
BD10a, BD10b]. We discuss approximate implicitization, in the setting of sparse elimination. Approximate
implicitization is one of the main motivations for reducing implicitization to interpolation of the implicit coef-
ficients. We offer a publicly available Maple implementation 1, which is based on the software for computing
implicit polytopes from [EFKP12]. The latter is also available as a C++ implementation2. We study the nu-
merical stability and efficiency of our algorithms on several classes of curves and surfaces. One central question
is how to evaluate the computed monomials to obtain a suitable matrix, when performing exact or numerical
matrix operations. We compare results obtained by using random integers, random complex unitary numbers
and complex roots of unity. It appears that complex unitary numbers offer the best tradeoff of efficiency and
accuracy for numerical computation, whereas random integers are preferred for exact kernel computation.

Let us now define the problem formally. A parametrization of a geometric object of co-dimension one, in a
space of dimension n+ 1, can be described by parametric map:

f : Rn → Rn+1 : t = (t1, . . . , tn) 7→ x = (x0, . . . , xn),

where t is the vector of parameters and f := (f0, . . . , fn) is a vector of continuous functions, including polyno-
mial, rational, and trigonometric functions, also called coordinate functions. These are defined on some product
of intervals Ω := Ω1 × · · · × Ωn, Ωi ⊆ R. In the case of trigonometric input, we restrict our study to those
functions that may be converted to polynomials by the standard half-angle transformation

sin θ =
2 tan θ/2

1 + tan2 θ/2
, cos θ =

1− tan2 θ/2
1 + tan2 θ/2

,

where the parametric variable becomes t = tan θ/2.
The implicitization problem asks for the smallest algebraic variety containing the image of the parametric

map f : t 7→ f(t). This image is contained in the variety defined by the ideal of all polynomials p(x0, . . . , xn)
s.t. p(f0(t), . . . , fn(t)) = 0, for all t in Ω. We restrict ourselves to the case when this is a principal ideal, and
we wish to compute its defining polynomial

p(x0, . . . , xn) = 0, (1)

given its Newton polytope, or a polytope that contains it. If the parametrization is not proper but has degree
θ > 1, our method computes the implicit equation to the power θ.

We can regard the variety in question as the projection of the graph of map f to the last n+ 1 coordinates.
If f is polynomial, implicitization is reduced to eliminating t from the polynomial system

F̄i := xi − fi(t) ∈ (R[xi])[t], i = 0, . . . , n,

seen as polynomials in t with coefficients which are functions of the xi. This is also the case for rational
parametrizations

xi = fi(t)/gi(t), i = 0, . . . , n, (2)

1http://ergawiki.di.uoa.gr/index.php/Implicitization
2http://sourceforge.net/projects/respol/files/
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which can be represented as polynomials

F̄i := xigi(t)− fi(t) ∈ (R[xi])[t], i = 0, . . . , n, (3)

where we have to take into account that the gi(t) cannot vanish by adding the polynomial

F̄n+1 = 1− g0(t) · · · gn(t)y, (4)

where y is a new variable.
Several algorithms exist for implicitization, including methods based on resultants, Gröbner bases, µ-bases

and moving surfaces, and residues. Our approach can use any support prediction method, see Section 3. We
focus on sparse (or toric) elimination: In the case of curves, the implicit support is directly determined for
generic parametric expressions with the same supports [EKP10]. In the general case, the implicit support is
provided by that of a symbolic sparse resultant related to the polynomials in (3), whose Newton polytope is
projected to the space of the xi’s [EFKP12]. The theoretical foundations of our approach are given in Theorem 4,
Lemma 8 and Corollary 9.

We can impose the additional assumption gcd(f0, . . . , fn, g0, . . . , gn) = 1, on (3), which assures that the
set of base points of the parametrization is finite. This is not necessary because our method, being based on
a symbolic resultant, works even in the presence of base points of arbitrary dimension. In this case however,
its output is, usually, a large multiple of the actual implicit equation. Our approach can also handle fi with
(certain) symbolic nonzero coefficients, thus computing the implicit polytope for entire families of parametric
objects.

Having reduced implicitization to interpolation, we employ standard methods to determine the unknown
coefficients by linear algebra. These are divided in two main categories, dense and sparse methods. The former
require only a bound on the total degree of the target polynomial, whereas the latter require a bound on the
number of its terms, thus exploiting any sparseness of the target polynomial. A priori knowledge of the support
helps significantly, by essentially answering the first step of sparse interpolation algorithms.

The rest of the paper is structured as follows. Previous work is discussed in the next two sections: Section 2
discusses existing methods for interpolating the implicit polynomial’s coefficients by linear algebra. Section 3
discusses implicit support prediction and sparse elimination theory. Our algorithm is detailed in Section 4, where
we discuss complexity issues and mention possible algorithmic extensions. The algorithm’s implementation,
and performance are described in Section 5, where we compare it to other implementations and present some
examples. Numerical issues in sampling the objects, the accuracy in the case of approximate implicitization,
and how our quality measures are related to Hausdorff distance are in Section 6. We conclude with future
work in Section 7. The Appendix contains examples of exact and approximate implicit equations of parametric
curves and surfaces used in our experiments, and further experimental results.

A preliminary version of partial results from this paper appeared as [EKK11]. Here all experiments have been
revisited using an improved method for computing the implicit polytope [EFKP12]. This work also includes a
better discussion of sparse elimination theory, including Theorem 4, Lemma 8 and Corollary 9, comparison with
µ-bases, Groebner bases, and the Maple implicitization routine, as well as a discussion on how to measure the
accuracy of approximation when the implicit equation is obtained by numerical computation. New experiments
consider downscaling the implicit polytope and emphasize symbolic-numeric aspects such as oversampling.

2 Existing interpolation methods

This section examines how implicitization had been reduced to interpolation. Throughout the paper, we use
interpolation to refer to the method of determining the implicit coefficients from the implicit support and its
evaluations on points of our choice. Of course, these points lie in the space of parameters.

Let S be (a superset of) the support of the implicit polynomial p(x0, . . . , xn) = 0, and p be the |S|×1 vector
of its unknown coefficients. We refer to S as implicit support, with the understanding that it may be a superset
of the actual support.

Sparse interpolation is the problem of interpolating a multivariate polynomial when information of its support
is given [Zip93]. This may simply be a bound σ on support cardinality, then sparse interpolation is achieved in
O(|S|3δn log n+ σ3), where δ bounds the output degree per variable, |S| here is the actual support cardinality,
and n the number of variables [BOT88, KL89]. A probabilistic approach runs in O(|S|2δn) [Zip90] and requires
as input only δ.

For the sparse interpolation of resultants, the quasi-Toeplitz structure of the matrix allows us to reduce com-
plexity by one order of magnitude, when ignoring polylogarithmic factors, and arrive at a quadratic complexity
in matrix size [CKL89]. This was extended to the case of sparse resultant matrices [EP05].

Our matrices reveal what we call quasi-Vandermonde structure, since the matrix columns are indexed by
monomials and the rows by values on which the monomials are evaluated. This reduces matrix-vector multiplica-
tion to multipoint evaluation of a multivariate polynomial. It is unclear how to achieve this post-multiplication
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in time quasi-linear in the size of the polynomial support when the evaluation points are arbitrary, as in our
case. Existing work achieves quasi-linear complexity for specific points [EP02, Pan94, Sau04, vdHS10].

2.1 Exact implicitization

The most direct method to reduce implicitization to linear algebra is to construct a |S|×|S|matrixM , indexed by
monomials with exponents in S (columns) and |S| different values (rows) at which all monomials get evaluated.
Then, vector p is in the kernel of M . This idea was used in [EK03, MM02, SY08]; it is the approach explored
in this paper, extended to an approximate implicitization as well.

In [STY07], they propose evaluation at unitary τ ∈ (C∗)n, i.e., of modulus 1. This is one of the evaluation
strategies examined below. Another approach was described in [CGKW00], based on integration of matrix
M = SST , over each parameter t1, . . . , tn. Then, p is in the kernel of M . In fact, the authors propose
to consider successively larger supports in order to capture sparseness. This method covers a wide class of
parametrizations, including polynomial, rational, and trigonometric representations, but the size of M is quite
big and matrix entries take big values, so it is difficult to control its numeric corank. In some cases, its corank
is ≥ 2. Thus, the accuracy, or quality, of the approximate implicit polynomial is unsatisfactory. The resulting
matrix has Henkel-like structure [KL03]. When it is computed over floating-point numbers, the resulting implicit
polynomial does not necessarily have integer coefficients. In [CGKW00], they discuss some post-processing to
yield the integer relations among the coefficients, but only for small examples.

2.2 Approximate implicitization

Approximate implicitization over floating-point numbers was introduced by T. Dokken and co-workers in a
series of papers. Today, there are direct [DT03, WTJD04] and iterative techniques [APJ12]. We describe the
basic direct method [DT03]: Given a parametric (spline) curve or surface x(t), t ∈ Ω ⊂ Rn, the goal is to find
polynomial q(x) such that q(x(t) + η(t)g(t)) = 0, where g(t) is a continuous direction function with Euclidean
norm ‖g(t)‖ = 1 and η(t) a continuous error function with |η(t)| ≤ ε. Now, q(x(t)) = (Mp)Tα(t), where matrix
M is built from monomials in x. It may be constructed as in this paper, or it may contain a subset of the
monomials of the implicit support. Moreover, p is the vector of implicit coefficients, hence Mp = 0 returns
the exact solution, and α(t) is the basis of the space of polynomials which describes q(x(t)), and is assumed
to form a partition of unity and to be nonnegative over Ω:

∑
i αi = 1, αi ≥ 0, ∀i, t ∈ Ω. One may use the

Bernstein-Bézier basis with respect to Ω, in the case of curves, or a triangle which contains Ω, in the case of
surfaces.

