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Motivation

JINew services utilize edge-device data
* Automotive
* Industry 4.0+
* 5G and beyond

JEnormous amount of time-varying data with
various processing requirements

JCentralized processing
* Processing delays (ML training times)
* Transmission costs
* Storage

INew computing paradigms e.g., edge-cloud
computing

* An opportunity for distributed computation
arises
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Distributed Computation @ IEEEICCC  ComSoc

JProcessing is performed on dedicated edge/cloud
resources

JA job breaks down to several tasks served in a
distributed manner

JAdvantages:
 Make use of powerful computation resources
e Parallelism

A Challenges

* Allocate the appropriate network resources
e Specific architectures e.g., distributed ML tasks

Moot &

* Job requirements Weight
i Averaging (may
Bandwidth
Ed_ge Samples Datasets ML Tasks or ma*.:: not
Processing cost Devices require
aggregator
* The formulation is more complicated assuming time- server)

varying data generation




Contribution @ IEEEICC  ComSoc

JDeveloped resource allocation model for Distributed Computation jobs
assuming time-varying demands

* Jointly considered

* edge and cloud resources
* their performance
 bandwidth and processing monetary costs

JWe consider:

* a multi-period Integer-Linear-Programming (ILP) algorithm to plan periodic demands
e a predictor that estimates temporary data volume fluctuations
e a suitable dynamic reconfiguration algorithm

1 Performed realistic simulations and compared to alternative solutions



Network Scenario @ IEEEICC  ComSoc:

JEdge devices continuously produce data

Data generation is time-varying:
* periodic/expected (e.g., during a day)

* Or unexpected due to (a sequence of) certain
events

JEdge and cloud network

JThe edge network consists of a set of nodes N
with finite resources

JEdge and cloud have different b/w and processing
costs

* Edge has inexpensive b/w and expensive proc.
* Cloud has expensive b/w and inexpensive proc.

JResources to be assigned:
* CPU/GPU, b/w for specific computation accuracies



Resource allocation for periodic 2 :
demands (1) (7= IEEE 1CC
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JAssumptions
* Each device continuously produces data at an average rate measured in samples/sec

 The average rate remains stable (or constrained by a max value known beforehand) during a
number of periods (e.g., three periods during a day)

* Each task has to process all the samples from its devices
* Each task requires specific processing and b/w

 depending on the number of its samples and the requested accuracy

JResource allocation objective:

* Allocate the appropriate resources
e for all the jobs

e for all the assumed time periods
* Minimize the total (b/w and processing) cost of edge and cloud to serve all the jobs

 Maximize the computation accuracy



Resource allocation for periodic 2 :
demands (2) (7= IEEE 1CC
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JThe resource requirements of the jobs are not constant
* Periodic changes throughout the day
* Non-periodic fluctuations

JPeriodic changes are not very large and frequent.
During a 24-h period we can have 2-3 time re-configuration sub-periods
JILP resource allocation during sub-periods

Short-term fluctuations due to special circumstances, e.g., a football game.

AShort term predictor for bursty changes
JA heuristic algorithm that reconfigures the demands based on the prediction



ILP Resource allocation
algorithm

Symbol Description
J Set of jobs
T Set of tasks of job 3
Aje Production rate of task je in samples/sec )
N Set of node of edge network
RG,RB, R® Set of processing, b/w, aggregation resources

of edge node n

Processing and b/w costs at the edge
and cloud respectively

dec Propagation delay of cloud
A Acceptable prop. delay of job j
4% Weight to control optimization objective
A Set of possible accuracies of ML jobs
a; An accuracy of a job j ranging from O to 1
{1;”“*” The minimum acceptable accuracy of a job j
| pjea Binary variable equal to 1 if task
n ge 1s served at node n, period p, accuracy a
Epjm Binary variable equal to 1 if task
¢ je 1s served at period p, accuracy a
k The total monetary cost to serve all jobs
A set of jobs that must not migrate locations
S ¢ .
rom one period to another
PC A set of all possible combinations of
successive periods p, p’
. The migration cost of each task je from a
pp’ period p to a period p’

. Obijective:

1 Monetary cost — sum of:
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min (wlk — Wol + W3 z m%;,)

multi-criterion optimization problem

minimize the total cost to serve the jobs

minimize the migration cost (tasks moving

from one location)

maximize accuracy

= LT T TE (s
J e

CGGpjea)+£pjea)\Je(C Bpjea CgG'pjea))

edge and cloud bandwidth (b/w)

plus the edge and cloud processing cost

for all the task jobs, for all the accuracy

options and for all the periods

. Accuracy — mean accuracy of all tasks

a = (Z 5pjea049 T fpjeaoﬁ)

