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To offload our manuscript we have placed a portion of

our work here. In Section 1 we derive analytical closed-

form expressions for the (w)CBC metric variation in

regular topologies while next, we draw insights regarding

the cDSMA performance from the degree distributions of

the studied ISP topologies. Section 3 presents the way the

cDSMA practical implementation operates under multipath

routing (MP). Section 4 experimentally investigates whether

overload phenomena can occur with the cDSMA implemen-

tations. Finally, we discuss a wide range of solutions that

fall in the relevant data replication and placement category.

1 METRIC COMPUTATION FOR REGULAR

NETWORK TOPOLOGIES

Closed-form expressions for wCBC are not easy to obtain

except for scenarios with uniform demand and regular

topologies. The following two Propositions provide the

closed-form expressions for CBC, i.e., wCBC for wn =
1, ∀n ∈ V , in two instances of regular network topologies,

the ring and the two-dimensional (2D) grid.

Proposition 1.1: In a ring network of N nodes, the CBC

value of a node u with respect to another node t are given

by:

CBCring(N)(u; t) =

{

⌈N−1
2 − d(u, t))⌉+ N = 2k

⌈N+1
2 − d(u, t))⌉+ N = 2k + 1,

where k ∈ Z
+, ⌈x⌉+ = max(x, 0) and d(u, t) is the

minimum hop count distance between nodes u and t along
the ring.

Proof: The proof is straightforward. There is one mini-

mum hop count path between all pairs of nodes in the ring.

The only exception concerns nodes N/2 positions away

the one from another in rings with even number of nodes,

where there are two shortest paths. For given destination

node t, the CBC(u, t) value is only increased by those

shortest paths that encompass the intermediate node u. Due
to the ring symmetry, their number only depends on the

distances between nodes u and t and decreases by one for
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each additional hop away from t. Summing them over the

respective half of the ring, yields the result.

Proposition 1.2: Consider a MxN rectangular grid net-

work, where nodes are indexed inline with their position in

the grid, i.e., node (i, j) is the node located at the ith row

and jth column of the grid. The CBC value of node u at

position (a, b) with respect to node t at position (k, l) is

given by (1).

Proof: For the 2D grid, the problem degenerates

into the enumeration of shortest paths between two grid

nodes [1]. The denominator of (1) expresses the number of

shortest paths between two arbitrary nodes (row, column)
coordinates (i, j) and (k, l), whereas the numerator of (1)

equals the number of those paths going through a node

with coordinates (a, b). We then sum the ratios over all grid

nodes with shortest paths to node t = (k, l) encompassing

node u = (a, b).

2 DEGREE DISTRIBUTION OF THE REAL-
WORLD TOPOLOGIES

For the evaluation of the theoretical cDSMA algorithm as

well as its practical implementations we have employed a

set of real-world ISP snapshots. To gain further insights on

our results we present the degree distribution of a subset

of these topologies in fig 3.

The general structural characteristics of the considered

ISP topologies differ from the synthetic topologies in

section 6.1 of the main paper; they exhibit neither the

regularity of grids nor the extreme degree variance and hub

nodes of B-A like topologies. However, the presence of a

few high degree nodes in almost all considered topologies,

ends up trapping the migrating service in a way that was

also evidenced in B-A graphs. More specifically, the service

trapping incidents in the B-A graphs resulted from the

combination of high degree nodes with small average paths.

Namely, when we increase the α percentage of nodes within

the 1-median subgraph, we only include in the GHost those

nodes that are immediate neighbors to the current hub node

serving as host. The GHost spans around the hub node,

which remains the lowest-cost location within the subgraph

so that the service migration process is terminated. On

the other hand, the real-world topologies are characterized

by greater average shortest paths, yet may exhibit similar
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CBCgrid(M,N)(u; t) =
M
∑

i=1

N
∑

j=1

(|b−j|+|a−i|
|a−i|

)(|l−b|+|k−a|
|k−a|

)

(|l−j|+|k−i|
|k−i|

)
1I{|l−j|+|k−i|==|b−j|+|a−i|+|l−b|+|k−a|} (1)

t

u

Nodes contributing 

to the CBC(u;t)

(a,b)

(k,l)

(i,j)

(i,j)  (k,l) shortest paths through (a,b)

(i,j)  (k,l) shortest paths not including (a,b)

Fig. 1. Conditional Betweenness Centrality in regular
topologies.