In [DT03, p.176] the authors propose to translate to the origin and scale the parametric object, so as to lie
in [−1, 1]n, in order to improve the numerical stability of the linear algebra operations. In our experiments,
we found out that using unitary complex values leads to better numerical stability. Since both our and their
methods rely on SVD, our experiments confirm their findings.

The idea of the above methods is to interpolate the coefficients using successively larger supports, starting
with a quite small support and extending it so as to reach the exact one. All existing approaches, e.g. [CGKW00],
have used upper bounds on the total implicit degree, thus ignoring any sparseness structure. This fails to take
advantage of the sparseness of the input in order to accelerate computation, and 3 Our methods provide a
formal manner to examine different supports, in addition to exploiting sparseness.

In the context of sparse elimination, the Newton polytope captures the notion of degree. Given an implicit
polytope we can naturally define candidates of smaller support, the equivalent of lower degree in classical
elimination, by an inner offset of the implicit polytope. The operation of scaling down the polytope can be
repeated, thus producing a list of implicit supports yielding smaller implicit equations with larger approximation
error. See Examples 3 and 4 for when the predicted implicit polytope is much larger than the true one.

3 Support prediction

This section describes our methods for computing the implicit support, which is based on the sparse resultant,
and any information we obtain from this computation towards computing the implicit equation.

In order to exploit sparseness in the implicit polynomial in the sense of Proposition 6, the problem of
computing the Newton polytope of a rational hypersurface was posed in [SY94] for generic Laurent polynomial
parametrizations, in the framework of sparse elimination theory.

Algorithms based on tropical geometry have been offered in [DFS07, STY07, SY08]. This method computes
the abstract tropical variety of a hypersurface parametrized by generic Laurent polynomials in any number of
variables, thus yielding its implicit support; it is implemented in TrIm. For non-generic parametrizations of
rational curves, the implicit polygon is predicted. In higher dimensions, the following holds:

3c: the phrase ends unexpectedly
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Proposition 1. [STY07, prop.5.3] Let f0, . . . , fn ∈ C[t±1
1 , . . . , t±1

n ] be any Laurent polynomials whose ideal
of algebraic relations is principal, say I = 〈g〉, and Pi ⊂ Rn the Newton polytope of fi. Then, the polytope
constructed combinatorially from P0, . . . , Pn using tropical geometry contains a translate of the Newton polytope
of g.

The tropical approach was improved in [Cue10] to yield the precise implicit polytope in R3 for generic
parametrizations of surfaces in 3-space. In [JY11], they describe efficient algorithms implemented in the GFan
library for the computation of Newton polytopes of specialized resultants, which may then be applied to predict
the implicit polytope. Sparse elimination has been used for the same task [EFKP12], as detailed below. The
latter is faster on dimensions relevant here, namely for projected polytopes in up to 5 dimensions.

The Newton polygon of a curve parametrized by rational functions, without any genericity assumption,
is determined in [DS10]. In a similar direction, an important connection with combinatorics was described
in [EK06], as they showed that the Newton polytope of the projection of a generic complete intersection is
isomorphic to the mixed fiber polytope of the Newton polytopes associated to the input data.

In [EKP10], sparse elimination is applied to determine the vertex representation of the implicit polygon of
planar curves. The method relies on the study of the Newton polytope of a resultant. It can be applied to
polynomial and rational parametrizations, where the latter may have the same or different denominators. In
case of non-generic inputs, the predicted polygon is guaranteed to contain the Newton polygon of the implicit
equation. The method can be seen as a special case of the general approach based on sparse elimination.

In [EK03] a method relying on sparse elimination for computing a superset of the generic support from the
resultant polytope is discussed, itself obtained as a (non orthogonal) projection of the secondary polytope. The
latter was computed by calling Topcom [Ram02]. This approach was quite expensive and, hence, applicable
only to small examples; it is refined and improved in this paper.

3.1 Sparse elimination theory

Sparse, or toric, elimination subsumes classical, or dense, elimination in the sense that, when Newton polytopes
equal the corresponding simplices, the former bounds become those of the classical theory [EK03, sec.3], [SY94,
thm.2(2)].

Consider the polynomial system F̄0, . . . , F̄n as in expression (3), defining a hypersurface, and let Ai ⊂ Zn
be the support of F̄i and Pi ⊂ Rn the corresponding Newton polytope. The family A0, . . . , An is essential if
they jointly affinely span Zn and every subset of cardinality j, 1 ≤ j < n, spans a space of dimension ≥ j. It
is straightforward to check this property algorithmically and, if it does not hold, to find an essential subset. In
the sequel, the input A0, . . . , An ⊂ Zn is supposed to be essential.

For simplicity, in what follows we do not consider the extra polynomial in expression (4) as part of our poly-
nomial systems. This is equivalent to considering polynomial parametrizations. However, it is straightforward
to generalize the discussion below to the rational case.

For each F̄i, i = 0, . . . , n, we define a polynomial Fi ∈ K[t] with symbolic coefficients cij algebraically
independent over R, K = C(cij), and the same support Ai, i.e. a generic polynomial with respect to Ai:

Fi =
|Ai|∑
j=1

cijt
aij ∈ K[t], aij ∈ Ai, i = 0, . . . , n. (5)

Obviously, each Fi has also the same Newton polytope Pi as F̄i.
Now we introduce our main tool, namely the sparse resultant of an overconstrained polynomial system. The

sparse resultant of polynomial system in expression (5) is an irreducible polynomial

R ∈ Z[cij : i = 0, . . . , n, j = 1, . . . , |Ai|],

defined up to sign, vanishing iff F0 = F1 = · · · = Fn = 0 has a common root in the torus (C∗)n. The Newton
polytope N(R) of the resultant polynomial is the resultant polytope. We call any monomial which corresponds
to a vertex of N(R) an extreme term of R.

The Minkowski sum A+B of convex polytopes A,B ⊂ Rn is the set A+B = {a+ b | a ∈ A, b ∈ B} ⊂ Rn.
A tight mixed subdivision of P = P0 + · · · + Pn, is a collection of n-dimensional convex polytopes σ, called
(Minkowski) cells, s.t.: They form a polyhedral complex that partitions P , and every cell σ is a Minkowski sum
of subsets σi ⊂ Pi: σ = σ0 + · · ·+ σn, where dim(σ) = dim(σ0) + · · ·+ dim(σn) = n.

A cell σ is called vi-mixed if it is the Minkowski sum of n one-dimensional segments Ej ⊂ Pj and one vertex
vi ∈ Pi : σ = E0 + · · · + vi + · · · + En. A mixed subdivision is called regular if it is obtained as the projection
of the lower hull of the Minkowski sum of lifted polytopes P̂i := {(pi, ω(pi)) | pi ∈ Pi}. If the lifting function ω
is sufficiently generic, then the induced mixed subdivision is tight.

The mixed volume of n polytopes in Rn equals the sum of the volumes of all the mixed cells in a mixed
subdivision of their Minkowski sum. We recall a surjection from the regular tight mixed subdivisions to the
vertices of the resultant polytope:

5



Theorem 2. [Stu94] Given a polynomial system as in expression (5) and a regular tight mixed subdivision of
the Minkowski sum P = P0 + · · · + Pn of the Newton polytopes of the system polynomials, an extreme term of
the resultant R equals

c ·
n∏
i=0

∏
σ

c
vol(σ)
iσi

where σ = σ0 + σ1 + · · ·+ σn ranges over all σi-mixed cells, and c ∈ {−1,+1}.

Computing all regular tight mixed subdivisions reduces, due to the so-called Cayley trick, to computing all
regular triangulations of a point set of cardinality |A0|+ · · ·+ |An| in dimension 2n. Let the Cayley embedding
of the Ai’s be

A :=
n⋃
i=0

(Ai × {ei}) ⊂ Z2n, ei ∈ Nn,

where e0, . . . , en form an affine basis of Rn: e0 is the zero vector, ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n.

Proposition 3. [Cayley trick] [GKZ94] There exist bijections between: the regular tight mixed subdivisions, the
tight mixed subdivisions, or the mixed subdivisions of the convex hull of A0 + · · · + An and, respectively, the
regular triangulations, the triangulations, or the polyhedral subdivisions of A.

The set of all regular triangulations corresponds to the vertices of the secondary polytope Σ(A) of A [GKZ94].
To compute the resultant polytope, one can enumerate all regular triangulations of A: it is equivalent to
enumerating all regular tight mixed subdivisions of the convex hull of A0 + · · · + An. Each such subdivision
yields a vertex of N(R). This method is proven to be inefficient even for medium sized inputs [EK03]; instead,
we follow a different approach.

3.2 The implicit polytope

To predict the implicit polytope we use the algorithm in [EFKP12] for the computation of resultant polytopes
and their orthogonal projections. Note that the latter correspond to generic specializations of the resultant.

Given the supports Ai, i = 0, . . . , n of the polynomials in expression (5), the algorithm in [EFKP12]
computes the resultant polytope N(R) of their sparse resultant R without enumerating all mixed subdivisions
of the convex hull of A0 + · · · + An. More precisely, it is an incremental algorithm to compute N(R) by
considering an equivalence relation on mixed subdivisions, where two subdivisions are equivalent iff they specify
the same resultant vertex. The class representatives are vertices of the resultant polytope. The algorithm
exactly computes vertex- and halfspace-representations of the resultant polytope or its projection. It avoids
computing Σ(A), but uses the above relationships to define an oracle producing resultant vertices in a given
direction. It is output-sensitive as it computes one mixed subdivision per equivalence class, and is the fastest
today in dimension up to 5; in higher dimensions it is competitive with the implementation of [JY11], relying
on the GFan library. Moreover, there is an approximate variant that computes polytopes whose volume differs
by ≤ 10% from the true volume, with a speedup of up to 25 times.

