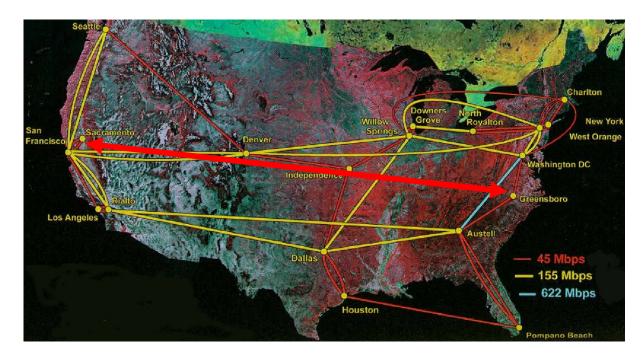
Low-cost Enhancement of the Intra-domain Internet Robustness Against Intelligent Node Attacks

Panagiotis Pantazopoulos

Ioannis Stavrakakis

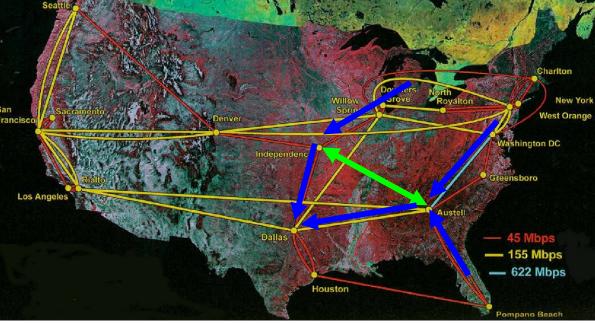
Department of Informatics and Telecommunications, Advanced Networking Research Group National & Kapodistrian University of Athens, Email: {ppantaz, ioannis}@di.uoa.gr

Modeling Internet node attacks


- Internet malicious activities are mostly manifested through node attacks
- "Intelligent" attacks usually consider the highest-degree nodes (hubs) as favorable targets
 - Akamai : more than 60% of 497 attacks orchestrated in the State of California involved subsets of vulnerable (hub-node) servers
- Typical countermeasure against node attacks: enhance connectivity adding redundancy (in the form of extra links)
- Simple heuristics have been mostly introduced to drive link-additions
 - Connect minimum/maximum Degree Centrality (DC) nodes
 - Connect minimum/maximum Betweenness Centrality (BC) nodes

Improving the so-far best link-addition heuristic

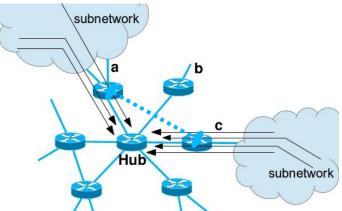
- MinDC heuristic adds each of the extra links between the nodes exhibiting the lowest degree
 - The most effective approach in terms of connectivity of the enhanced network (for synthetic and real-world Internet maps)
 - However, no constraints posed on the distance of the linked node pairs!
- MinDC link addition:
 Connect Sacramento
 with Greensboro!
- Can we lower that cost and at the same time preserve high connectivity?



HELLENIC REPUBLIC National and Kapodistrian University of Athens

(Revisited) problem statement and relevant intuition

- Device a link-addition heuristic that adds *k* links in the network such as:
 - The connectivity of the enhanced network is improved in face of node attacks
 - The implementation cost associated with the link length be minimized
- Idea: Place each link only between the first neighbors of the network hubs (e.g., Dallas)
- Identify first neighbors
 that help establish many
 communication paths
 towards the hub
- Thus link Independence with Austell!