Fig. 2. Partial snapshot of Dataset 33. The hub node
80 constitutes a trap for cDSMA especially under uni-

form demand; a service whenever generated around
that node, ends up at 80 which is a local minimum

yielding similar trap phenomena to those observed in

B-A graphs.

phenomena. A relevant trap we have identified in Dataset

33 involves exactly a hub node, whose first neighbors are

not fully linked with each other (see fig. 2). The service

is often trapped there and the cDSMA requires far more

GHost nodes to achieve near-optimal placements than it

does for the rest of the ISP topologies.

3 CDSMA PRACTICAL IMPLEMENTATION

UNDER MULTI-PATH (MP) ROUTING

We discuss the cDSMA practical implementation in the

same step-by-step fashion as did with the single-path (SP)

routing case. Details are provided only for the points

where the multipath (MP) routing option differentiates the

cDSMA implementation.

3.1 Service host advertisement

This step is carried out in the same way regardless the

employed routing protocol.

3.2 Reporting of local wCBC estimates and infer-

ence of the 1-median subgraph

As each measurement-reporting message travels on its

shortest path towards the Host, it records all nodes lying on
it. The GHost subgraph as inferred by the current host node

exhibits attributes that depend on the employed routing

protocol.

Under multipath routing data packets make use of more

than one shortest routes towards a single destination, ef-

fectively balancing the traffic load across these paths. The

resulting 1-median subgraph is not a connected tree as

under SP routing, and the distance of any GHost node

from the Host is now upper-bounded only by the network

diameter. For example, in fig. 4.c the demand traffic that

flows as a whole through the 1-median subgraph node M

is subsequently split across three different paths leading to

the current service host node A. If nodes L, P and N exhibit

low native demand values, they may well not be selected

by the wCB̂C criterion. Moreover, the 1-median subgraph

may contain circles (as the one discussed in fig. 4). Since

the GHost subgraph may include nodes that lie far from the

current Host, the algorithm in the MP case exhibits extra

agility to reach faster the final service location. However,

in the evaluation of the practical cDSMA implementation it

has been shown that the spatially bounded GHost subgraph

of the SP case only marginally increases the hopcount

values compared to the ones of MP.

Next, we show how the topological information collected

through these dedicated messages suffices for carrying out

the demand mapping task, even when more than one

shortest-path is utilized by the employed routing protocol.

3.3 Global demandmapping on the 1-median sub-

graph.

After the derivation of the 1-median subgraph, the cur-

rent service host needs to further process the α|V |
measurement-reporting messages that correspond to the

selected subgraph nodes. The way this will be done depends

as well on the deployed routing protocol.

Under multipath routing each network node u bears sets

of weight factors {wfuj(u; t)} expressing what portion of

the traffic destined for node t is routed over the outgoing

link {u, j}, where j is a neighbor node. Clearly, under the

SP routing strategy the weight factor sets {wfuj(u; t)} are

singleton, their single element being unity.

The mapping task under MP routing is more complicated

than SP routing. Each node u now sends one measurement-

reporting message per shortest path used towards the cur-

rent service host node (hereafter, superscript k enumerates

the different msgk
x messages that the host receives from

x). Besides the measured traffic load values, wCB̂C(u; t),
and the nodes lying on the path, the message logs the
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Fig. 3. Degree distributions of an indicative subset of the ISP topology snapshots.

a. The graph G(E, V ) b. Advertisement phase (service at A) c. Host induces GA: case 1 d. Host induces GA: case 2

Fig. 4. Example of cDSMA protocol implementation under uniform randomized MP routing. The GA is non-

connected for case 1 when each node exhibits a unity of demand except for E,L and M that have w(E) = 4,

w(L) = 0 and w(M) = 5, respectively. The case 2 under which the GA contains a cycle, differentiates from case
1 only in that w(D) = 2.

corresponding weight factor wfu,j(u; t) of the traffic routed
to t with node j as next hop as well as the respective

weight factors of the nodes lying on the path to t. As

earlier explained the 1-median subgraph may now deviate

from the connected tree topology; it is hereafter treated as

a hierarchy HHost, whereby each node is annotated with

its depth d with respect to Host, with d(Host) = 0.
When processing a node z in a given msgk

x, all nodes

logged deeper(outer) in the message are called ancestors

(descendants) of z in msgk
x.