Let us formalize the way that the polytope N(R) is used in implicitization. Consider an epimorphism of
rings

φ : K → K ′ : cij 7→ c′ij , (6)

yielding a generic specialization of the coefficients cij of the polynomial system in expression (5). We denote
by F ′i := φ(Fi), i = 0, . . . , n, the images of Fi’s under φ. Let R := Res(F0, . . . , Fn) be the resultant of
polynomial system in (5) over K and H := Res(F ′0, . . . , F

′
n) be the resultant of F ′0, . . . , F

′
n over K ′. Then, the

specialized sparse resultant φ(R) coincides (up to a scalar multiple from K ′) with the resultant H of the system
of specialized polynomials provided that H does not vanish, a certain genericity condition is satisfied, and the
parametrization is generically 1-1 [CLO98],[SY94, thm.3]:

φ(R) = c ·H, c ∈ K ′. (7)

If the latter condition fails, then φ(R) is a power of H. When the genericity condition fails for a specialization
of the cij ’s, the support of the specialized resultant φ(R) is a superset of the support of H modulo a translation,
provided the sparse resultant does not vanish. This follows from the fact that the method computes the same
polytope as the tropical approach, whereas the latter is characterized in Proposition 1. In particular, the
resultant polytope is a Minkowski summand of the fiber polytope Σπ(∆, P ), where polytope ∆ is a product of
simplices, each corresponding to a support Ai, P =

∑n
i=0 Pi, and π is a projection from ∆ onto P . Then,

Σ(∆, P ), is strongly isomorphic to the secondary polytope of the point set obtained by the Cayley embedding
of the Ai’s, [Stu94, sec.5]. The algorithm in [EFKP12] provides the Newton polytope of φ(R).
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When specialization φ yields the coefficients of the polynomials in (3), i.e. φ(Fi) = F̄i, then H =
Res(F̄0, . . . , F̄n) = p(x0, . . . , xn), where p(x0, . . . , xn) is the implicit equation of the hypersurface defined by (3).
Equation (7) reduces to

φ(R) = c · p(x0, . . . , xn), c ∈ C[x0, . . . , xn], (8)

hence [EFKP12] yields a superset of the vertices of the implicit polytope. The coefficients of the polynomials
in (5), which define the projection φ, are those who are specialized to linear polynomials in the xi’s.

The above discussion is summarized in the following result, which offers the theoretical basis of our approach.

Theorem 4. Given a parametric hypersurface, we formulate implicitization as an elimination problem, thus
defining the corresponding sparse resultant. The projection of the sparse resultant’s Newton polytope contains a
translate of the Newton polytope of the implicit equation.

Let us now give two techniques for improving our approach. The following lemma is used at preprocessing
before support prediction, since it reduces the size of the input supports.

Lemma 5. [JY11, lem.3.20] If aij ∈ Ai corresponds to a specialized coefficient of Fi, and lies in the convex hull
of the other points in Ai corresponding to specialized coefficients, then removing aij from Ai does not change
the Newton polytope of the specialized resultant.

Furthermore, in order to eliminate some extraneous monomials predicted by our support prediction method,
we may apply the following well-known degree bounds, generalized in the context of sparse elimination. For a
proof, the reader may refer to [EK03].

Proposition 6. The total degree of the implicit polynomial of the hypersurface corresponding to system (3) is
bounded by n! times the volume of the convex hull of A0 ∪ · · · ∪ An. The degree of the implicit polynomial in
some xj , j ∈ {0, . . . , n} is bounded by the mixed volume of the F̄i, i 6= j, seen as polynomials in t.

The classical results for the dense case follow as corollaries. Take a surface parametrized by polynomials of
degree d, then the implicit polynomial is of degree d2. For tensor parametrizations of bi-degree (d1, d2), the
implicit degree is 2d1d2. We use these bounds to reduce the predicted Newton polytope in certain cases, see
also Corollary 10.

The resultant polytope N(R) lies in R|A| but we shall see that it is of lower dimension. Let us describe the
hyperplanes in whose intersection lies N(R). For this, let A be the (2n + 1) × |A| matrix whose columns are
the points in the Ai, where each a ∈ Ai is followed by the i-th unit vector in Nn+1.

Proposition 7. [GKZ94] N(R) is of dimension |A| − 2n − 1. The inner product of any coordinate vector of
N(R) with row i of A is: constant, for i = 1, . . . , n, and equals the mixed volume of F0, . . . , Fj−1, Fj+1, . . . , Fn,
for j = i− (n+ 1), i = n+ 1, . . . , 2n+ 1.

The last n + 1 relations specify the fact that R is separately homogeneous in the coefficients of each Fi.
The proposition implies that one obtains an isomorphic polytope when projecting N(R) along 2n + 1 points
in ∪iAi, which affinely span R2n; this is possible because of the assumption that {A0, . . . , An} is an essential
family. Having computed the projection, we obtain N(R) by computing the missing coordinates as the solution
of a linear system: we write the aforementioned inner products as A[X V ]T = C, where C is a known matrix
and [X V ]T is a transposed |A| × u matrix, expressing the partition of the coordinates to unknown and known
values, where u is the number of N(R) vertices. If the first 2n + 1 columns of A correspond to specialized
coefficients, A = [A1A2], where submatrix A1 is of dimension 2n+1 and invertible, hence X = A−1

1 (C−A2V ).

4 Implicitization algorithm

The main steps of our algorithm are given below.
Input: Polynomial or rational parametrization xi = fi(t1, . . . , tn), i = 0, . . . , n.
Output: Implicit polynomial p(xi) in the monomial basis in Nn+1.

1. We obtain (a superset of) the implicit polytope.

2. Compute all lattice points S ⊆ Nn+1 in the polytope.

3. Repeat µ ≥ |S| times: Select value τ ∈ Cn for t, evaluate xi(τ), i = 0, . . . , n, then evaluate each monomial
in S.

4. Construct the µ × |S| matrix M , and compute vector p in the kernel of M , where some entry of p is set
to 1. Return the primitive part of polynomial p>S.
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Typically µ = 2|S|. If p is not unique or, equivalently, the kernel null(M) has dimension ≥ 2, hence the
polynomial p>S is a multiple of the true implicit equation. Alternatively this can be detected by factoring the
polynomial and determining that it possesses more than one nontrivial factors. Then, we may repeat the entire
algorithm with a scaled down copy of the polytope used in the first run of the algorithm by scaling the polytope
by 1/2. If there is no solution p, then the polytope does not contain the implicit polytope and we should use
an integral multiple of this polytope, by multiplying the polytope by 2. Overall, we try a constant number of
polytopes following a binary search scheme.

4.1 Building the matrix

We focus on two support prediction methods. The first applies only to curves and is described in [EKP10].
The second is general and computes the support of the resultant of system (3) and of its arbitrary special-
izations [EFKP12]. Both methods provide us a (super)set of the implicit vertices: the set of vertices of the
polytope N(φ(R)) of the specialized resultant φ(R), where R is the resultant of the system of polynomials
in (5). This polytope is then intersected with the halfspaces described in Proposition 6; for the specifics of this
operation see Corollary 10 and the discussion afterwords. In the following, we abuse notation and denote this
intersection also by N(φ(R)).

We compute all lattice points sj contained in N(φ(R)) ⊂ Nn+1 to obtain the set S := {s1, . . . , s|S|}; each
sj = (sj0, . . . , sjn) is an exponent of a (potential) monomial mj := xsj = x

sj0
0 · · ·xsjnn of the implicit polynomial,

where xi is given in (2). We evaluate mj , j = 1, . . . , |S| at some τk, k = 1, . . . , µ, µ ≥ |S|; we use µ > |S|
evaluation points to improve the numerical stability of our algorithm. Let mj |t=τk :=

∏
i

(
fi(τk)
gi(τk)

)sji
denote the

evaluated j-th monomial mj at τk. Thus, we construct an µ × |S| matrix M with rows indexed by τ1, . . . , τµ
and columns by m1, . . . ,m|S|:

M =


m1|t=τ1 · · · m|S||t=τ1

... · · ·
...

m1|t=τµ · · · m|S||t=τµ


By construction of matrix M using sufficiently generic values τ , which thus correspond to well-distributed points
on the parametric hypersurface, we have the following:

Lemma 8. Any polynomial in the basis of monomials indexing M , with coefficient vector in the kernel of M ,
is a multiple of the implicit polynomial.

Corollary 9. Assume that the predicted polytope equals the actual one and that we construct a µ× |S| matrix
M , as above. Then, the vector of the implicit coefficients lies in the matrix kernel, hence rank(M) < |S|. If
the points x(τi), i = 1, . . . , µ are sufficiently generic, then M has corank 1, i.e. rank(M) = |S| − 1. Then, if we
solve Mp = 0 for p, such that one of its entries is set to 1, this yields the coefficients of the implicit equation in
a unique fashion.

Note that the above result follows also from relation (8). In view of Lemma 8, we have the following corollary
of Proposition 6.

Corollary 10. An appropriate translate of the Newton polytope of the irreducible factor of the polynomial
obtained from any kernel vector of matrix M , that corresponds to the implicit equation, is bounded by the
halfspaces defined in Proposition 6.

As a consequence of the previous Corollary, we cannot directly apply the degree bounds on the predicted
polytope since we don’t know a priori its Minkowski summands. However, we can do so if the intersection of
the predicted polytope with the halfspaces defined by the degree bounds contains (a translate) of the implicit
polytope. If this is not the case, then our algorithm will not return any solution and we have to fallback to the
initial larger predicted polytope.

