IEEE INTERNATIONAL CONFERENCE ON COMMON CONTROL OF CONT

9–13 June 2024 // Denver, CO, USA Scaling the Peaks of Global Communications

Dynamic Edge/Cloud Resource Allocation for Distributed Computation under Semi-Static Demands

AUTHORS: IPPOKRATIS SARTZETAKIS, PANAGIOTIS PANTAZOPOULOS*, KONSTANTINOS V. KATSAROS*, VASILIS SOURLAS*, EMMANOUEL (MANOS) VARVARIGOS*‡

SUBSTITUTE PRESENTER: GEORGIOS DRAINAKIS*

*INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS (ICCS), ATHENS, GREECE ‡NATIONAL TECHNICAL UNIVERSITY OF ATHENS (NTUA), ATHENS, GREECE

Outline

- Motivation
- □ Distributed Computation
- ☐ Network Scenario
- Resource Allocation and Prediction Algorithms
- Results
- Conclusions

Motivation

- New services utilize edge-device data
 - Automotive
 - Industry 4.0+
 - 5G and beyond
- ☐ Enormous amount of time-varying data with various processing requirements
- Centralized processing
 - Processing delays (ML training times)
 - Transmission costs
 - Storage
- □New computing paradigms e.g., edge-cloud computing
 - An opportunity for distributed computation arises

Distributed Computation

- ☐ Processing is performed on dedicated edge/cloud resources
- ☐ A job breaks down to several tasks served in a distributed manner
- ☐Advantages:
 - Make use of powerful computation resources
 - Parallelism
- ☐ Challenges
 - Allocate the appropriate network resources
 - Specific architectures e.g., distributed ML tasks
 - Job requirements
 - Bandwidth
 - Processing cost
 - The formulation is more complicated assuming <u>time-varying data generation</u>

Contribution

- ☐ Developed resource allocation model for Distributed Computation jobs assuming time-varying demands
 - Jointly considered
 - edge and cloud resources
 - their performance
 - bandwidth and processing monetary costs

■ We consider:

- a multi-period Integer-Linear-Programming (ILP) algorithm to plan periodic demands
- a predictor that estimates temporary data volume fluctuations
- a suitable dynamic reconfiguration algorithm
- Performed realistic simulations and compared to alternative solutions

Network Scenario

- ☐ Edge devices continuously produce data
- ☐ Data generation is time-varying:
 - periodic/expected (e.g., during a day)
 - Or unexpected due to (a sequence of) certain events
- ☐ Edge and cloud network
- ☐ The edge network consists of a set of nodes N with finite resources
- ☐ Edge and cloud have different b/w and processing costs
 - Edge has inexpensive b/w and expensive proc.
 - Cloud has expensive b/w and inexpensive proc.
- ☐ Resources to be assigned:
 - CPU/GPU, b/w for specific computation accuracies

Resource allocation for periodic demands (1)

Assumptions

- Each device continuously produces data at an average rate measured in samples/sec
- The average rate remains stable (or constrained by a max value known beforehand) during a number of periods (e.g., three periods during a day)
- Each task has to process all the samples from its devices
- Each task requires specific processing and b/w
 - depending on the number of its samples and the requested accuracy

Resource allocation objective:

- Allocate the appropriate resources
 - for all the jobs
 - for all the assumed time periods
- Minimize the total (b/w and processing) cost of edge and cloud to serve all the jobs
- Maximize the computation accuracy

Resource allocation for periodic demands (2)

- ☐ The resource requirements of the jobs are not constant
 - Periodic changes throughout the day
 - Non-periodic fluctuations
- ☐ Periodic changes are not very large and frequent.
 - □ During a 24-h period we can have 2-3 time re-configuration sub-periods
 - □ILP resource allocation during sub-periods
- ■Short-term fluctuations due to special circumstances, e.g., a football game.
 - ☐ Short term predictor for bursty changes
 - ☐A heuristic algorithm that reconfigures the demands based on the prediction

ILP Resource allocation algorithm

Cymbol	Decemintion
Symbol	Description
J	Set of jobs
T_{j}	Set of tasks of job j
λ_{je}	Production rate of task je in samples/sec j
N	Set of node of edge network
R_n^G, R_n^B, R_n^Θ	Set of processing, b/w, aggregation resources
	of edge node n
$C_E^G, C_E^{bw}, C_C^G, C_C^{bw}$	Processing and b/w costs at the edge
	and cloud respectively
δ_c	Propagation delay of cloud
Δ_j	Acceptable prop. delay of job j
W	Weight to control optimization objective
A	Set of possible accuracies of ML jobs
a_{j}	An accuracy of a job j ranging from 0 to 1
a_j^{min}	The minimum acceptable accuracy of a job j
ξ_n^{pjea}	Binary variable equal to 1 if task
	je is served at node n , period p , accuracy a
ξ_c^{pjea}	Binary variable equal to 1 if task
	je is served at period p , accuracy a
k	The total monetary cost to serve all jobs
S	A set of jobs that must not migrate locations
	from one period to another
PC	A set of all possible combinations of
	successive periods p, p'
$m_{pp'}^{je}$	The migration cost of each task je from a
	period p to a period p'