The Algorithm that carries out the demand mapping is

called DeMaMP and presented in 1. Like its counterpart for

single-path routing, DeMaMP sequentially parses only the

measurement-reporting messages of the 1-median subgraph

nodes (selected nodes) in decreasing length order of their

msgk
x part, the one logging the path nodes. It initializes the

nodes’ weff variables to the measured traffic values and

then seeks to subtract all traffic demand contributions that

have already been credited to nodes further up the hierarchy.

However, when compared to DeMaSP operation, there

are two main discrepancies resulting from the different

structure of the 1-median subgraph. Firstly, the set of

logged nodes within a msgk
x includes both nodes that have

been selected in the 1-median subgraph and nodes that

have not been (e.g., in fig. 5-left, msg2
D contains the non-

selected node B). While treating a node z within a msgk
x,

the algorithm distinguishes whether it is selected or not.

To correctly discount (e.g., from node A in msg2
D) the
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Algorithm 1 Message header parsing and demand mapping

under MP (DeMaMP)

1. input: set of selected nodes in GHost,
2. {msgu} ∀u ∈ GHost

3. output: vector weff (u) ∀u ∈ GHost

4.
5. Initialization
6. for all x ∈ GHost do weff (x) = wCB̂C(x)
7. vector B ← sort all msgx in decreasing order of |msgx|
8.
9. for i = 1 up to Len(B) do

10. parse B(i) = msgx

11. int cddf = 0;
12. for m = 1 up to |msgx(m))| do
13. if m == 1
14. last_sel = msgx(1)
15. cddf = rfmsgx(1),msgx(2)(msgx(1); Host)
16. else

17. if m ≤ |msgx(m))| − 1
18. l = msgx(m), n = msgx(m + 1)
19. if l ∈ GHost

20. if path[last_sel→ l] ! = marked
21. weff (l) = weff (l) −wCB̂C(last_sel) ∗ cddf
22. mark path[last_sel→ l] as read
23. cddf = rfl,n(l; Host)
24. end if
25. last_sel = l
26. else

27. cddf = cddf ∗ rfl,n(l;Host)
28. endif
29. else// mapping on host
30. h = msgx(m)
31. if path[last_sel→ h] ! = marked
32. weff (h) = wtrans(h; Host) + w(h) −

wCB̂C(last_sel) ∗ cddf
33. mark path[last_sel→ h] as read
34. endif

35. endif

36. end for
37. end for

Fig. 5. Right: Demand mapping under MP: weff (A) =
wmap(A)+w(A). The message header parsing process
must reveal to the Host that the wmapp(A) equals the

cumulative demand of the non-selected L and B nodes

that communicate with the Host through A. That is
weff (A) = wCB̂C(A) − (wCB̂C(G) + wCB̂C(E) +
cddf). Left: Message headers received by the Host
and sorted in decreasing length for parsing.

traffic demand that has already been credited to another

selected node, the one first encountered while flowing

towards the current service host (i.e., node C), DeMaMP

uses the cumulative demand discount factor (cddf) variable.

The latter stores anytime, for a given parsed message, the

amount of traffic of the earlier selected node that flows

through the path encoded in the message and, thus, has to

be discounted by the first next selected node (i.e., node A);

clearly, cddf equals the corresponding weight factor when

the earlier selected node is z’s immediate ancestor.

Secondly, if z is a selected node in msgk
x (e.g., node C

in message msg1
D), it no longer holds that msgk

z ⊂ msgk
u.

Therefore, we cannot discard whole messages upon reading

their first entry and it does not suffice to check whether

node z has been processed; we rather need to know whether

the full path from the last selected node encountered

over the msgk
x, to z i.e., path[last_sel → z] has been

earlier taken into account. Similar care is needed for the

weff(Host) computation which is -contrary to DeMaSP-

carried out by directly parsing1 the last entry of each msgk
x.