4.2 Complexity

In this section we briefly analyze the asymptotic complexity of the main subroutines of our algorithm.
The complexity of the support prediction algorithm is given in [EFKP12, thm.10]. The second part of the

procedure is the computation of the lattice points contained in the predicted polytope. It is a NP-hard problem
to detect a lattice point in a polytope when the dimension of the polytope is an input variable. When the
dimension is fixed the algorithm in [BP99] counts the number of lattice points in a polytope within polynomial
time in the size of the input. The software LattE [LHH+03] implements Barnivok’s algorithm. The software
package Normaliz [BIS] computes lattice points in polytopes, and is very fast in practice; this is the one interfaced
to our software. Based on these algorithms, one can enumerate all lattice points in output-sensitive manner, i.e.
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in polynomial time in the output size, which of course can be exponential in the input size. The computation
up to this point is essentially offline, because it does not require knowledge of the specific coefficients.

Suppose that, for the predicted support S, the exponent of every monomial in the i-th variable lies in [0, δ],
for i = 1, 2, . . . , n. Let O∗(·) denote asymptotic bounds when ignoring polylogarithmic factors in the arguments.

Proposition 11. [EP02, lem.4.3] Consider a set S of monomials in n variables. Given n scalar values
p1, p2, . . . , pn, the algorithm of [EP02] evaluates all the monomials of S at these values in O∗(|S|n + n

√
δ)

arithmetic operations and O(|S|n) space.

Now, we arrive at the complexity of constructing a µ×|S| matrix M , with columns indexed by |S| monomials
and rows indexed by µ values.

Corollary 12. Assume our algorithm builds a rectangular matrix µ× |S|, µ ≥ |S|. Then, all µ |S| entries are
computed in O∗(µ |S|n) operations.

Once constructed, the kernel computation costs O(m2.376) arithmetic operations, which follows from the
current record for matrix multiplication. Our bound can be improved if matrix multiplication is improved. On
µ× |S| rectangular matrices, the kernel computation has complexity O(µ |S|2). Hence

Theorem 13. The overall complexity of our implicitization algorithm is O(µ |S|2).

5 Implementation and experimental results

This section looks at the actual symbolic and numeric computations once the problem has been reduced to a
question in linear algebra. We start with software for the matrix operations, then detail several examples. Our
algorithms are implemented in Maple and Matlab. We report on a comparison of our implementation against
existing methods.

Let us refer to Corollary 9 and assume M has corank 1. For exact computing, solving the linear system

Mp = 0,

yields the kernel vector, where one entry is set to 1. Hence we obtain all implicit coefficients pi for each predicted
monomial mi. Exact methods can treat indefinite parameters encountered in the parametric expressions.

For larger examples, we trade exactness for speed and apply Singular Value Decomposition (SVD), thus
computing

Mp> = (UΣV >)p> = 0> ⇔ Σv> = 0>, where V v> = p>,

where UU> = V V > = I and Σ is diagonal. A basis of null(M) consists of the last columns of V corresponding
to the zero singular values of M , because V is orthogonal. When corank(M) = 1, v = [0, . . . , 0, 1] and the last
row of V > gives p. The same derivation holds if M is rectangular, say µ× |S|, µ ≥ |S|. Then Σ is of the same
dimensions, U is µ× µ, and V is |S| × |S|, where its last column is the sought vector.

Our algorithm is implemented in Maple 13, as functions imgen (general implicitization, applicable for 2D,
3D and 4D geometrical objects,) and imcurve (for curves only, support prediction is part of the routine). The
functions take the following arguments:

- list of parametric expressions;
- only imgen: vertices of the predicted support;
- solving method parameter: “l” for LinearSolve, “n” for Nullspace, “s” for SVD;
- evaluation parameter: “int” for integers, “unc” for random complex numbers modulo 1, “ruf” for roots of

unity evaluated as floating point numbers;
- ratio between number of rows and columns of the matrix.
For exact kernel computation, we use function LinearSolve() from package LinearAlgebra, or function

Linear() from package SolveTools. Equivalently, we may compute null(M) using the command NullSpace()
of LinearAlgebra. SVD is implemented with command SingularValues().

We have also implemented numerical versions of our algorithm in Matlab. The numerical stability of matrix
M is measured by comparing ratios of singular values of M . We employ the condition number κ(M) = |σ1/σ|S||,
as well as ratio |σ1/σ|S|−1|, where σ1 is the maximum singular value. By comparing these two numbers, we
decide whether the matrix is of numerical corank 1, otherwise we instantiate a new matrix using new values.

All experiments, unless otherwise stated, were performed on a Celeron 1.6 GHz linux machine with 1 GB
of memory. Most curves and surfaces in our experiments are in Tables 8 and 9 in the Appendix. The tables
show the parametric, the exact implicit and the approximate implicit representation. The last two equations
are primitive and for the latter we omit terms with very small coefficients. Runtimes (sec) for the various
approaches to implicitization of these curves and surfaces are given, respectively, in Tables 1 and 2, in Maple.
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In both tables, we used random integers for exact computation, with functions NullSpace and LinearSolve,
and unitary complexes for numeric computation with SVD.

We also used dense and sparse Bézier curves of various degrees; the runtimes for this family of curves are
shown in Table 6. In this set of experiments we show the size µ × |S|, µ > |S| of matrices used in numerical
computation; the corresponding matrices for exact computation are |S| × |S|.

Table 10 in the Appendix shows results of our experiments with the industrial examples in [STW+06].
Converting the input from the Bernstein to the monomial basis, the resulting equation contains monomials
(usually of high degree) with coefficients close to zero. Removing them, we get a smaller Newton polytope
compared to the one obtained from the original equation; the latter is referred in the table as “raw”.

In order to use LinearSolve we round the coefficients to integers, otherwise the kernel vector contains only
zeros. In some cases (Self ucurves no cut, Simplesweep) there is no solution even after that. Note that these
two examples in the paper are described as obtained from industrial source. Lastly, in some cases our method
outputs an equation of smaller degree than the actual one: Nested nodal and Simplesweep have actual degree
6. It seems that for implicitization of NURBS patches, approximate solving methods prove to be more reliable,
for these parametrizations have floating point coefficients.

A first conclusion is that SVD is expectedly faster than exact linear algebra, in most experiments. The
best timings for the latter are obtained using function LinearSolve which sometimes outperforms SVD. This
is partially due to the larger size of (rectangular) matrices used in SVD. A second observation is that our
approximate methods gave very satisfactory results with respect to the accuracy of the computed implicit
equation. Overall, our results are encouraging and indicate that the algorithms in this paper are worth applying
to implicitization. However, as the matrix size grows, our current implementations show their limitations.

Curve Exact SVD #impl.
NullSpace LinearSolve matrix size time accuracy (a) matrix size monom.

Descartes’ Folium 0.016 0.012 5× 5 0.012 1.29 · 10−12 10× 5 3
Tricuspoid 0.076 0.044 15× 15 0.028 6.05 · 10−6 30× 15 8
Talbot’s curve 1.625 0.324 28× 28 0.132 8.06 · 10−16 56× 28 8
Nephroid 1.656 0.312 28× 28 0.17 2.31 · 10−21 56× 28 10
Fifth heart 5.3 0.104 33× 33 0.124 1.09 · 10−5 66× 33 43
Trifolium 19.7 0.26 45× 45 0.188 6.37 · 10−37 90× 45 37
Ranunculoid 8414.8 1.376 91× 91 2.224 7.71 · 10−6 182× 91 43

Table 1: Runtimes (sec) and accuracy of approximation for curves.

Surface Exact SVD matrix # implicit
NullSpace LinearSolve time accuracy (a) size monomials

Quartoid 0.06 0.036 0.036 9.72 · 10−14 16× 16 4
Peano 0.028 0.024 0.024 3.05 · 10−14 10× 10 4
Swallowtail 0.24 0.108 0.096 1.52 · 10−11 25× 25 6
Sine 2224.5 1.164 0.3 1.03 · 10−5 125× 125 7
Bohemian dome 2150.23.4 1.181 0.292 1.68 · 10−5 125× 125 7
Enneper 310.14 0.766 0.42 8.51 · 10−9 103× 103 23
Bicubic surface > 4hours 42.059 74.63 5.69 · 10−5 715× 715 715

Table 2: Runtimes (sec) and accuracy of approximation for surfaces.

5.1 Examples

Example 1 (Folium of Descartes). Let us consider the following curve:

x0 = 3t2/(t3 + 1), x1 = 3t/(t3 + 1).

The algorithm in [EKP10] yields 3 implicit polytope vertices: (1, 1), (0, 3), (3, 0). This polygon contains 5 lattice
points which yield the potential implicit monomials x3

1, x0x1, x0x
2
1, x

2
0x1, x

3
0 indexing the columns of matrix M

in this order. To fill the rows of matrix M , we plug in to each monomial the parametric expressions and evaluate
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using 5 random integer τ ’s: 19, 17, 10, 6, 16. Then,

M =



1270238787
322828856000

61731
47059600

66854673
322828856000

3518667
322828856000

185193
322828856000

24137569
4394826072

4913
2683044

1419857
4394826072

83521
4394826072

4913
4394826072

27000000
1003003001

9000
1002001

2700000
1003003001

270000
1003003001

27000
1003003001

1259712
10218313

1944
47089

209952
10218313

34992
10218313

5832
10218313

452984832
68769820673

36864
16785409

28311552
68769820673

1769472
68769820673

110592
68769820673


The nullvector is [1,−3, 0, 0, 1]: its 3 nonzero entries correspond to monomials x3

1, x0x1, x
3
0, i.e. the actual

monomials of the implicit equation. The latter turns out to be x3
0 − 3x0x1 + x3

1, which equals the true implicit
equation of the curve.

