Comparative Assessment of Centrality Indices and Implications on the Vulnerability of ISP Networks

G. Nomikos¹, P. Pantazopoulos¹, M. Karaliopoulos², I. Stavrakakis¹

¹ Department of Informatics and Telecommunications
National & Kapodistrian University of Athens
{gnomikos, ppantaz, ioannis}@di.uoa.gr

² Centre for Research and Technology-Hellas
Information Technologies Institute, Volos, Greece
mkaraliopoulos@iti.gr
Social Network Analysis: 'new' trend - 'old' ideas
Social Network Analysis: 'new' trend - 'old' ideas

- **SNA**: Interdisciplinary framework to process social info
Social Network Analysis: 'new' trend - 'old' ideas

- **SNA**: Interdisciplinary framework to process social info
- Sociologists studied professional networks:
Social Network Analysis: 'new' trend - 'old' ideas

- **SNA**: Interdisciplinary framework to process social info

- Sociologists studied professional networks:
 - Bavelas (1950) invented *the notion of centrality* to quantify the importance of an “actor” with respect to its social interconnections
Social Network Analysis: 'new' trend - 'old' ideas

- **SNA**: Interdisciplinary framework to process social info

- Sociologists studied professional networks:
 - Bavelas (1950) invented *the notion of centrality* to quantify the importance of an “actor” with respect to its social interconnections

- A multitude of centrality *indices* were proposed until late 70s
- Interest revived in late 90s mainly by the work of physicists
- Lately, centrality insights have been used for more efficient network protocol design
Studying the multiple instances of centrality

Motivation: given that most of the proposed centrality indices are heuristic

- How do they compare in their assessments about the relative importance of Internet nodes?
- Which one(s) may be “the right ones” for more reliable predictions of network vulnerability?

Objectives:

- Study and classify the variety centrality indices proposed over the last fifty years.
- Assess the consistency of Internet node rankings induced by those indices.
- Compare indices with respect to their capacity to reveal Internet vulnerability to node attacks (i.e. removals).
A systematic study of the multiple centrality instances

- Part I
 - Thorough review and novel classification

- Part II
 - Correlation study over a broad set of ISP network topologies

- Part III
 - Impact of centrality-driven node removals on the connectivity and traffic-carrying capacity of ISP network topologies
A novel centrality classification scheme

- Characterize centrality indices along a number of attributes
- Similar classification for graph centrality indices
A novel centrality classification scheme

Seven popular centrality indices categorized under the proposed scheme:

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betweenness (BC)</td>
<td>The extent to which (i) lies in shortest paths linking all network pairs.</td>
</tr>
<tr>
<td>Closeness (CC)</td>
<td>How fast (i) reaches all other network nodes in a connected graph.</td>
</tr>
<tr>
<td>Harmonic (HC)</td>
<td>How fast (i) reaches all other network nodes in a connected/disconnected graph.</td>
</tr>
<tr>
<td>Degree (DC)</td>
<td>Assign importance to (i) according to the number of its immediate neighbors.</td>
</tr>
<tr>
<td>Eccentricity (ECC)</td>
<td>(i) is important if its maximum distance to any node is close to the graph’s radius.</td>
</tr>
<tr>
<td>Eigenvector (EC)</td>
<td>Assign importance to (i) if it has important neighbors.</td>
</tr>
<tr>
<td>PageRank (PG)</td>
<td>Assign importance to (i) proportionally to the importance of those pointing to (i).</td>
</tr>
</tbody>
</table>
A novel centrality classification scheme

Seven popular centrality indices categorized under the proposed scheme

<table>
<thead>
<tr>
<th>Centrality Index</th>
<th>Context</th>
<th>Type of underlying graph</th>
<th>Computational aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>path</td>
<td>distance</td>
</tr>
<tr>
<td>Betweenness (BC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Closeness (CC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Degree (DC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Eccentricity (ECC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Eigenvector (EC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Harmonic (HC)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PageRank (PG)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Betweenness (BC): The extent to which i lies in shortest paths linking all network pairs.
Closeness (CC): How fast i reaches all other network nodes in a connected graph.
Harmonic (HC): How fast i reaches all other network nodes in a connected/disconnected graph.
Degree (DC): Assign importance to i according to the number of its immediate neighbors.
Eccentricity (ECC): i is important if its maximum distance to any node is close to the graph’s radius.
Eigenvector (EC): Assign importance to i if it has important neighbors.
PageRank (PG): Assign importance to i proportionally to the importance of those pointing to i.