3.4 1-median solution within the GHost subgraph

This step is carried out in the same way regardless the

employed routing protocol.

4 STUDY OF OVERLOAD PHENOMENA

In this Section we aim to investigate whether the cDSMA

operation may lead to overload phenomena in the presence

of multiple service instances across the network. Overload

phenomena include a) placing a significant number of

services over a small number of highly central nodes; and/or

b) routing increased aggregate demand traffic towards the

services’ final locations through one or few more nodes.

In what follows, we generate realistic scenarios for the

demand distribution of multiple available services and

experimentally show that cDSMA does not give rise to any

overload phenomena of either type.

4.1 Spatial concentration of service instances

cDSMA will accumulate a number of services to the same

final location in the extreme theoretical scenario that the

demand distribution over the network users is identical for

each single service made available in the network. On the

contrary, more realistic service demand scenarios cater for

differentiation of its values across services and network

users.

To emulate such realistic demand distributions for ev-

ery available service, we use the following model. We

recognize the different popularity among the services and

retain the assumption of Zipf access patterns, namely the

cumulative demand value is Zipf distributed across the

different service instances. We then need to determine a)

the number NRq of requester nodes for each service; b)

which are those NRq requesters out of the total N nodes;

and finally c) what part of the total demand generated for

each service is assigned to every corresponding requester.

1. Alternatively, we can compute the weff(Host) value by subtracting
the demand that we assign over the GHost \ Host subgraph from the
total network demand. The later quantity though may not be available
in case we seek to employ exclusively local information. Such an option
is considered when we study the performance of the cDSMA practical
implementations (Section 8).
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Fig. 6. Percentage of services placed by cDSMA per

node for Dataset 35 under SP and MP routing.

To determine NRq we employ a heuristic way; it aims to

reflect that the higher the rank k of a service, the more the

nodes that are expected to request it. As such, when there

are NoS available services in a network of N nodes, then

the requesters for the service of rank k are given by:

NRq = N(1 −
δ · k

NoS
) (2)

where δ is a constant that can fine-tune the percentage

of NRq over N , set for our experiments to 0.9. We

randomly choose the set of NRq nodes out of the total

network nodes and assign to each of them an amount of

service demand following a power-law distribution. The

latter choice models the differentiation of the demand for

a certain service among its users.

In figures 6, 7 and 8 we plot the percentage of ser-

vices that cDSMA places over each node of two real-

world (i.e., datasets 35, 40) and one synthetic topology

(i.e., 10x10 grid), respectively (these plots are chosen as

representative ones for discussion, we got similar results

for all our topologies). We experiment with both the single-

(SP) and multi-path (MP) routing strategies keeping the

GHost subgraph size equal to 7 for the dataset 35 and the

grid, and 9 for the dataset 40. Table 4 in the main paper

suggest that these values yield a normalized cost of no more

than 1.022 for both routing options in real world topologies

and a slightly higher one for the grid topology, as already

expected from our proof-of-concept study in Section 6 of

the main paper. Finally, we scale the number of services

from approximately 0.2 up to 0.6 of the total number of

nodes.

The results in figures 6, 7 and 8 show that cDSMA cor-

rectly identifies the demand gradient for each single service

and finally manages to distribute the instances across the

network nodes, avoiding to overload the central ones. With

no significant differences between the two routing options

as well as the scaling of the services’ number, the nodes

in dataset 35 and the grid appear to be almost uniformly

sharing the burden of service hosting; even the most central

ones in topological terms i.e., the nodes 52, 48 and 36 for

the former and 45, 46, 55 and 56 for the latter, host no

more than 10% of the available services.