Example 2 (Bicubic surface). We consider the benchmark challenge of the bicubic surface [GV97]:

x0 = 3t1(t1 − 1)2 + (t2 − 1)3 + 3t2, x1 = 3t2(t2 − 1)2 + t31 + 3t1,

x2 = −3t2(t22 − 5t2 + 5)t31 − 3(t32 + 6t22 − 9t2 + 1)t21 + t1(6t32 + 9t22 − 18t2 + 3)− 3t2(t2 − 1).

The implicit degree in x0, x1 is 18, and 9 in x2. The approach of [EK03] could not handle it because it generates
737129 regular triangulations (by TOPCOM) in a file of 383MB; our method computes the optimal support.
The implicit polytope has vertices (0, 0, 0), (18, 0, 0), (0, 18, 0), (0, 0, 9), and 715 lattice points. The nullvector of
matrix M , computed in 42sec, contains 715 non-zero entries which correspond precisely to the actual implicit
support.

Example 3 (Hypercone). We illustrate our method on a hypersurface of dimension 4, whose rational parametric
representation is:

x0 =
t3(1− t21)(1− t22)
(1 + t21)(1 + t22)

, x1 =
2t3(1− t21)t2

(1 + t21)(1 + t22)
, x2 =

2t3t1
1 + t21

, x3 = t3. (9)

This is an example where the resultant of the system (3) is a multiple of the implicit equation, hence it defines
a variety strictly containing the image of the parametrization. In order to facilitate the computation of the
predicted support, we set up an equivalent system:

F0 = x0w − t3(1− t21)(1− t22), F1 = x1w − 2t3(1− t21)t2,

F2 = x2w − 2t3t1(1 + t22), F3 = x3 − t3, F4 = w − (1 + t22)(1 + t21),
(10)

where w is a new variable. We then compute the support of the system’s sparse resultant wrt the ti’s and w.
The software in [EFKP12] predicts 4 implicit vertices: (8, 0, 0, 0), (0, 8, 0, 0), (0, 0, 8, 0), (0, 0, 0, 8). Proposition 6,
applied to the polynomials defined by the parametric expressions in (9), gives the following degree bounds: total
degree ≤ 24, degx0

≤ 4, degx1
≤ 4, degx2

≤ 8, degx3
≤ 16 which improve the predicted support.

The initial predicted polytope contains 165 lattice points while the improved one contains 125. The corre-
sponding interpolation matrices have corank 84 and 45 and it takes 485sec and 5.45sec, respectively, to compute
their nullspace using LinearSolve and random integers. The polynomials obtained from the nullvectors have
total degree 8 and 7, respectively, being multiples of the true implicit equation of the hypercone.

We apply scaling by one half to the initial predicted implicit polytope and try the new one with vertices
(4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4). This gives a matrix M of corank 10; all calculations now take
0.264sec. Repeating the procedure we build a matrix whose corank equals 1 for the polytope offset with vertices
(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2). With this input data all calculations take 0.044sec. Thus we obtain
the implicit equation x2

0 + x2
1 + x2

2 − x2
3.

Example 4. We examine the hypersurface described in [KM00, 4.2].

x0 =
1

(1− t3)((1/2)t22 + 1/4) + t3(−(1/2)t21 − 1/4)
, x1 =

(1− t3)((1/2)t22 − 1/4) + t3(−(1/2)t21 + 1/4)
(1− t3)((1/2)t22 + 1/4) + t3(−(1/2)t21 − 1/4)

,

x2 =
(1− t3)t2

(1− t3)((1/2)t22 + 1/4) + t3(−(1/2)t21 − 1/4)
, x3 =

t3t1
(1− t3)((1/2)t22 + 1/4) + t3(−(1/2)t21 − 1/4)

.

(11)

To facilitate the computation of the predicted support, we express the common denominator introducing a new
variable w:

F0 = x0w − 1, F1 = x1w − (1/2)t22 + 1/4 + (1/2)t3t22 − (1/2)t3 + (1/2)t3t21,

F2 = x2w − t2 + t2t3, F3 = x3w − t3t1, F4 = w − (1/2)t22 + 1/4 + (1/2)t3t22 − (1/2)t3 + (1/2)t3t21.
(12)
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The predicted implicit polytope has vertices (0, 2, 0, 4), (6, 0, 0, 0), (2, 4, 0, 0), (0, 0, 6, 0), (0, 0, 0, 6), (2, 0, 0, 0),
(0, 0, 4, 0), (0, 0, 0, 4) and contains 144 lattice points. Proposition 6, when applied to the polynomials defined from
the parametric expressions in 11, gives the following degree bounds: total degree ≤ 8, degxi ≤ 8,∀i = 0, 1, 2, 3,
which do not improve the predicted support. The matrix M has corank 8. Choosing an arbitrary nullvector,
the corresponding polynomial is a multiple of the actual implicit equation.

We try taking an “offset” of the predicted polytope. When scaled by 0.5, the system has no solution. Scaling
by 0.75, we get a polytope containing 48 lattice points and obtain a polynomial of total degree 4. Factorizing
it we get the implicit polynomial of degree 3

2x1 + 2x2
2 + 2x2

1 − 2x1x
2
3 − 2 + 2x2

3 − x0x
2
2 − 2x3

1 + (1/2)x2
0x1 + (1/2)x2

0 + x0x
2
3 − 2x1x

2
2,

equivalent to the one in [KM00, sec.4.2]. In Maple 13, our software with input the initial predicted polytope
takes 2.2sec, while with the scaled down polytope by 0.75 takes 0.348sec.

Our last example concerns resultant computation. The support prediction software actually computes a
resultant support so its straightforward application is to reduce resultant computation to interpolation; this is
also the premise of [CD07, Tan07]. The main difference with interpolating the implicit equation is the absence
of a parametric form of the resultant. But, this is provided by the parametrization of the resultant hypersurface,
known as Horn-Kapranov parametrization [Kap91], illustrated below.

Example 5. Let f0 = a2x
2 + a1x + a0, f1 = b1x

2 + b0, with supports A0 = {2, 1, 0}, A1 = {1, 0}. Their
(Sylvester) resultant is a polynomial in a2, a1, a0, b1, b0. The algorithm in [EFKP12] computes its Newton
polytope with vertices (0, 2, 0, 1, 1), (0, 0, 2, 2, 0), (2, 0, 0, 0, 2); it contains 4 points, corresponding to 4 potential
monomials a2

1b1b0, a
2
0b

2
1, a2a0b1b0, a

2
2b

2
0. The Horn-Kapranov parametrization of the resultant yields: a2 =

(2t1 + t2)t23t4, a1 = (−2t1 − 2t2)t3t4, a0 = t2t4, b1 = −t1t23t5, b0 = t1t5, where the ti’s are parameters. We
substitute these expressions to the predicted monomials, evaluate at 4 sufficiently random ti’s, and obtain a
matrix whose kernel vector (1, 1,−2, 1) yields R = a2

1b1b0 + a2
0b

2
1 − 2a2a0b1b0 + a2

2b
2
0.

The complexity of interpolating resultants is O∗(|S|2) where S is the set of lattice points in the predicted
resultant support, because the dominating stage is a kernel computation for a structured matrix M . Using
Weidemann’s approach, the main oracle is post-multiplication of M by a vector, which amounts to evalu-
ating a (n + 1)-variate polynomial at chosen points, and this can be done in quasi-linear complexity in |S|
[vdHS10, Pan94]. For certain classes of polynomial systems, when one computes the resultant in one or more
parameters, this may be competitive to current methods for resultant computation. The best such methods rely
on developing the determinant of a resultant matrix in these parameters [CE00, D’A02]. The matrix dimension
is in O∗(tn degR) [Emi96], where degR is the total degree of R in all input coefficients, and t is the scaling
factor relating the input Newton polytopes, which is bounded by the maximum degree of the input polynomials
fi in any variable. Then, developing univariate resultants has complexity in O∗(t3.5n(degR)3.5) [Emi96, EP05].
Hence, our approach improves the complexity when the predicted support is small compared to t and degR.

5.2 Comparisons to other methods

We report on a comparison of our implementation against existing implicitization software, namely software
implementing µ-bases [CSC98] only for curves [BB10], and Maple function Implicitize(), which is based on
integration of matrix M over each parameter, see [CGKW00] and Section 2.1.

Table 3 summarizes the total time to implicitize a curve, given its parametrization. We used the same
algebraic curves as in other tables, grouped by degree; for each degree, the table shows the average runtime. In
our experiments, µ-bases yield the fastest runtimes, whereas Implicitize() is the slowest of the three when
run in exact mode or when the parametrization is rational.

However, µ-bases rely on exact computation over rational numbers, and an approximate computation would
not offer good accuracy. Our algorithm removes this limitation and offers high-quality approximations.

Gröbner bases give an effective symbolic method to solve the implicitization problem. Let J be the ideal
J =< F̄0, · · · , F̄n, F̄n+1 >⊂ C[t, x] generated by the polynomials in (3) and polynomial (4), and let Jn = J∩C[x]
be the n-th elimination ideal. Then V (Jn) is the smallest variety containing the image of the parametrization.
The method computes the Gröbner basis of I wrt to any lexicographic ordering where every ti is greater than
every xi, then, the elements of this basis not involving ti form a basis of In and define V (Jn). In case this is
a principal ideal, then there is a unique element of the Gröbner basis that generates it. This is the implicit
equation of the parametric hypersurface and equals the resultant wrt t of the input polynomials.