26th International Teletraffic Congress
September 9th-11th, 2014, Karlskrona, Sweden
A quick look at correlation and network vulnerability studies

- Correlation between centrality indices
 - Linear correlations over synthetic graphs and a couple of real world topologies [1]
 - BC-DC correlation results over AS-level snapshots [2]

- Network vulnerability to centrality-driven attacks
 - Most of the studies concern synthetic graphs e.g. [3]
 - The impact of the attack is assessed only by connectivity measures [4]

A systematic study of the multiple centrality instances

- Part I
 - Thorough review and novel classification

- Part II
 - Correlation study over a broad set of ISP network topologies

- Part III
 - Impact of centrality-driven node removals on the connectivity and traffic-carrying capacity of ISP network topologies
Internet router-level topologies

- mrinfo topologies (76 - 1300 #nodes, 14 snapshots)
 - Snapshots correspond to Tier-1 and Transit ISPs
 - Collected during 2004-2008 using a multicast discovering tool

- Rocketfuel topologies (40 - 2000 #nodes, 9 snapshots)
 - Widely used in experimental studies
 - 800 vantage points as traceroute sources

- Caida topologies (2000-82000 #nodes, 7 snapshots)
 - Traceroute probes to randomly chosen destinations from 54 monitors worldwide

- Topology Zoo (20 - 74 #nodes, 18 snapshots)
 - Capacitated snapshots reported directly by network operators of academic and research networks
Capturing associations between node rankings

- Spearman correlation coefficient

\[\rho_V(C_1, C_2) = 1 - \frac{6 \sum_{u \in V} (r_{C_1}(u) - r_{C_2}(u))^2}{|V|(|V|^2 - 1)} \]

- \(r_{C_i} \): rank of each node when ordered according to centrality \(C_i \)
- Values lie in \([-1, 1]\)

- Percentage overlap

\[o_{V}(C_1, C_2; k) = \frac{|\{v \in V : r_{C_1}(v) \leq k\} \cap \{v \in V : r_{C_2}(v) \leq k\}|}{k} \cdot 100\% \]

- Overlap between the sets of the \(k \) most highly ranked nodes by the two centrality indices
- Values lie in \([0, 100]\)
Rank- correlation strength results

- All centrality pairs are positively correlated

- Graph-based illustration of the rank correlation strength among the considered indices (similar trends across datasets)

 - Solid lines: Spearman coefficient ρ_v in [0.7-1]
 - Dashed lines: Spearman coefficients ρ_v in [0.3-0.7]
Some noteworthy relations

- Eccentricity vs. Closeness (*strong*)
 - It can be proved for trivial graphs (line, rectangular grid)

- Betweenness vs. Degree centrality (*strong*)
 - In agreement with earlier studies that report positive Pearson correlation over a wide range of networks

- PageRank vs. Degree centrality (*strong*)
 - PageRank has been shown to be statistically close to the degree centrality

- PageRank vs. Eigenvector (*weak*)
 - PG utilizes the damping factor d to determine the jump probability
Top-5% overlap results

- Motivation: network protocols that seek to exploit a small set of the most central nodes

- Almost all centrality pairs found earlier to be strongly correlated appear more weakly associated in terms of overlap values

- Only two centrality pairs *i.e.*, PG-DC and HC-CC combine high overlap with strong rank correlation

\[
\begin{array}{c}
\text{EC} & \text{ECC} & \text{CC} & \text{HC} & \text{BC} & \text{DC} & \text{PG} \\
\hline
\text{CC} & \text{EC} & \text{ECC} & \text{HC} & \text{BC} & \text{DC} & \text{PG} \\
\text{HC} & \text{CC} & \text{ECC} & \text{BC} & \text{DC} & \text{PG} & \text{EC} \\
\text{BC} & \text{HC} & \text{CC} & \text{DC} & \text{PG} & \text{EC} & \text{ECC} \\
\text{DC} & \text{BC} & \text{HC} & \text{PG} & \text{EC} & \text{ECC} & \text{CC} \\
\text{PG} & \text{DC} & \text{BC} & \text{HC} & \text{EC} & \text{ECC} & \text{CC} \\
\text{EC} & \text{PG} & \text{DC} & \text{BC} & \text{HC} & \text{CC} & \text{ECC} \\
\end{array}
\]

