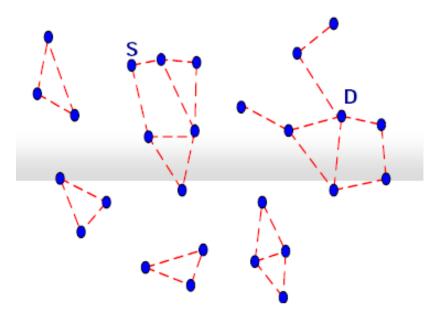
Efficient Social-aware Content Placement in Opportunistic Networks

Panagiotis Pantazopoulos¹ Ioannis Stavrakakis¹ Andrea Passarella² and Marco Conti²

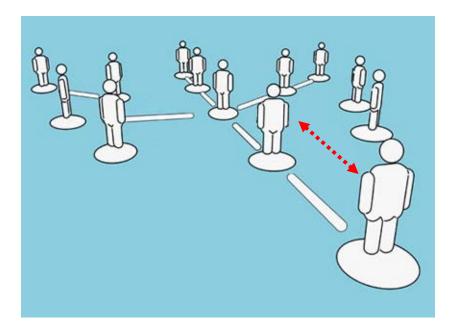


a delay - tolerant environment

A wireless network that is very sparse and partitioned

✓ disconnected clusters of nodes appear

- Nodes are highly mobile making the clusters change often over time
- No contemporaneous end-to-end path

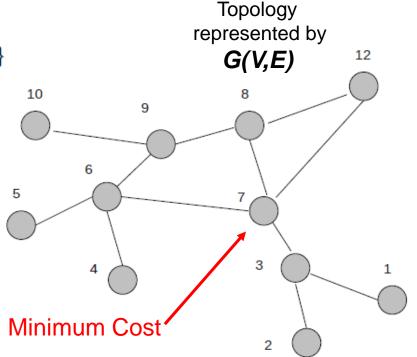


graph representation of a DTN

A graph that stands for a DTN: add an edge between two nodes if

- ✓ the frequency of encounters or
- the cumulative time of direct contact

exceeds a pre-defined threshold

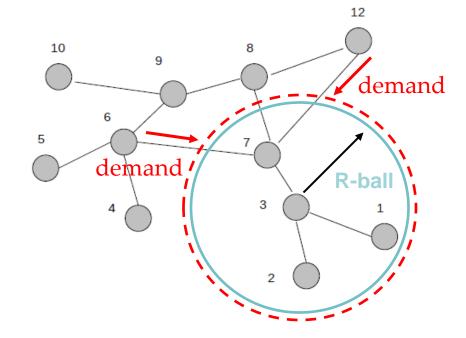

approximate solution to the classic facility location problem*

K-median problem: given a fixed number of facilities, minimize the total service cost

$$Cost(\mathcal{F}) = \sum_{n \in \mathcal{V}} w_n \cdot min_{x_j \in \mathcal{F}} \{d(x_j, n)\}$$

d(k, n): cost path between nodes k, n w_n : demand generated by node n

- To cope with constraints, use:
- 1. Local topology info
- 2. Local demand info

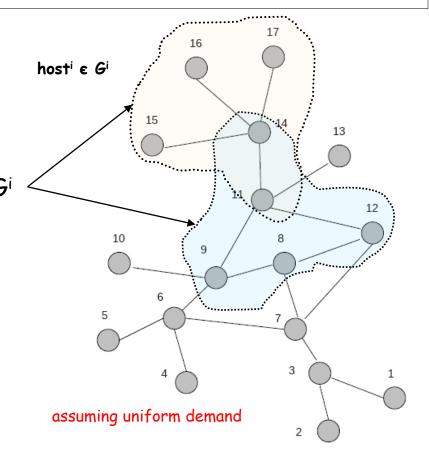

^{*} P. Mirchandani and R. Francis. *Discrete Location Theory*. John Wiley and Sons, New York, NY, 1990

the R-balls heuristic*

- Solve the optimization problem within a limited neighborhood of selected facilities
- Implicit computation of the demand generated by outer nodes

^{*} G. Smaragdakis, N. Laoutaris, K. Oikonomou, I.Stavrakakis, A. Bestavros, "Distributed Server Migration for Scalable Internet Service Deployment", to appear in IEEE/ACM T-Net. (2010)

1-Median Problem: Determine the physical location of content's single host, in a way that a cost metric is minimized


- Instead of a large optimization problem, solve iteratively small-scale ones, on subgraphs Gⁱ

 G

 G

 trying to reach the optimal
- Pick Gⁱ nodes around hostⁱ according to a social-inspired criterion

Criterion should achieve quantification
 of demand from nodes not included in Gⁱ

a measure of the importance of node's *u* social position: lies on paths linking others

Betweenness Centrality (u): portion of all pairs shortest paths of G that

pass through node u

$$BC(u) = \sum_{s=1}^{|V|} \sum_{t=1}^{s-1} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