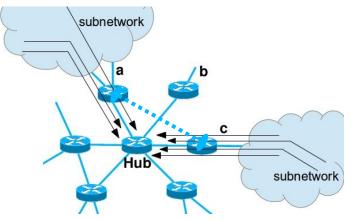
HELLENIC REPUBLIC National and Kapodistrian University of Athens

Link-utility metric to select which first neighbors to connect

- Which first neighbors of a hub to connect?
 - Those that aggregate the most shortest paths from the rest of the network

- Establishing a link between nodes 'a' and 'c' a large number of nodes are expected to remain connected should the Hub be removed
- Conditional betweenness assesses to what extend a node acts as a shortest path aggregator

$$CBC(n;t) = \sum_{s \in V \setminus t, n \neq t} \frac{\sigma_{st}(n)}{\sigma_{st}}$$


ratio of all shortest paths σ_{st} towards target node t, over those that that pass through node n $\sigma_{st}(n)$

Link-utility metric to select which first neighbors to connect

 The sum of the CBC values of each pair of the first neighbors of a hub is a meaningful measure of the utility of the corresponding link

- Given the H top hubs, how to assign the available k links to each hub?
- Link-utility metric $LU_{Hub}^{ij} = \frac{CBC(i; Hub) + CBC(j; Hub)}{\sum_{n \in Ng} CBC(n; Hub)} \cdot \frac{DC(Hub)}{DC_{max}}$ Proved to be constant for each network node As attacks take place

As attacks take place over nodes of decreasing degree, higher utility is assigned to relatively high-degree nodes

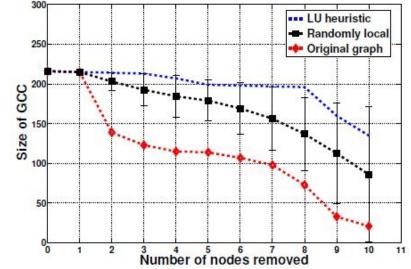
• Assignment: Use one link to connect each of the k top LU node pairs

Intra-domain network topologies

- mrinfo topologies (76-1240 nodes, 11 snapshots)
 - Snapshots correspond to Tier-1 and Transit ISPs
 - Collected during 2004-08 using a multi-cast discovering tool
- Rocketfuel topologies (41-2515 nodes, 6 snapshots)
 - Widely used in experimental studies
 - 800 vantage points as traceroute sources
- Topology-Zoo (27-92 nodes, 5 snapshots)
 - 2011 dataset reported directly by network operators of academic and research networks
 - Geographical coordinates for all their nodes

Experimentation methodology

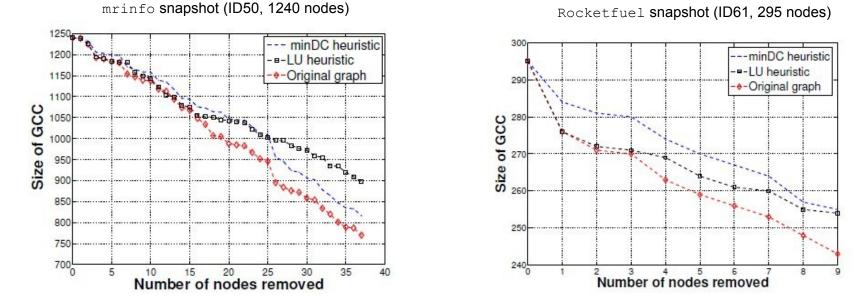
- Compare the introduced LU-heuristic against the so-far most effective minDC (connects minimum degree nodes *regardless of* their location)
- Enhance each topology adding an extra 5% of its total links
- "Attack level": percentage of total node removed (set to 3%)
 - LU-heuristic: first we set "attack level" = *H* (as if the number of hubs can be estimated), then we relax this assumption
- Study connectivity of the enhanced topology as node attacks evolve in terms of:
 - Giant connected component (GCC)
 - Number of components
 - Average shortest-path length


Assumption: cost is proportional to length Valid yet not always accurate

• Study implementation cost in terms of the length of added links

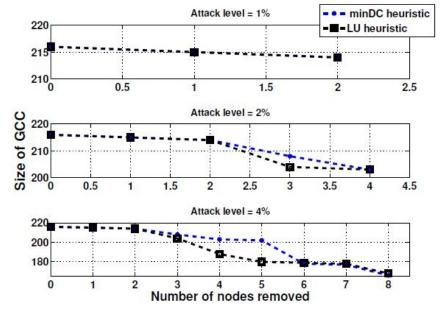
Linking high-utility first neighbors: proof-of-concept