- \(\rightarrow\) >70%
- \(--\) 40-70%
- \(\cdots\) < 40%
Top-5% overlap results

- Motivation: network protocols that seek to exploit a small set of the most central nodes

- Almost all centrality pairs found earlier to be strongly correlated appear more weakly associated in terms of overlap values

- Only two centrality pairs *i.e.*, PG-DC and HC-CC combine high overlap with strong rank correlation

\[\text{Top-5\% overlap results}\]

\[\text{rank-correlation graph}\]
High correlation does not necessarily mean high top-k overlap

- BC-DC pair: nodes with the lowest DC value exhibit the lowest BC as well

- Nodes with DC=1 are expected to positively contribute to the BC-DC correlation

- The top DC and BC nodes do not coincide

- High correlation is mainly due to nodes of lowest rank
High correlation does not necessarily mean high top-k overlap

- BC-DC pair: nodes with the lowest DC value exhibit the lowest BC as well
- Nodes with DC=1 are expected to positively contribute to the BC-DC correlation
- The top DC and BC nodes do not coincide
- High correlation is mainly due to nodes of lowest rank

<table>
<thead>
<tr>
<th>Dataset-ID</th>
<th>BC-DC Spearman Coefficient</th>
<th>Top-5% Overlap</th>
<th>Fraction of nodes having DC=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAIDA-1557</td>
<td>0.95</td>
<td>53%</td>
<td>54%</td>
</tr>
<tr>
<td>RocketFuel-1239</td>
<td>0.96</td>
<td>85%</td>
<td>82%</td>
</tr>
<tr>
<td>MrInfo, Tier1-1239</td>
<td>0.86</td>
<td>54%</td>
<td>43%</td>
</tr>
<tr>
<td>MrInfo, Transit-3292</td>
<td>0.94</td>
<td>40%</td>
<td>32%</td>
</tr>
</tbody>
</table>
A systematic study of the multiple centrality instances

- Part I
 - Thorough review and novel classification

- Part II
 - Correlation study over a broad set of ISP network topologies

- Part III
 - Impact of centrality-driven node removals on the connectivity and traffic-carrying capacity of ISP network topologies
Centralities in the Internet vulnerability context

• We use the ranking that the seven considered metrics yield as criteria for Internet node attacks (*i.e.*, removals)

• We assess the impact of removing 5% of the most central network nodes in terms of
 • Network Connectivity
 • Giant Connected Component (GCC)
 • Number of connected components
 • Average shortest-path length

• Network “Throughput”
 • Traffic-serving capacity of the network
Connectivity results: Giant Connected Component

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Giant Connected Component

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)

1. ECC, the index with the less dramatic impact
Connectivity results: Giant Connected Component

1. ECC, the index with the less dramatic impact

2. PG-DC, CC-HC in good agreement with the strong correlation earlier observed

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Giant Connected Component

1. ECC, the index with the less dramatic impact

2. PG-DC, CC-HC in good agreement with the strong correlation earlier observed

3. BC-DC, dissimilar impact \(w.r.t \) the rank-correlation and top-5% overlap

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Giant Connected Component

1. ECC, the index with the less dramatic impact

2. PG-DC, CC-HC in good agreement with the strong correlation earlier observed

3. BC-DC, dissimilar impact w.r.t. the rank-correlation and top-5% overlap

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Number of Connected Components

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Number of Connected Components

1. ECC, same behavior as previously observed

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Number of Connected Components

1. ECC, same behavior as previously observed
2. PG-DC (dominant in terms of partitioning), CC-HC in good agreement with the strong correlation earlier observed

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
1. ECC, same behavior as previously observed

2. PG-DC (dominant in terms of partitioning), CC-HC in good agreement with the strong correlation earlier observed

3. BC-DC, dissimilar impact w.r.t. the rank-correlation

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: Average shortest-path length

Average shortest-path length does not offer a clear view

A twofold behavior:
Average path increases up to a point; further removals create single isolated nodes

Rocketfuel - AS1239, Size: 7303 – 365 removed nodes (5%)
Connectivity results: local vs. global indices

- The removals of the most central nodes affect differently the network connectivity
- Envelope plot to mark the best- and worst-case for the connectivity metric

Where in this envelope the metric values corresponding to Degree Centrality, lie?

