
IWSOS, 9-10th of May, 2013
Palma de Mallorca

On the Local Approximations of Node 
Centrality in Internet Router-level 

Topologies

Panagiotis Pantazopoulos       Merkourios Karaliopoulos 
Ioannis Stavrakakis 

Department of Informatics and Telecommunications 
National & Kapodistrian University of Athens 

{ppantaz, mkaralio, ioannis}@di.uoa.gr
 



IWSOS, 9-10th of May, 2013
Palma de Mallorca

2

Social Network Analysis Toolbox in Networking 



IWSOS, 9-10th of May, 2013
Palma de Mallorca
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•  Computer networks : systems of increasing 
complexity

•  Difficult to design efficient network protocols
•  SNA: Analytical framework for understanding 

structural properties
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 Tasks of service placement, data caching, content forwarding.. 

  

7

The importance of being.. central



IWSOS, 9-10th of May, 2013
Palma de Mallorca

 Tasks of service placement, data caching, content forwarding.. 
 A number of relevant protocol instances seek to identify the 

central one(s)!
 Usually the ranking of the metric values 

matters, rather than the absolute values  
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 Tasks of service placement, data caching, content forwarding.. 
 A number of relevant protocol instances seek to identify the 

central one(s)!
 Usually the ranking of the metric values 

matters, rather than the absolute values  

 Centrality: a measure of 

importance (sociological origin)
 Different Interpretations 

related to the way traffic flows
• Betweenness Centrality (BC)
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 Computations require global topological info

– Problematic in large scale networks

– Infeasible in self-organizing environments
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 Computations require global topological info

– Problematic in large scale networks

– Infeasible in self-organizing environments

  

 A realistic alternative:  limit the 

computations in the ego-network

– A subgraph involving the reference node (ego), 

– its 1-hop neighbors, 

– and their interconnection 
11

Centrality computations under different  scope 



IWSOS, 9-10th of May, 2013
Palma de Mallorca

 Computations require global topological info

– Problematic in large scale networks

– Infeasible in self-organizing environments

  

 A realistic alternative:  limit the 

computations in the ego-network

– A subgraph involving the reference node (ego), 

– its 1-hop neighbors, 

– and their interconnection 
12

Centrality computations under different  scope 

Ego-network
Gu

1
=(Vu

1
,Eu

1
)



IWSOS, 9-10th of May, 2013
Palma de Mallorca

 How well do these local metrics approximate the 
real ones?

 Networking community seems to take it for granted!
– The use of ego-metrics is based on (rank)-correlation 

values of 0.9
– The studied network topologies are in many cases not 

relevant 
– Content-related protocols are likely to operate over 

router-level topologies

 Does high correlation imply efficiency of protocols 
that employ ego-metrics?
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Betweenness 
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Conditional 
Betweenness
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Number of 1-hop neighbors
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Betweenness 
Centrality (BC)

Conditional 
Betweenness
Centrality 
(CBC)

Degree 
Centrality (DC)

Number of 1-hop neighbors
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The studied centrality indices  
 a measure of the importance 
of node's u social position :
 lies on paths linking others

 a measure of the importance 
of node's u social position : ability to

 control information flow towards
 target node
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 Egocentric conditional BC

 For a given destination t

identify the set of exit nodes er(u;t)

 e1(u;11) ={6}

 e1(u;9) ={4,6}

 Nodes 2, 3 and 4 contribute to egoCBC(u;11,1) = 2
with contributions 1/2, 1/2 and1, respectively.
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The studied centrality indices  
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Computational benefits of local metrics

 D: network diameter

 d m a x  : maximun degree

 d m a x   typically smaller than |V|

18
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Background in (geodesic) centrality computations
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  Local information

Scope of the input (topological) info?

Is there positive 
correlation 
between local
and global 
metrics?

- BC vs egoBC for small 
social nets and random graphs
(Marsden, Borgatti) 

-linear BC-DC relationship 
in AS maps  (Vázquez, et al.) 

-localized bridging centrality 
and volume centrality correlate
 with bridging and closeness 
centrality, respectively 
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CCNs (Chai et al.)
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IWSOS, 9-10th of May, 2013
Palma de Mallorca

Background in (geodesic) centrality computations

26

  Local information Distributed computation
(locally determined based 
on global info)

Scope of the input (topological) info?

RW- schemes 
RW-betweenness, 
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(Kermarrec et al.) 
Rw-sampling (Lim-Towsley) 
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from the whole or part of 
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-linear BC-DC relationship 
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What about router-level topologies of thousands of nodes?

Is any positive correlation enough to guarantee efficiency 
for the local-info-based protocol instances ? 
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Capturing correlation (between node rankings)

• Spearman correlation coefficient

– ranks of each graph node when ordered according to the 
sociocentric and egocentric definition of the metrics

• Top-k overlap
– Overlap between the k nodes exhibiting the top values of each 

metric

• Pearson correlation coefficient

– Pairs of the socio and ego-betweenness variants (sB(u),eB(u)) of 
each node u

–  
27
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Internet router-level topologies
• mrinfo topologies

– 14 different AS topologies (Tier-1 and Transit ISPs)
– Collected during 2004-2008
– Multicast discovering tool 

• Rocketfuel  topologies
– Widely used in experimental studies
– 800 vantage points serving as traceroute sources
– Innovative techniques to address the alias-resolution problem

•  Caida topologies
– Collected during Oct.-Nov. 2011 
– Traceroute probes to randomly chosen destinations from 54 

monitors worldwide
– Aim was to discover the largest ISP networks present in the dataset
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Correlation insights from a synthetic topology

 BC - egoBC correlation on  a rectangular grid
 Fixed ego-network sizes 
 EgoBC index attains three values (r=1)  
 Rank correlation 

decreases with grid size
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Correlation insights from a synthetic topology