Example 6. Consider the parametrized Enneper’s surface:

f1 := t1/3− (1/9)t31 + t1t
2
2/3, f2 := −t2/3 + (1/9)t32 − t21t2/3, f3 := t21/3− t22/3.
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curve degree Implicitize Implicitize Our µ-bases
exact numeric software

Trisectrix of Maclaurin 3 1.92 0.064 0.02 0.016
Folium of Descartes 3 9.3 0.08 0.012 0.024
Tricuspoid 4 1.92 0.064 0.044 0.016
Bean 4 129.7 0.12 0.036 0.028
Talbot’s 6 18.98 0.252 0.324 0.072
Fifth heart 8 799.74 0.44 0.104 0.08
Ranunculoid 12 >3000 1.64 1.376 0.3

Table 3: Comparing runtimes (sec) of: Maple function Implicitize (exact and numeric), our method
(LinearSolve, random integers), and µ-bases.

We compute a Gröbner basis G of ideal I =< x− f1, y− f2, z− f3 > with respect to the lexicographic ordering
t1 > t2 > x > y > z. The unique polynomial depending only x, y, z is the implicit equation of this surface:
128z7−27y6 + 702x2y2z3−9x4z−9y4z−48x2z3−64z5 + 432x2z5 + 240x2z4 + 135y4z3 + 432y2z5−240y2z4 + 27x6 + 81x2y4−162y4z2 +

144x2z6 − 144y2z6 − 81x4y2 + 135x4z3 + 162x4z2 − 64z9 + 18x2zy2 − 48z3y2

We compared implicitization based on Gröbner bases implemented in Maple with our software using LinearSolve
and random integers, see Table 4. The results show that for low degree curves (≤ 6) or surfaces (≤ 4), Gröbner
bases outperform our software. The situation is reversed for higher degree. In particular, the bicubic sur-
face takes under 40sec with our method, it is infeasible using Gröbner bases on Maple, and takes 313sec on
Mathematica 8.0.

curve / surface degree Gröbner basis Our software
Double sphere 2 0.112 1.860
Moebius strip 3 6.184 9.520
Bohemian dome 4 0.776 1.181
Eight surface 4 0.196 3.668
Swallowtail surface 5 0.192 0.108
Sine surface 6 1.240 1.164
Enneper’s surface 9 0.668 0.776
Bicubic surface 18 >4 hours 42.059
Trifolium 4 0.032 0.26
Talbot’s curve 6 0.104 0.324
Ranunculoid 12 7.341 1.376

Table 4: Comparing runtimes (sec) of Gröbner bases method implemented in Maple and our method
(LinearSolve, random integers).

6 Numerical issues

This section discusses different ways to evaluate the matrix entries, how to measure the accuracy of approximate
implicitization, and compares our measures to Hausdorff distance.

6.1 Point sampling

A central part in our linear system construction is held by the evaluation of matrix M at convenient τ . This
section describes our approaches and experimental results.

We have experimented with both integer and complex values. In the former case, we used random and
mutually prime integers to achieve exactness. The chosen value is discarded if it makes some denominator
vanish among the parametric expressions. We also tried complex values for τ : Given an m×m matrix, we used
2m-th roots of unity, and random unitary complexes, i.e. complex numbers of modulus equal to 1. The roots of
unity when used with approximate methods were evaluated as floats. When examining approximate methods
we used the ratio of the last two singular values σm/σm−1, which indicates how close to having corank 1 is
matrix M .
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Table 5 shows representative timings about these options, which we examined with our implementation on
Maple, optimized for the specific task. Our experiments show that runtimes do not vary significantly in small
examples but in larger ones, the best results are given by random integers for the exact method, and unitary
complexes and roots of unity evaluated as floats for the numeric method, with the former having a slightly
better overall performance over the latter, both in terms of stability and speed.

As expected, random integers give matrices which are closer to having corank 1. Note that in Table 5, the
Trifolium’s matrix M , when computed using random integers, was of corank > 1 so we computed a multiple of
its implicit equation. Namely, any kernel vector supplied a multiple of the implicit equation. The degree of the
extraneous factor varied depending on the vector chosen.

For the family of Bézier curves, using random integers we obtain better values of the ratio of singular values,
compared to other evaluation methods.

implicit lattice SVD (σm/σm−1) NullSpace LinearSolve
Curve degree points root of 1 unitary C rand.Z rand.Z rand.Z
Folium 3 5 0.032 (10−12) 0.012 (10−12) 0.012 (10−13) 0.016 0.012
Conchoid 4 10 0.112 (10−14) 0.144 (10−14) 0.072 (10−13) 0.036 0.028
Bean curve 4 13 0.352 (10−11) 0.4 (10−14) 0.116 (10−13) 0.048 0.036
Tricuspoid 4 15 0.356 (10−14) 0.028 (10−14) 0.168 (10−14) 0.076 0.044
Cardioid 4 15 0.28 (10−14) 0.29 (10−14) 0.2 (10−12) 0.068 0.044
Nephroid 6 28 0.248 (10−15) 0.17 (10−34) 0.192 (10−21) 1.656 0.312
Talbot’s curve 6 28 0.416 (10−14) 0.132 (10−17) 0.196 (10−16) 1.625 0.324
Trifolium 4 45 0.284 (10−34) 0.188 (10−77) 0.876 (10−20) 19.7 0.26
Fifth heart 8 33 0.224 (10−37) 0.124 (10−56) 0.63 (10−26) 5.3 0.104
Ranunculoid 12 91 3.764 (10−359) 2.224 (10−58) 79.853 (10−2) 8414.8 1.376
Dense Bézier 8 45 6.4 (10−169) 5.928 (10−150) 5.66 (10−151) 16.37 0.152
Sparse Bézier 8 33 2.42 (10−101) 2.2 (10−102) 2.1 (10−112) 2.73 0.12

Table 5: Comparison of matrix evaluation methods. Runtimes on Maple (sec), whereas the parenthesis contains
σ|S|/σ|S|−1.

6.2 Accuracy of approximate implicitization

In this section, we evaluate the numeric accuracy, or quality, of the approximate implicit equation obtained by
our method, by comparing it to the exact implicit equation.

When using numerical methods, the computed implicit equation is not a polynomial with rational coefficients,
hence we need to convert the computed real or complex kernel-vector to a rational vector. This is achieved by
setting all coefficients smaller than a certain threshold, defined by the problem’s condition number, equal to
zero. The result is not always equal to the exact implicit equation, so its accuracy is quantified by two measures
discussed later. The overall process is computationally rather costly; it can be avoided whenever an implicit
equation with floating point coefficients is sufficient for a specific application.

We employ two measures to quantify the accuracy of approximate implicitization:

(a) Coefficient difference: measured as the norm of the difference of the two coefficient vectors Vexact, Vapp,
obtained from exact and approximate implicitization, after padding with zero the entries of each vector
which do not appear in the other.

(b) Evaluation norm: measured by considering the maximum norm of the approximate implicit equation when
evaluated at a set of sampled points on the given parametric object. This is of course a lower bound on
how far from zero can such a value be.

We can actually improve the accuracy of approximation if we disregard all real or complex entries of the
coefficient vector with norm close to zero. This simple filtering, applied with a threshold of 10−6, improves
the accuracy under measure (a) by up to one order of magnitude. All results shown in the tables concerning
approximate implicitization make use of this filtering.

The approximate implicit equation in all experiments below is obtained using the command SingularValues(),
where the matrix is instantiated by unitary complex values τ , whereas the exact one is obtained using com-
mand NullSpace() using random integers. We used several parametric curves and surfaces. The computed
approximate implicit equations are given in Tables 8 and respectively 9. The runtimes of approximate and exact
methods, and the accuracy of approximation using measure (a) above, are shown in Table 1 and Table 2. These
results confirm that SVD can give very good approximations of the actual implicit equation on most inputs.
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One of the main difficulties of approximating the implicit equation is to build the matrix M so that its
numeric corank is 1. Our experiments indicate, expectedly, that if the entries of M take big absolute values,
then computations with M are less stable. We improve stability by avoiding values that make the denominators
of the parametric polynomials evaluate close to 0. These values are singular points so we choose a box containing
each such point and remove them when we pick different values. Moreover, we add more rows to M .

We present some specific examples, using both dense and sparse Bézier curves of varying degree (see Exam-
ple 7), yielding dense and sparse implicit equations. These are polynomial parametrizations, where the implicit
equation is of the same total degree. We compare the runtimes for exact and approximate methods, and the
accuracy of the latter using both measures: (a) in Table 6, and (b) in Table 7. Both measures give overall very
encouraging results.

Table 6 also juxtaposes the efficiency of our algorithm on dense and sparse Bézier inputs. It appears that
we are able to exploit sparseness, since the matrix size is smaller in sparse inputs, and not very far from the
actual size of the implicit support. This translates into faster runtimes and better accuracy of the approximate
implicit equation. For the dense curve of degree 8, the accuracy of the approximate polynomial is rather large,
but may be acceptable given the large norm of the coefficient, namely at least 106. Figure A in the Appendix
summarizes the accuracy estimation, using criterion (a), for approximating dense Bézier curves. The figure
shows the hardness of approximation as the parametric and implicit degree grows.

Implicit SVD NullSpace Accuracy (a) Matrix size (SVD) # nonzero terms
degree dense sparse dense sparse dense sparse dense sparse dense sparse

4 0.128 0.052 0.128 0.048 1.14 · 10−12 2 · 10−24 30 × 15 22 × 11 15 8

5 0.616 0.192 0.532 0.164 1.6 · 10−5 6.01 · 10−22 42 × 21 32 × 16 21 14

6 2.88 0.368 3.064 0.428 3.19 · 10−4 1.58 · 10−11 56 × 28 38 × 19 28 19

8 5.928 2.2 16.37 2.73 1.68 · 10−6 6.46 · 10−4 90 × 45 66 × 33 45 32

Table 6: Maple runtimes (sec) and accuracy for dense and sparse Bézier curves.