- Normalized distance metric over network G for centrality c and a set K of removed nodes

\[IF_G(c) = \frac{1}{|K|} \sum_{k \in K} \frac{|m(k;c) - m_{we}(k)|}{|m_{bc}(k) - m_{we}(k)|} \]
Connectivity results: local vs. global indices

- $IF_G(k;c)$ takes values in $[0,1]$
- Plot the empirical probability mass of IF_G
- Over CAIDA, DC closely approximates the global metric with the most dramatic connectivity impact
- Over the other two datasets, DC cannot offer an effective approximation
Centrality-driven node removals and “Network throughput”

• Impact of centrality-driven node removals on the network traffic serving capacity

• One way to do it: Employ traffic matrices and then solve the Multicommodity Flow Problem

• Limitations:
 • Traffic matrices are rarely known a-priori,
 • Variations over time
 • MCF problem is NP-complete

• A simpler approach: Compute the sum of maximum flows over all network node pairs
 • This sum is a very loose upper bound of traffic load that can be simultaneous served by the network
“Network throughput” results

- Reduction in the aggregate max-flow as nodes are removed varies widely.
- Indices with high top-k overlap impact the accommodated traffic similarly.
- Highest resilience against the ECC-driven removals.
- The locally-computed DC can approximate the global index with the worst impact over the maximum flow.
Conclusions (1/2)

- A plethora of centrality indices have been proposed (since 1950)
 - Concept borrowed from Social Network Analysis and increasingly used in network protocol design
 - Our starting point: a novel classification scheme

- Correlation study between the seven most popular indices over ISP networks
 - Certain pairs found to be highly correlated
 - CC-HC, PG-DC (Expected)
 - BC-DC, ECC-CC (Not so trivial)
 - Top-5% overlap reveals more loose association
 - **Warning**: correlation is typically high but this is not uniform over the full ranking
Conclusions (2/2)

- Vulnerability of ISP networks to centrality-driven node attacks
- Network connectivity:
 - Centrality index pairs may exhibit dissimilar impact despite their high rank-correlation
 - ECC is consistently the index with the least impact
 - It is topology-dependent to approximate the (global) index with the worst impact using the locally-computed DC

- Traffic-carrying capacity:
 - Centrality pairs with high top-5% overlap impact the accommodated traffic in similar ways
 - DC can approximate closely the index with the most dramatic impact
Thank you!
Thank you!

Questions?
Back up slides
Definitions of seven popular centrality indices

- Degree Centrality
 \[C_i^D = \frac{\text{deg}(i)}{N-1} \]

- Betweenness
 \[C_i^B = \frac{2}{(N-1)(N-2)} \sum_{j,k \in G, j \neq k \neq i} \frac{n_{jk}(i)}{n_{jk}} \]

- Closeness
 \[C_i^C = \frac{N-1}{\sum_{j \in G, j \neq i} d_{ij}} \]

- Harmonic
 \[C_i^H = \frac{1}{N-1} \sum_{j \in G, j \neq i} \frac{1}{d_{ij}} \]

- Eigenvector
 \[C_i^E = \frac{1}{\lambda} \sum_{j \in G} a_{ij} \cdot x_j \]

- PageRank
 \[C_i^{PR} = \frac{1-d}{N} + d \sum_{v \in B_i} \frac{R(v)}{L_v} \]

- Eccentricity
 \[C_i^{Ecc} = \frac{1}{\max_{j \in V} d(i,j)} \]

-N: the total number of nodes
-d_{ij}: geodesic path from i to j
-d: damping factor (equals 0.8)
-a_{ij} adjacency matrix
-\lambda, x eigenvalue & eigenvector respectively
-L_v out degree of page v
How does the degree distribution relate to correlation?

- High EC-CC correlation has been reported for synthetic scale-free graphs.
 - AS3257: Pearson $r= 0.65$ Spearman $\rho_v = 0.88$
 - AS1267: Pearson $r= 0.78$ Spearman $\rho_v = 0.96$

- The actual association between two metric variants is not determined solely by the degree distribution.