 BC - egoBC correlation on  a rectangular grid
 Fixed ego-network sizes 
 EgoBC index attains three values (r=1)  
 Rank correlation 

decreases with grid size

 Size scaling: the BC spectrum is getting richer!
31
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Correlation is high in real-world ISP topologies

 High positive correlation (0.8-0.9) between BC - egoBC for both 
Spearman and Pearson already with r=1

 “Asymmetry” that yields a wide range of BC and egoBC values 
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Correlation is high in real-world ISP topologies

 High positive correlation (0.8-0.9) between BC - egoBC for both 
Spearman and Pearson already with r=1

 “Asymmetry” that yields a wide range of BC and egoBC values 
 A notable exception

35
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One outlier ISP topology

 Pathologies in the mrinfo Level-3 ISP snapshots
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One outlier ISP topology

 Pathologies in the mrinfo Level-3 ISP snapshots

– The only one with very low Spearman and negative Pearson 
correlation values out of 21 different ISP networks
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One outlier ISP topology

 Pathologies in the mrinfo Level-3 ISP snapshots

– The only one with very low Spearman and negative Pearson 
correlation values out of 21 different ISP networks

 Clustered structures of nodes that exhibit higher egoBC than 
global BC values
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One outlier ISP topology

 Pathologies in the mrinfo Level-3 ISP snapshots

– The only one with very low Spearman and negative Pearson 
correlation values out of 21 different ISP networks

 Clustered structures of nodes that exhibit higher egoBC than 
global BC values

 More general result : the actual association between the local 
and global metrics is not determined solely by the degree 
distribution

41
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Correlation is high in real-world ISP topologies

 Correlation between BC and degree (DC) 

 High Pearson and even higher Spearman
 Consistently lower than the BC- egoBC

 

 Extends the previously reported BC-DC 

correlation measured over AS-level 

topologies to the router-level ones 
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 Correlation is high in real-world ISP topologies 

 Correlation between the conditional BC variants (CBC-egoCBC)  

 

 Considerably increased coefficient values for the Level-3 outliers
 egoCBC(u;t;r) considers only the paths that lead to the target t
 The differences between the two counterparts may occur a 

certain angle that encompasses t

43
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..but this is not uniform over the full ranking

 Overlap between nodes with the top-k nodes local centrality and 
BC values

 

 Low overlap values do not contradict our previous results
 The previously observed high correlation is due to nodes of 

lower rank 

– Nodes with zero egoBC and BC values have been reported in 
literature to drastically contribute to high correlation values

 A warning sign regarding what high correlation can reveal about 
the practical implications of local centrality metrics
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Practical utility of local centrality metrics (1/3)

 Motivation: a high-degree file-searching scheme in unstructured peer-to-peer 
has been proved more efficient random walks 

 Implement a local centrality-driven navigation scheme of MAX or MAX-MIN 
pattern with respect to node centrality

 Random selection of starting points

 α-hops overlap measures the percentage of the final locations lying within α 
hops away from those the global metric yields

 Overlap between the final locations achieved with local and global centrality 
metrics as driver
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Practical utility of local centrality metrics (2/3)

 How does the crawler navigate the network?

 Driven by local metrics it consistently takes, up to 2.3 on average, less hops 
than when it is BC-driven

 It fails to identify the same sequence of central nodes

 Numerical summaries the coefficients provide, fail to capture in micro-level 
the relative significance

Mean hopcount and unique final locations (UFL) for the MAX pattern centrality-driven 
navigation scheme
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Practical utility of local centrality metrics (3/3)

 Conditional centrality metrics involve a target node

 We are enabled to compare  CBC and egoCBC over a search scheme

 The number of targets reached by the local CBC variant is in good agreement 
with the discovered P2P nodes [Adamic], using DC as a driver

 Low overlap between the final locations achieved by the two counterparts

 The hopcount to the final location is again measured consistently lower (i.e., 0.3 
to 1.5 hops) for the egoCBC case

Adamic, L.A., et al.: Search in power-law networks. Physical Review E 64(4) (Sep 2001)
47



IWSOS, 9-10th of May, 2013
Palma de Mallorca

Take-home remarks   

 Can we substitute the original centrality metrics with their 
computationally friendly local approximations in ISP topologies?

 In terms of correlation...

– High rank correlation measured across all (20) datasets but one

– The match between  the top-k nodes selected by local and global 
centrality is found low

 So, what can the high values of the correlation coefficients reveal about the 
performance of network functions?

– Simple navigation/search schemes employing local centrality metrics 
produce significantly different navigation patterns/lower hit-rates than 
the original global metrics do

48
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performance of network functions?
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produce significantly different navigation patterns/lower hit-rates than 
the original global metrics do
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We warn against relying on the 
correlation indices  for assessing 

the substitutability of ego- and sociocentric 
variants of centrality metrics
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Thank you!
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Thank you!
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Back-up slides
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Centrality-based navigation patterns are different 
despite the positive egoBC-BC correlation

 Toy topology with perfect rank- correlation

 Removing sequentially the nodes 5,6,17 and 18, 
 Rank-correlation reduces from 1 to 0.9953 
 Zero-hop overlap for the MAX pattern diminishes from 

100% to 61.90%.
 The numerical summaries provided by the coefficients fail 

to reflect in micro-level the relative significance of each 
node 

53



IWSOS, 9-10th of May, 2013
Palma de Mallorca

EgoBC-BC “micro”-correlation 

 For every node identify 

the set of its  first neighbors

 Compute the  Spearman 

coefficient for EgoBC 

and BC values of the set

 Dataset 50

• ρ>0.85    : 51.45%

• ρ<0         : 4.83%

• Ρ=-1        : 3.47%
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