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▸Cooperative, connected and 
automated mobility (CCAM) 
services rely on mobile 
network connectivity.

▸No QoS guarantees - 
Unexpected network 
conditions 

▸Service degradation threats 
safety & user-experience.
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Making 5G proactive for the automotive industry
The concept of Predictive QoS (pQoS) by 5G Automotive Association (5GAA)
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Ref: https://5gaa.org/5gaa-releases-white-paper-on-making-5g-proactive-and-predictive-for-the-automotive-industry/
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▸Volatility of cellular QoS parameters
- AI/ML for efficient pQoS

▸(Traditional) Centralized pQoS
- Central server collects large volumes of client data

- Centralized training of pQoS models

▸(A trend towards) Distributed pQoS
- Collaborative training by the vehicle-clients

- Google’s Federated Learning Framework (FL)

• Data remains at the clients at all time – PRIVACY!

• Communication cost reduction

• Scalability & security
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Towards distributed QoS prediction
The case of Federated Learning (FL)

Ref: https://federated.withgoogle.com/
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▸Concept drift: client data distribution 
changes due to seasonality, trends, user 
habit variations, etc.

▸Model drift: degradation of ML model’s 
accuracy due to concept drift

▸pQoS is shown to experience frequent and 
severe drifts as a result of:

- Network/HW changes/upgrades

- Changes of active users - population

- User mobility patterns

- Environmental changes
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Training in the course of time
The problem of Concept Drift
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▸Research Questions
- How to detect drift in FL, subject to FL deployment restrictions/privacy?

- How to effectively mitigate drift in FL, w.r.t. the induced resource consumption?
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SotA: Managing concept drift

Concept Drift 
Management

Centralized AI/ML
Federated AI/ML

Techniques Challenges

Detection
Access to raw data: 

statistical tests

Data sharing Privacy violation

Client-level detection Resource-constraint clients

Server-level detection Low detection accuracy

Mitigation
Re-training, model 

tuning, etc.

Personalized Learning Multiple model maintenance

Async FL Extra layer of complexity

Continuous FL Waste of network resources
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▸FL training in equally timed rounds R

▸In each round random selection of
- K clients for training (trainers) 
- M clients for inference/testing (testers).

▸Round termination
- Server collects local models from testers for 

aggregation
- Server collects inference results from trainers 

for evaluation report

▸FL termination criteria
- convergence/accuracy threshold
- total number of rounds
- timeout

▸No drift management mechanism!
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Vanilla FL framework for pQoS
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DareFL: Main concepts

Drift-aware resource-efficient 
algorithm for FL (DareFL)

▸Active rounds: training and testing

▸Idle rounds: testing only – clients save on their 
resources without sacrificing ML accuracy

• Timely halt of training upon convergence
• Reduce resource consumption waste

• Accurate drift detection 
• Orchestration of retraining for mitigation

Stop training upon convergence Restart training upon drift
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DareFL: Algorithm description

KPIs* from K testers:
KPI list=[kpi-1, kpi-2, ..., kpi-K]

Train 
(active 
round)

Drift 
detected 

?

Converged?
Pause 

training (idle 
round)

Drift-Detection (DD) algorithm

Convergence-Detection (DD) algorithm
*kpi stands for the % improvement of the ML 
model vs. a naïve predictor

TRUE

TRUE

FALSE

FALSE
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Simulation Environment

▸Synthetic pQoS datasets with concept drift
- Network and traffic co-simulation

- 2x (public*) distinct drift scenarios/datasets inspired by 
Ericsson’s Mobility report 2022

• Network-driven (Sc1)

• User behavior-driven (Sc2)

▸(Open-source**) Distributed ML simulator
- Pytorch-based implementation

• Training and inference

- Resource consumption modelling based on commercial 
product specs and benchmarking

• CPU/GPU processing speed & energy consumption

• 5G modem transmission speed & cost for 
uplink/downlink

Network simulator: Simu5G/OMNET

Traffic mobility simulator: SUMO/OSM

*   https://zenodo.org/records/11084689

** https://github.com/gdrainakis/distributed_pqos
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▸pQoS AI/ML task: Throughput Prediction 
(LSTM predictor)

▸Drift: round 30 (half-time)

▸Against SotA
- Vanilla FL: 50% RMSE increase – cannot adapt to 

drift

- Continuous FL (always-on): Optimal performance 
due to continuous training

- AdaptFL*: Similar to ConFL

- DareFL:

• Sc1 - Max diff<10%

• Sc2 - Max diff<5%
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Results – Accuracy Metrics vs. SotA

Sc1: RMSE comparison

Sc2: RMSE comparison* [Canonaco et al. Adaptive federated learning in presence of concept drift] 
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Results – Resource Consumption vs. SotA

76% lower 

communication costs

68% lower energy 

costs in the clients 

74% lower energy 

costs in the server 

idle rounds
idle rounds
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▸Our contributions:
- DareFL – concept drift management 

algorithm for distributed pQoS
• Fully-aligned to FL principles

- Similar accuracy to SotA – save up to 70% 
on the network resources

- Open-source FL simulator
- Public synthetic datasets for pQoS under 

drift

▸Next steps:
- Generalize results on multiple drift 

scenarios
- Cross-validation measurements on a real 

5G-testbed
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Conclusion & Future Work

ICCS 5G-Testbed
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Thank you!

Drainakis Georgios, Software Engineer 

giorgos.drainakis@iccs.gr
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15773 Zografou, Athens, GR
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