- Does the LU-heuristic identify the appropriate first neighbors of a hub?
- Comparison with random selection of the first neighbors in terms of connectivity (GCC size)
- mrinfo snapshot (216 nodes)
- Attack level ~5%
- Add an extra 5% of the total links


- Results validate:
 - the intuition about the criticality of neighbors establishing many paths towards a hub
 - the effectiveness of the link-utility to capture this notion

Robustness comparison of enhanced networks (1/3)

- GCC size of the enhanced networks by minDC and LU-heuristic
- The two heuristics perform almost similarly (difference is no larger than 3.5%)
- The original network suffers from rapid fragmentation


• The LU-heuristic remains effective regardless the network size!

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Robustness comparison of enhanced networks (2/3)

- Realistic malicious attacks would target 2 or 3 network hubs
- It takes a higher number of node removals for the GCC differences to become significant
- As the number of removed nodes (*e.g.,* attack level) increases, the number of the considered LU values increases as well

mrinfo snapshot (ID21, 216 nodes)

• However the distribution of the *k* links to the H hubs performed by the LU-heuristic, remains effective

Robustness comparison of enhanced networks (3/3)

- General case: parameter *H* is not equal to the attack level, but to the total nodes (*i.e.*, the number of attacked hubs is not known/estimated)
- Compute the relative GCC difference as node / is removed $\Delta^l = |GCC_{minDC}^l - GCC_{LU}^l| \cdot 100/|V|$
- For each topology we have $S_{DIF} = \{\Delta^1, .. \Delta^m\}$ with m = 3% |V|

	Dataset ID							
	33	20	9	61	62	63		
$mean\{S_{DIF}\}\ (\%)$	0.68	3.92	4.1	5.8	7.9	0.66		
$max\{S_{DIF}\}\ (\%)$	1.14	19.2	7.2	13.9	14.5	1.98		

• Link utility uses the ratio DC(*I*)/DCmax to appropriately assign the *k* links

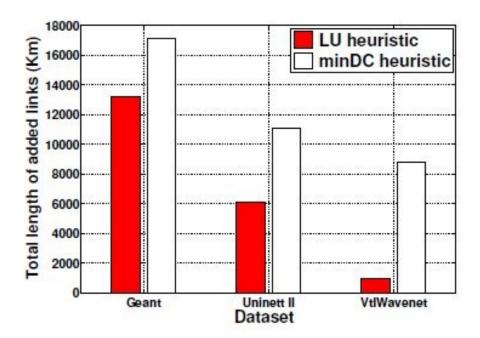
(*i.e.*, few links to small degree nodes)

 Looking closer: heuristics achieve similar connectivity levels for the first few removals
 Below 7% across the 10 first removals

How much do the link-addition heuristics cost?

- Topology-Zoo dataset: parse it to retrieve each nodes coordinates
- Distance of node pairs over the globe determined by an online tool*
- Detailed results over the GEANT research network:
 - The minDC heuristic connects nodes of longer distance
 - LU-heuristic yields 1.3 times lower cost than minDC