Surface Max norm of approximate implicit polynomial
Bohemian dome 7.21668 · 10−10

Quartoid 7.44845 · 10−16

Sine 1.25549 · 10−5

Swallowtail 1.98798 · 10−10

Table 7: Accuracy of approximation under measure (b) over 100 sampled points

Example 7. We consider a family of dense and sparse Bézier polynomial curves. Their implicit degree equals
the maximum degree of their parametric polynomials. The dense Bézier curve of degree 8 has both parametric
polynomials of maximum degree:

x(t) = 4t−42t2+168t3−385t4+532t5−406t6+140t7−11t8, y(t) = 1/2−28t3+105t4−196t5+210t6−120t7+29t8.

The sparse Bézier curve of degree 8 is missing certain terms, namely one of the parametric polynomials is of
lower degree:

x(t) = 1 + 112t3 − 630t4 + 1344t5 − 1344t6 + 592t7 − 75t8, y(t) = 2− 16t+ 280t3 − 420t4 − 392t5 + 546t6.

Further curves of this family are used in our experiments and are generated in a similar fashion. The correspond-
ing accuracy of approximation and the runtimes are shown in Table 6. Figure A in the Appendix summarizes
the approximation accuracy for the dense family.

6.3 Hausdorff distance

The Hausdorff distance is a fundamental tool in measuring the distance between two hypersurfaces. However,
its computation is a hard problem. To our knowledge, there is no effective algorithm for this problem in general.

Let the distance of a point x ∈ Rn+1 to a set V ⊂ Rn+1 be D(x, S) := infy∈S D(x, y), where D denotes the
metric distance in Rn+1. The Hausdorff distance dH(V1, V2) of sets V1, V2 is

dH(V1, V2) := max{ sup
x∈V1

D(x, V2), sup
x∈V2

D(x, V1)}.
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If V1, V2 are algebraic hypersurfaces and compact, this becomes

dH(V1, V2) = max{max
P∈V1

min
Q∈V2

D(P,Q), max
Q∈V2

min
P∈V1

D(P,Q)}.

Suppose V1, V2 are parametrized by f(t) := (f0(t), . . . , fn(t)) and g(u) := (g0(u), . . . , gn(u)), where t :=
(t1, . . . , tn), u := (u1, . . . , un) ∈ Ω, then the Hausdorff distance is

dH(V1, V2) = max{max
t∈Ω

min
u∈Ω

√
S(t, u),min

t∈Ω
max
u∈Ω

√
S(t, u)}

where S(t, u) is the vector dot product (f(t)− g(u)) · (f(t)− g(u)). 4 In this case, the computation reduces to
solving a nonlinear system, which is quite hard [PM01]. In the case of curves, when the nearest points are both
inner points, the system becomes S′t(t, u) = S′u(t, u) = 0. In [CCW+09, CMXP10], the authors gave effective
algorithms to compute the Hausdorff distance for B-spline curves and Bézier curves. Effective algorithms for
the computation of the Hausdorff distance of surfaces do not exist.

Suppose V1, V2 are given in implicit form, namely Vi := {x ∈ Rn+1 : pi(x) = 0, pi ∈ R[x], i = 1, 2}. The
computation of dH(V1, V2) seems to be much harder, even if the Vi are curves. In [Jüt00], the author presented
a bound and algorithms for the Hausdorff distance of two spline curves C1, C2 and algorithms when C1 is close
to C2. By setting p(x1, x2) := p1(x1, x2) − p2(x1, x2), where p1, p2 are spline bivariate functions, they have
dH(C1, C2) < cM , where c is a constant and M is the maximum of absolute coefficients of p. There is no
general connection between Hausdorff distance and the coefficients of p(x1, x2), though we expect that, if the
latter are sufficiently small, then dH(C1, C2) is small. Hence we develop our first method (a) to evaluate the
quality of approximate implicitization.

Suppose V1 is parametrized by (f0(t), . . . , fn(t)), t ∈ Ω, and V2 is implicit, namely V2 = {x ∈ Rn+1 : p(x) =
0, p ∈ R[x]}. Then dH(V1, V2) is close relation to the values of the function p(f0(t), . . . , fn(t)) by the  Lojasiewicz
inequality [JKS92]. The  Lojasiewicz inequality asserts ∃ c, α > 0 : d(x, V2)α ≤ c |p(x)|, for every x in the compact
domain ⊂ Rn+1. Let p(x) ∈ R[x] be an approximate implicit equation of V1, and V2 := {x ∈ Rn+1| p(x) = 0}.
Then

dH(V1, V2)α ≤ cmax |p(f0(t), . . . , fn(t))|, t ∈ Ω.

If max |p(f0(t), . . . , fn(t))| → 0 then p(x) is a good approximate implicit equation for V1. Finding the best value
for α in terms of the degrees of polynomials is an interesting problem [JKS92]. Computing c in terms of values
of p is open and seems very hard [JKS92]. In [Jüt00], if C1 is a B-spline and p(x) is a spline bivariate function,
there is a bound of c supposing C1 is close enough to C2.

Our second measure (b) for evaluating the quality of approximate implicitization has followed this approach.
Evaluating the exact maximal of |p(f0(t), . . . , fn(t))|, t ∈ Ω is complicated if V2 is a surface. To avoid this, we try
to evaluate the maximum absolute value of a function by choosing a large sample of values for the parameters
t and find max |f(t)|.

Another measure called the Fréchet distance is also a fundamental tool to compute the distance between
two parametric curves. Given two parametric curves C1 and C2 in parametrized form f, g : [0, 1] → R2, their
Fréchet distance is defined as

dF (C1, C2) := inf
ρ,σ

max
t∈[0,1]

D(f(ρ(t)), g(σ(t)))

where ρ, σ : [0, 1] → [0, 1] range over all continuous and non-decreasing functions (reparametrizations) with
ρ(0) = σ(0) = 0 and ρ(1) = σ(1) = 1. Obviously, dH(C1, C2) ≤ dF (C1, C2), but the ratio dH/dF is not
bounded. It is possible for two curves to have small Hausdorff but large Fréchet distance. In [AKW04], the
authors showed that, for closed convex curves, the Hausdorff equals the Fréchet distance, while the latter is
≤ κ+1 times the Hausdorff distance for κ-bounded curves. In [BBW08], the authors studied the Fréchet distance
for simple polygons but it seems likely that the Fréchet distance between general surfaces is not computable.

Computing the Hausdorff (and Fréchet) distance of the parametric variety and the computed implicit ap-
proximation is an interesting and challenging task. Now, we give some illustrative examples.

Example 8. We consider a parametrized curve C1 of degree 4

x(t) = 3t+ 1, y(t) = t4 + 2t3 − t+ 1, t ∈ [0, 1].

The exact implicit equation of this curve is : 103− 81y − 13x− 12x2 + 2x3 + x4.
Its approximate implicit equation is:

p(x, y) := 103.000000000009− 80.999999999993y − 13.0000000000138x− 11.9999999999934x
2

+ 1.99999999999878x
3

+ x
.
4

4Bernard also suggested our method (b) measure (sometime called algebraic distance). I didn’t find any paper that use this
distance
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Let C2 be the curve with implicit equation p(x, y). The accuracy of approximation under measures (a) and (b)
are: ≈ 2.07562746307138 · 10−11 and ≈ 9.192 · 10−10, respectively. Note that the reparametrizations of C1 and
C2 are respectively

f(t) = (t,
103− 13t− 12t2 + 2t3 + t4

81
), g(u) := (u,

103.000000000009− 13.0000000000138u− 11.9999999999934u2 + 1.99999999999878u3 + u4

80.999999999993
)

We compute dH(C1, C2) by evaluating S(t, u) where (t, u) ∈ [1, 4]× [1, 4] and obtain dH(C1, C2) ≤ 9.39 · 10−14.

Example 9. We consider a parametrized curve C1 of degree 5

x(t) =
t+ 2
t+ 1

, y(t) = t4 − 2t2 + 2t+ 1, t ∈ [0, 1].

The exact implicit equation of this curve is : −5 + y − 2x− 4xy + 14x2 + 6x2y − 10x3 − 4x3y + 2x4 + x4y.
Its approximate implicit equation is:
p(x, y) := −5.00000003073011+0.999999998287437y−1.99999993893286x−3.99999999565477xy+13.9999999566394x2+5.99999999627234x2y−

9.99999998715587x3 − 3.99999999892032x3y + 1.99999999866029x4 + x4y.

Let C2 be the curve with implicit equation p(x, y). The accuracy of approximation under measures (a) and (b)
are: ≈ 8.245330463 · 10−8 and ≈ 1.351124722 · 10−9, respectively. The reparametrizations of C1 and C2 are
respectively
f(t) = (t, −5−2t+14t2−10t3+2t4

−1+4t−6t2+4t3−t4
), (u) = (u, −5.00000003073011−1.99999993893286u+13.9999999566394u2−9.99999998715587u3+1.99999999866029u4

−0.999999998287437+3.99999999565477u−5.99999999627234u2+3.99999999892032u3−u4 ).

We compute the Hausdorff distance dH(C1, C2) by evaluating the function S(t, u) :=< f(t) − g(u), f(t) −
g(u) >, where (t, u) ∈ [

3
2
, 2]× [

3
2
, 2]. We obtain dH(C1, C2) ≤ 1.58529999888284 · 10−11.

Example 10. We consider a cylinder surface S1 : x = t+1, y = t3+3t2+5t+3, z = s where Ω := (t, s) ∈ [0, 1]×
[0, 1]. Its implicit equation is x3+2x−y and its approximate implicit equation (S2) is 4.18399·10−8−y+2x+x3.
The accuracy of approximation under measures (a) and (b) is ≈ 4.18399 · 10−8.