Conditional Betweenness Centrality (u, t): portion of all shortest paths of

G from node u to target t, that pass through node u

$$CBC(u;t) = \sum_{s \in V, u \neq t} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

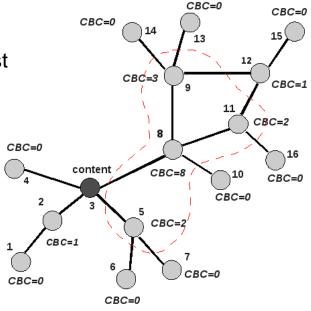
a measure of the importance of node's *u* social position: ability to control information flow towards target node

CBC criterion

small-scale 1-median solution derived from any cost-effective algorithm (i.e. approx., heuristic, enumeration)

Algorithm 1 Social-aware 1-median in G(V,E)

- 1. choose randomly node s
- 2. place CONTENT in s
- 3. $C_{current} \leftarrow \infty$
- 4. ∀ u ∈ G compute CBC(u; s)
 5. let G_s be α% of G nodes with top CBC values
 6. 1-median solution in G_s → node Host
- 7. $C_{next} \Leftarrow C(Host)$
- 8. while $C_{next} < C_{current}$ do
- move CONTENT to Host
- $C_{current} \leftarrow C_{next}$
- $\forall u \in G \ compute \ CBC(u; Host)$ 11.
- let G_{Host}^{i} be $\alpha\%$ of G nodes with top CBC values 12.
- 1-median solution in $G_{Host}^i \rightarrow node\ NewHost$
- $Host \Leftarrow NewHost$
- $C_{next} \Leftarrow C(NewHost)$
- 16. end while

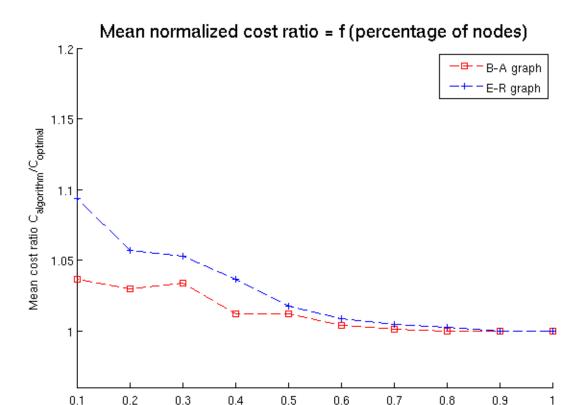


CBC criterion picks neighboring nodes to the host

Selected nodes "stretching" in a certain direction

 Solution space moved by selection towards directions populated by capable nodes of transporting information efficiently

• "Socially significant" direction is valid under any demand model but exploited only under uniform demand hypothesis



simulation settings

- Generate both E-R and B-A random graphs of N=100 nodes
- 10 simulation runs for any chosen configuration
- Results presented are the averages over the runs
- Regenerate the graph for each simulation run
- Probability of a link to exists approximates the theoretical value of the target graph model

simulation results $(^{1}/_{3})$

Standard Error associated with each mean: 0.07% ≤ SE ≤ 2.88%

Percentage of participating nodes

simulation results (2/3)

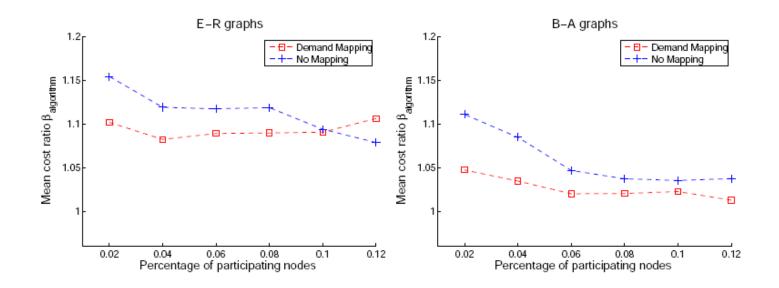
- Random policy: place the content on a randomly selected node and serve demands
- \checkmark Test the most costly scenario: $\max \beta_{algorithm}(\alpha) = \beta_{algorithm}(0.1)$

$$\beta_{algorithm}(\alpha) = E\left[\begin{array}{c} C_{algorithm} \\ C_{optimal} \end{array} \right]$$

$$\beta_{random} = E\left[\frac{C_{random}}{C_{optimal}} \right]$$

SOCIO-AWARE 1-median VS SIMPLE RANDOM PLACEMENT

E- R $graphs$		B-A graphs	
max. $\beta_{algorithm}$	β_{random}	max. $\beta_{algorithm}$	β_{random}
1.0938	1.2736	1.0366	1.4953



simulation results (3/3)

Demand mapping

- New demand model for the small-scale optimization to improve performance
- Mapping between CBC values of subgraph Gⁱ and incoming demand load
- When the percentage of participating nodes $\rightarrow 1$, we solve a different problem

future work

- ✓ study whether such mechanisms can be effectively applied
- ✓ consider the threshold-based mapping of contacts to static graphs
- ✓ expand this work to include non-uniform demand patterns

Questions?