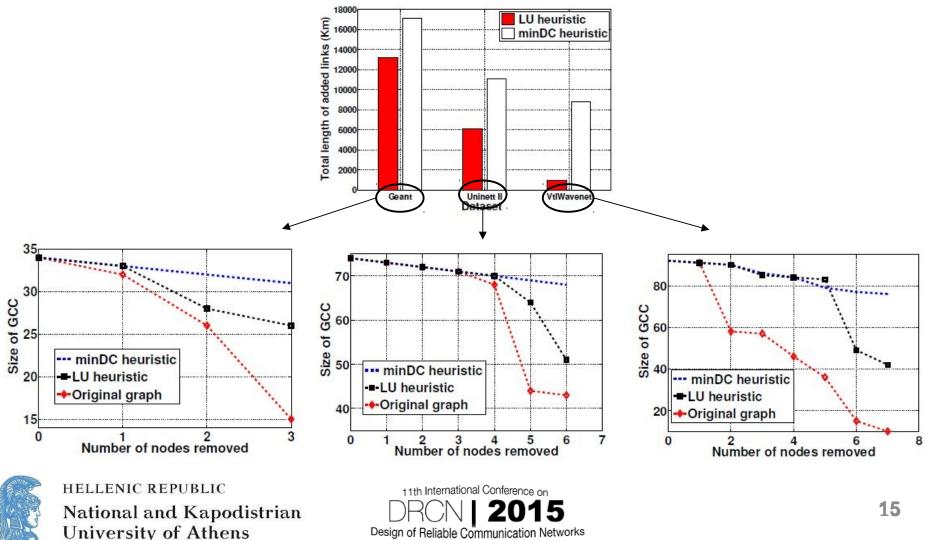
minDC heuristic				LU-heuristic					
Node pair connected	Longitude	Latitude	Link length (km)	Node pair connected	Longitude	Latitude	Link lenght (km)		
27	-21.89541	64.13548	2270	4	16.96667	1.0308	2733		
32	22.26869	60.45148		13	34.75	31.5			
13	34.75	31.5	4063	13	34.75	31.5	3195		
28	-6.26719	53.34399		3	12.56553	55.67594			
19	-9.13333	38.71667	2094	14	14.42556	35.90917	1712		
23	14.50513	46.05108		12	33.36667	35.16667			
27	-21.89541	64.13548	1492	1	4.88969	52.37403	2147		
28	-6.26719	53.34399		26	37.61556	55.75222			
13	34.75	31.5	3778	12	33.36667	35.16667	2142		
30	25.46816	65.01236		24	14.28611	48.30639			
25	26.8	53.76667	727	1	4.88969	52.37403	710		
26	37.61556	55.75222		6	14.42076	50.08804			
7	6.13	49.61167	2727	6	14.42076	50.08804	596		
12	33.36667	35.16667		7	6.13	49.61167			
		(Total length: 17151 km			(Total length: 13235 km		


*U.S. National Weather Service (NWS) http://www.nhc.noaa.gov/gccalc.shtml

HELLENIC REPUBLIC National and Kapodistrian University of Athens

How much do the link-addition heuristics cost?

- Similar trend over the rest snapshots: LU-heuristic yields considerably lower cost
- Noteworthy result: 8.8 times lower cost than minDC over the cross-European VtlWavenet network (100 nodes)



HELLENIC REPUBLIC National and Kapodistrian University of Athens

Comparison in terms of cost and connectivity

• The LU-heuristic keeps the network connectivity at (almost) the same GCC level as the minDC

Noteworthy remarks

- Link-utility requires global network information: Is it feasible?
 - We have adopted a network operator's view (e.g., an ISP)
 - Typically an ISP possess global topological knowledge
- What is the CBC computational cost?
 - Offline CBC computations with respect to the H hubs in order not to place extra burden to the link addition
 - H·O(|E|) time complexity, H≤|V| (length and # of shortest paths from a source to all nodes takes O(|E|) for unweighted graphs)
- Do the presented results realistically reflect Internet robustness?
 - A question of how accurate are the network discovery tools
 - · Highest credibility achieved by using three different datasets
 - Our results are "worst-case" due to the underlying hidden redundancy

Take-home results

- We *revisit* the mitigation of Internet hub-node attacks to account for costs : with a budget of *k* links, identify the network node-pairs that their connection
 - Preserves high connectivity levels
 - Yields low cost (in terms of link length)
- Contrary to previous approaches we by-design restrict the nodes-to-be-linked to the first neighbors of each hub
- We introduce a *novel* link-utility metric that uses centrality insights to quantifies whether a node pair aggregates many paths towards a hub
- Employing more than 20 real-world Internet topologies we show that the proposed link-addition heuristic:
 - achieves similar connectivity levels to the so-far winner method
 - induces up to 8 times lower cost

Thank you!

Questions?

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Back up slides

HELLENIC REPUBLIC National and Kapodistrian University of Athens

HELLENIC REPUBLIC National and Kapodistrian University of Athens