Objective:
$$\min\left(w_1k-w_2a+w_3\sum m_{pp'}^{je}\right)$$

- multi-criterion optimization problem
- minimize the **total cost** to serve the jobs
- minimize the **migration cost** (tasks moving from one location)
- maximize accuracy
- Monetary cost sum of:

- plus the edge and cloud processing cost

edge and cloud **bandwidth** (b/w)

- for all the task jobs, for all the accuracy options and for all the periods
- Accuracy mean accuracy of all tasks

$$a = \sum_{j} \sum_{t_{je}} \left(\sum_{n} \xi_{n}^{pjea} \alpha_{j} + \xi_{c}^{pjea} \alpha_{j} \right)$$

Traffic prediction algorithm (1)

- ☐ Data generation can have unplanned variations due to special events e.g., a football match
- ☐ We employ a traffic predictor
 - Input: historical data
 - Output: estimates a number of future time steps

Traffic prediction algorithm (2)

☐ Prediction objective

- Data generation rate
- Required resources for each task

■ Several prediction algorithms

- Auto-regression
- Traditional ML techniques e.g., random forest
- Deep NNs e.g., LSTM

Refs

- A. S. Weigend, "Time series prediction: forecasting the future and understanding the past," Routledge, 2018.
- N. I. Sapankevych, S. Ravi, "Time series prediction using support vector machines: a survey," IEEE Computational Intellig. Mag., 4(2), 2009.
- Y. Hua, et al., "Deep learning with long short-term memory for time series prediction," IEEE Comm. Mag., 57(6), 114-119, 2019.

Reconfiguration Algorithm

- Uses the estimated (future/projected) requirements as input
- \Box If the allocated resources are **not** sufficient -> reallocates the resources w.r.t.
 - Heuristic approach Avoid moving tasks to different locations
 - Unless necessary (according to the SLAs)
 - and/or reconfiguration costs (e.g., % change of resources, additional monetary cost etc.)
- ☐ When the requirements return to the normal planned values
 - the algorithm releases the additional resources
 - preserves the location of the tasks

Results

□Setup

- We assumed a 10-node edge network with finite resources
- Two scenarios: [400, 600] image recognition ML jobs with varying image size
- Modelling
 - Realistic training performance (NVIDIA MLPERF benchmarks)
 - Realistic cloud processing and b/w costs (AMAZON EC2)
- Two accuracies (good, low), three time periods for ILP to plan with varied traffic
- The unplanned variations result in 20% traffic increase

■Simulation environment:

Pyomo (Python) and IBM CPLEX: 2 secs to solve ILP on a quad core CPU@4GHz

■Compare against SotA

- An algorithm assuming only one period planning; the rest of the demands are incrementally served
- An algorithm that incrementally and greedily serves demands one-by-one

Results (Accuracy vs. monetary cost)

- ☐ Proposed algorithm achieves the **best accuracy** coupled with the **lowest monetary cost** in both scenarios
- □ Planning algos have complete view of all demands and make **optimal placement decisions** based on the overall objective
- Larger accuracy targets require expensive allocation decisions
 - Little room for improvement by placement optimization
 - Negligible differences between the algos
- ☐ Scenario B results in better savings for our proposal
 - Additional jobs create more opportunities for better job placement

Results (processing utilization)

- □Common target accuracy for all algos examine GPU utilization
- □ Scenario A: 12.6% and 6.4% less GPU units of our algo compared to the two SotA algos (incremental and one-period solutions)
- ☐Scenario B: Slightly higher savings of our solution
- ☐ The results translate to less energy and fewer resources to achieve the same output

Conclusion & Future Work

□Summary

- We considered the resource allocation problem for distributed computations at edge/cloud in the context of (non) periodic demands.
- We presented a planning algorithm that serves the periodic semi-static demands. We also proposed a traffic predictor and a reconfiguration algorithm that serves the unexpected demands.
- We performed a number of realistic simulation experiments.
- Against 2 SotA solutions under 2 scenarios:
 - best accuracy with the lowest monetary cost for medium accuracy targets
 - less GPU utilization to achieve the same output

■Next steps

- Generalize results on several scenarios/configs
- Cross-validation measurements on a real 5G-testbed

Thank you!

Drainakis Georgios, Software Research Engineer

giorgos.drainakis@iccs.gr

Institute of Communication & Computer Systems (ICCS)

Iroon Politechniou str. 9, NTUA Polytechnic Campus

15773 Zografou, Athens, GR

www.iccs.gr