J tje
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Traffic prediction algorithm (1) @ IEEE ICC’

JData generation can have unplanned variations due to special events e.g., a
football match

JdWe employ a traffic predictor
* Input: historical data
* Qutput: estimates a number of future time steps

"%‘5 o VAR N,
- -




Traffic prediction algorithm (2)

JPrediction objective
* Data generation rate

* Requiredre

ASeveral predict

sources for each task

ion algorithms

* Auto-regression
* Traditional ML techniques e.g., random forest

* Deep NNse.g., LSTM

JRefs

* A.S. Weige
understanc

nd, “Time series prediction: forecasting the future and
ing the past,” Routledge, 2018.

* N.I. Sapankevych, S. Ravi, “Time series prediction using support
vector machines: a survey,” IEEE Computational Intellig. Mag., 4(2),

2009.
* Y. Hua, eta

., “Deep learning with long short-term memory for time

series prediction,” IEEE Comm. Mag., 57(6), 114-119, 2019.
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Reconfiguration Algorithm @ IEEE ICC’

JUses the estimated (future/projected) requirements as input

If the allocated resources are not sufficient -> reallocates the resources w.r.t.

* Heuristic approach - Avoid moving tasks to different locations

* Unless necessary (according to the SLAs)
* and/or reconfiguration costs (e.g., % change of resources, additional monetary cost etc.)

JWhen the requirements return to the normal planned values
* the algorithm releases the additional resources
* preserves the location of the tasks



Results @ IEEEICC  ComSoc

dSetup
* We assumed a 10-node edge network with finite resources
* Two scenarios: [400, 600] image recognition ML jobs with varying image size

* Modelling

e Realistic training performance (NVIDIA MLPERF benchmarks)
* Realistic cloud processing and b/w costs (AMAZON EC2)

* Two accuracies (good, low), three time periods for ILP to plan with varied traffic
* The unplanned variations result in 20% traffic increase

JSimulation environment:
* Pyomo (Python) and IBM CPLEX: 2 secs to solve ILP on a quad core CPU@4GHz

JCompare against SotA

* An algorithm assuming only one period planning; the rest of the demands are incrementally
served

* An algorithm that incrementally and greedily serves demands one-by-one



Results (Accuracy vs. monetary
cost)
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JProposed algorithm achieves the best accuracy coupled with the lowest monetary cost in both scenarios

dPlanning algos have complete view of all demands and make optimal placement decisions based on the
overall objective

JLarger accuracy targets require expensive allocation decisions
* Little room for improvement by placement optimization
* Negligible differences between the algos

Scenario B results in better savings for our proposal
e Additional jobs create more opportunities for better job placement



Results (processing utilization)

1250

1200

1150

1100

1050

Number of GPU units

1000

950

Scenario A

proposed

one-period only

incremental

Number of GPU units

2000
1800
1600
1400
1200
1000
800
600
400

200

@ IEEEICC' (o

Scenario B

proposed one-period only incremental

JCommon target accuracy for all algos — examine GPU utilization

AScenario A: 12.6% and 6.4% less GPU units of our algo compared to the two SotA algos

(incremental and one-period solutions)

Scenario B: Slightly higher savings of our solution

JThe results translate to less energy and fewer resources to achieve the same output
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Conclusion & Future Work @ IEEE ICC’

JdSummary

* We considered the resource allocation problem for distributed computations
at edge/cloud in the context of (non) periodic demands.

* We presented a planning algorithm that serves the periodic semi-static
demands. We also proposed a traffic predictor and a reconfiguration
algorithm that serves the unexpected demands.

 We performed a number of realistic simulation experiments.

* Against 2 SotA solutions under 2 scenarios:

* best accuracy with the lowest monetary cost for medium accuracy targets
* less GPU utilization to achieve the same output

JINext steps
* Generalize results on several scenarios/configs
* Cross-validation measurements on a real 5G-testbed
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Questions? @ IEEE ICC’

Thank you!

Drainakis Georgios, Software Research Engineer

giorgos.drainakis@iccs.gr

Institute of Communication & Computer Systems (ICCS)
lIroon Politechniou str. 9, NTUA Polytechnic Campus

15773 Zografou, Athens, GR
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