In the dataset 40 (Fig. 7), nodes 111 and 214 seem to con-
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Fig. 7. Percentage of services placed by cDSMA per

node for Dataset 40 under SP and MP routing.
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Fig. 8. Percentage of services placed by cDSMA

per node for a 10x10 grid network under SP and MP

routing.

sistently attract an increased number of services compared

to the rest of the network nodes; yet, only in one case does

their number correspond to as much as the 20% of the total

number of services. Both these nodes, i.e., top and third top

in terms of betweenness centrality (BC), attain extremely

large centrality values compared to the rest and express

a topological bias that benefits concentration phenomena

despite the service demand differentiation across services

and users. In that sense, the variance of the original BC

metric or even the ratio between its maximum and mean

value across the network can roughly reflect the potential

for service concentration. We measure the BC variance

equal to 3.3×104 for the grid topology, while the topologies

D35 and D40 yield about 3 and 180 times as much,

respectively. This finding is well reflected when comparing

the above figures; the depicted percentages clearly suggest

that even under unfavorable network topologies that avail

a few highly central nodes, cDSMA keeps low levels of

service concentration for both routing strategies.

4.2 Traffic routing overhead

In this section we turn our attention to the impact of the

final services’ locations on the amount of demand traffic

each node needs to route. Intuitively, when services tend to

spatially concentrate, the nearby nodes would need to bear

heavy routing duties as the traffic somehow converges to the

service locations. The results of the previous section show

that cDSMA achieves, under realistic demand dynamics,
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Fig. 9. Percentage of demand-traffic each node routes

after cDSMA completion for Dataset 35 under SP and
MP routing.

the spatial distribution of services among multiple hosts

and therefore avoids any concentration phenomena. Here,

we aim to assess whether the traffic load each node bears

is also favorably distributed among the nodes. To this end,

we retain our previous choices as to how the demand for

each available service emerges across the network users and

experimentally measure the demand traffic that each node

routes after the cDSMA has completed the placement of

all available services.

Figures 9, 10 and 11 present what percentage of the

total demand traffic served by the network, each node

routes towards the locations of the corresponding services

under SP and MP routing. Clearly, each plot corresponds

to the service placement configuration depicted earlier, in

figures 6, 7 and 8, respectively. In figure 9 where the

topological bias is not intense (see the previous subsection),

it seems that the routing affects the traffic load more

significantly than it did earlier with the service concen-

tration; inline with intuition, under the single-path (SP)

routing choice some nodes, in most cases the central ones,

end up routing more traffic than others, even if there is

no node having received many services (e.g., the case

with 40 services). Yet, this traffic never exceeds the 20%

percentage. MP, on the other hand, spreads the traffic over

many paths and elevates many different nodes up to lower

percentages. Finally, our results confirm that the service

concentration at some node increases the routing load on

the nearby nodes. In the MP case with 40 services, there

is a slight concentration over nodes 52 and 36, whereas in

the corresponding traffic measurement we find that the 4

nodes that route about 10% of the traffic each i.e., 11, 52,

55 and 84, do lie from 1 to 3 hops away the concentration

locations.

Regarding the dataset 40 (Fig. 9), the network topol-

ogy avails some highly central locations (i.e., nodes 214,

111) that end up being traversed by increased amounts

of demand traffic under both routing strategies. Still, the

corresponding percentages are in all cases kept below 30%.

In the same spirit, the grid topology (Fig. 11) is not charac-

terized by such a sharp topological contrast and accordingly

helps the cDSMA operation to spread the total demand

traffic amount across multiple nodes. As a final comment,
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Fig. 10. Percentage of demand-traffic each node

routes after cDSMA completion for Dataset 40 under
SP and MP routing.
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Fig. 11. Percentage of demand-traffic each node
routes after cDSMA completion for a 10x10 grid topol-

ogy under SP and MP routing.

note that the mean normalized cost that cDSMA yields over

the real-world network topologies remains below than 1.02

(for the selected GHost sizes). This means that even in the

ideal scenario of having an optimal distributed algorithm in

place, the resulted service placement configuration would

be roughly the same with the one derived by cDSMA; as

such, the ISP network topology would also need to tolerate

similar values of demand traffic overhead.

5 DATA REPLICATION AND PLACEMENT RE-
LATED LITERATURE

Data replication [2] refers to the storage of files or, more

generally, information objects, in specific points in a net-

work, so that they can be retrieved by requesting nodes

at smaller access costs. Earlier research in this area has

mostly considered centralized implementations [3], [4] of

file placements.