The Hausdorff distance dH(S1, S2) equals the Hausdorff distance of the two parametrized planar curves C1 :
(t, t3 + 2t) and C2 : (u, u3 + 2u+ 4.183988732 · 10−8). Finding maximal absolute values of the polynomial

S(t, u) = (t− u)2 + (−t3 − 2t+ u3 + 2u− 4.18399 · 10−8)2, (t, u) ∈ [1, 2]× [1, 2],

we obtain dH(S1, S2) ≤ 1.871141684 · 10−8.

Example 11. We consider Peano’s surface S1 : x = t, y = s + 1, z = −s2 + s(3t2 − 2) − 1 + 3t2 − 2t4 where
Ω := (t, s) ∈ [0, 1]× [0, 1]. Its implicit equation is z+y2−3x2y+2x4 and its approximate implicit equation (S2)
is −3.725155334 · 10−8 + z − 4.414233699 · 10−10y + y2 − 2.879451183 · 10−10x+ 1.830328567 · 10−12xy + 2.350959794 · 10−11x2 − 3x2y +

5.645612348 · 10−14x3 + 2x4. The accuracy of approximation under measures (a) and (b) are ≈ 3.725528887 · 10−8

and ≈ 2.983 · 10−9, respectively. The reparametrizations of S1 and S2 are:
f(t, s) = (t, s,−s2 +3t2s−2t4), and g(u, v) = (u, v,−3.725155334 ·10−8 +4.414233699 ·10−10v−v2 +2.879451183 ·10−10u−1.830328567 ·

10−12uv − 2.350959794 · 10−11u2 + 3u2v − 5.645612348 · 10−14u3 − 2v4).

To compute the Hausdorff distance dH(S1, S2), we need to evaluate the polynomial

S(t, s;u, v) :=< f(t, s)− g(u, v), f(t, s)− g(u, v) >; (t, s), (u, v) ∈ [0, 1]× [1, 2].

We know that dH(S1, S2) ≤ max(t,s)∈[0,1]×[1,2]

√
S(t, s; t, s). We compute the maximum value of S(t, s), (t, s) ∈

[0, 1]× [1, 2], and obtain dH(S1, S2) ≤ 3.813440008 · 10−8.

7 Conclusion and further work

In order to tackle large problems we plan to employ state-of-the-art software libraries for matrix operations. For
exact computation, LinBox implements asymptotically fast algorithms and seems to be of choice for dimM >
100. For approximate implicitization, we plan to use LAPACK for further examination of numerical stability
and, in particular, in order to apply matrix preconditioning. An alternative approach to improve stability is
to change from the monomial to the Bernstein basis. Lastly, we may juxtapose least squares as an alternative
technique.

An interesting aspect is that matrix M has the structure of quasi-Vandermonde matrices. In particular,
multiplying M by a vector v on the right-hand side is equivalent to evaluating a (n + 1)-variate polynomial
with support S and coefficient vector v at all points defining the rows of M . If this complexity were quasilinear
in m (i.e. linear when ignoring polylogarithmic factors in m), then the kernel computation of M should have
complexity quasi-quadratic in m, or even faster, when computing only one eigenvector by Lanczos’ method.
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We have restricted attention to hypersurfaces, but the algorithms discussed in this paper apply to surfaces
of codimension ≥ 2, such as space curves. In this case, the generalization of the resultant is the Chow form,
and our methods could interpolate this form, thus offering information about the implicit representation of the
surface.

It is possible to approximate manifolds given by k parametric pieces with a single implicit equation, by
applying SVD on M> = [M1 · · ·Mk]>, where Mi is the matrix constructed by the algorithms of this paper for
the i-th piece, for i = 1, . . . , k. This includes planar curve or surface splines defined by k segments or patches,
respectively. We assume the k parametric representations yield implicit polynomials with (roughly) the same
Newton polytope, which always happens if the parametric representation of each piece uses polynomials with
the same supports. Matrix M is then evaluated over points spanning all k segments or patches.
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A Appendix

Curve Parametric form Exact implicit polynomial Approximate implicit polynomial

Nephroid −64− 60y2 − 12y4 + y6 −1.81402.10−5x2y − 23.99999x2y2

−(−1 + t2)(1 + 10t2 + t4)

(1 + t2)3
, +48x2 − 24x2y2 + 3x2y4 − 12x4 −11.99999x4 − 59.99999y2

+3x4y2 + x6 −2.17512.10−5y3 − 11.99999y4

32t3

(1 + t2)3
+47.99999x2 + 3x4y2 + y6

+x6 − 63.99999 + 3x2y4

Talbot’s curve x6 + 3y2x4 − x4 + 3y4x2 0.00318649y + 0.0019125x2y3

−(1 + 6t2 + t4)(−1 + t2)

(1 + t2)3
, −20y2x2 + y6 + 8y4 + 16y2 +2.999989x2y4 + 0.00010255x4y

+2.999994x4y2 − 0.004140395x2y
−20.00909x2y2 + 15.9979y2

−2t(1− 2t2 + t4)

(1 + t2)3
+0.0008008y3 + 7.999837y4

+0.00079661x2 + 0.9999945y6 + x6

−1.0001x4 + 0.8906879.10−3y5

Tricuspoid
−t4 − 6t2 + 3

(1 + t2)2
,

8t3

(1 + t2)2
−27 + 18y2 + y4 + 24xy2+ −27 + 17.99999y2 + 0.99999y4

+18x2 + 2x2y2 − 8x3 + x4 +23.99999xy2 + 18x2 + x4

+1.99999x2y2 − 8x3

Ranunculoid −
1− 1092t6 + 423t8 − 54t10

(1 + t2)6
−52521875− 1286250x2 − 1286250y2

+
13t12 − 102t2 + 363t4

(1 + t2)6
, −32025(x2 + y2)2 + 93312x5

8t3(−29 + 108t2 − 78t4 + 44t6 + 3t8)

(1 + t2)6
−933120x3y2 + 466560xy4

−812(x2 + y2)3 − 21(x2 + y2)4

−42(x2 + y2)5 + (x2 + y2)6

Table 8: Parametric, implicit, and approximate implicit representation of curves; for the latter, we do not show
coefficients of absolute value < 10−6.

Quality

2 3 4 5 6 7 8

Degree

Figure 2: Accuracy of implicitization of dense Bézier curves
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Surface Parametric form Exact implicit polynomial Approximate implicit polynomial

Quartoid t, s,−(t2 + s2)2 z + x4 + 2x2y2 + y4 z + x4 + 2x2y2 + y4

Sine
2t

1 + t2
, −2y2z2 + 4x2y2z2 − 2x2y2 −0.23681.10−5y + 0.20275.10−5x

surface −2x2z2 + z4 + y4 + x4 −0.35873.10−5x2y3 + 0.18891.10−5x2y
2s

1 + s2
, −0.58171.10−5x3y + 0.55752.10−5xy

−0.98381.10−5xy2 + 0.22139.10−5xy3

2s + 2t− 2st2 − 2ts2

1 + s2 + t2 + s2t2
−2x2y2 − 2y2z2 − 2x2z2

−0.59775.10−5x2 + 4x2y2z2 + z4

+0.20153.10−5y2 + 0.2.10−4Ix2z2

+0.2.10−4Ix2y2 + 0.2.10−4Iy2z2

+0.42669.10−5x3 + x4 + y4

Bohemian
1− t2

1 + t2
, 2x2y2 − 2x2z2 − 4y2 1.9999x2y2 + 1.9999y2z2

dome
1 + 2t + t2 − s2 − s2t2 + 2ts2

1 + s2 + t2 + s2t2
, +x4 + z4 + 2y2z2 + y4 +z4 + y4 − 3.9999y2

2s

1 + s2
+x4 − 1.9999x2z2

Swallowtail −15xy2z + 3y4 + y2z3 −4xz4 − 10−4Ix3 + y2z3

surface ts2 + 3s4, − 2ts− 3s3, t −4xz4 + 12x2z2 − 9x3 +10−4Ixz4 + 12x2z2

−8.9999x3 − 15xy2z
+10−4Ix2z2 + 2.9999y4

Enneper’s
t

3
−

t3

9
+

ts2

3
, −64z5 + 128z7 − 64z9

surface −48y2z3 − 240y2z4 + 432y2z5

−
s

3
+

s3

9
−

t2s

3
, −144y2z6 − 9y4z − 162y4z2

+135y4z3 − 27y6 − 48x2z3

t2

3
−

s2

3
+240x2z4 + 432x2z5 + 144x2z6

+18x2y2z + 702x2y2z3

+81x2y4 − 9x4z + 162x4z2

+135x4z3 − 81x4y2 + 27x6

Table 9: Parametric, implicit, and approximate implicit representation of surfaces; for the latter, we do not
show coefficients of absolute value < 10−6.

Surface degree matrix LinearSolve SVD “raw”
size time time accuracy “raw” time “raw” accuracy matrix size

Looped patch 3 6× 6 0,012 0.012 6.24 · 10−8 0.048 3.53 · 10−6 23× 23
Nested nodal 5 139× 139 1.904 fail fail 319× 319
Quartic 4 22× 22 0,088 0.864 4.46 · 10−7 36.447 2.07 · 10−6 71× 71
Self ucurves no cut 129× 129 no solution fail fail 158× 158
Simplesweep 4 36× 36 no solution 5.337 6.23 · 10−9 fail 2457× 2457

Table 10: Runtimes (sec) of NURBS patches: exact and numerical interpolation (“raw” refers to parametric
equation derived from NURBS representration where terms with coeefficients < 10−2 are not removed).
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