More recently, the networking community has turned

its attention to replica (i.e., server or object) placement

schemes over the Internet, devised to facilitate the efficient

content distribution. The placement of service facilities

where we focus on, is usually studied along the same thread

although sometimes may exhibit different characteristics

such as the absence of replication (which renders it more

difficult to tackle). With that in mind, we consider works

that seek to improve the Content Distribution Networks

(CDNs) performance through heuristic solutions for server



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY XXXX 7

placement quite close to ours. In [5] the authors adopt

a k-median formulation of the problem and propose sev-

eral heuristic solutions. The Greedy algorithm sequentially

places one replica at a time; the current one is placed at

the lowest-cost location exhaustively determined under the

assumptions that a) the so far placed replicas remain fixed

b) a node’s requests are directed to the closest replica. It

has been shown to achieve placements within a factor of

1.1-1.5 of the optimal for synthetic and real-world network

topologies under demand patterns extracted from server

load traces. Less effective (i.e., ratio is between 1.6-2) is

the Hot Spot heuristic that places the replicas at the top

k nodes that along with their vicinity generate the greatest

load.

HotZone, a latency-based variant of the Hot Spot heuris-

tic has been proposed in [6]. The authors employ a system

that models the Internet as a M-dimensional space and

estimates the latency between two nodes as the distance be-

tween their corresponding coordinates. First, they identify

k groups of nodes whose latency is relatively low and rank

them according to the demand load they generate. Then the

one with the minimum average distance in each group is

chosen as the replica-holding node. The approach is shown

to produce comparable results to the above heuristics while

maintaining lower complexity. Finally, in [7] the authors

investigate the replica placement problem from a QoS

standpoint. They seek to minimize the storage and update

cost of all candidate servers with a replication strategy that

satisfies the QoS requirements in terms of object retrieval

cost. The optimal QoS-aware placement problem is shown

to be NP-complete when the nodes are aware of the adopted

replication strategy and access their closest replica. Greedy

heuristics are then introduced while there exist polynomial

optimal solutions, otherwise.

Adopting a centralized approach renders the above

heuristics irrelevant to the networking environment we

consider and consequently excludes them from serving

the purposes of a fair and meaningful comparison with

cDSMA. A decentralized solution yet not within the typical

facility location framework amounts to viewing the problem

as graph coloring [8]. Each node is characterized by a color

representing a content class and updates the information

about its nearby nodes’ colors via a modified Bellman-Ford

algorithm. Asynchronously, a node seeks to change its color

such as to maximize the distance to a fellow node with the

same color. The algorithm converges to colorings where

the distance from a node to an arbitrarily chosen color

is bounded by a factor of three compared to the optimal

colorings.

In view of the emerging autonomic environments where

individual nodes may act selfishly, a recent Internet con-

tent distribution thread involves placement approaches that

employ game-theoretic arguments. The distributed selfish

replication game is introduced and studied in [9], where the

authors propose an algorithm for its solution and analyze

its main properties. In [9] the assumption is that all nodes

within a group can communicate and cooperate with each

other. More recently, Pacifici and Dan in [10] relax this

assumption and consider replication games over arbitrary

social graphs, which introduce constraints on the possible

interaction patterns between the players. They derive suffi-

cient conditions for letting the players reach an equilibrium

of the game and propose a distributed algorithm in this

respect. On the other hand, Borst et al. in [11] assume

altruistic players making placements that maximize the

aggregate benefit over the whole network rather than theirs.

The performance of their greedy algorithm is within a con-

stant factor of two from the globally optimal performance

under arbitrary demands and, even closer under identical

content preferences and uniform cache capacities.

Finally, data replication has also been studied in the con-

text of mobile social networks, with social characteristics

being embedded into data replication algorithms. In [12],

the authors construct a dynamic learning algorithm where

nodes from various social communities opt for a utility-

maximizing content placement strategy based on their en-

counters with other nodes. The content utility is related

to the availability of content in different communities, as

well as the ties a user has with each community. In [13]

the authors study how content is distributed in an op-

portunistic network considering both technical constraints

(e.g., battery/processing power and wireless bandwidth) and

user preferences. In [14] the authors propose an approach

that can enhance content dissemination by associating both

interest- and locality-based dynamics of social groups.
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