
Content-Based Scheduling of Virtual Machines
(VMs) in the Cloud

Sobir Bazarbayev†, Matti Hiltunen×, Kaustubh Joshi×,
William H. Sanders†, and Richard Schlichting×

†University of Illinois at Urbana-Champaign, ×AT&T Labs Research

Abstract—Organizations of all sizes are shifting their IT
infrastructures to the cloud because of its cost efficiency and
convenience. Because of the on-demand nature of the Infras-
tructure as a Service (IaaS) clouds, hundreds of thousands of
virtual machines (VMs) may be deployed and terminated in
a single large cloud data center each day. In this paper, we
propose a content-based scheduling algorithm for the placement
of VMs in data centers. We take advantage of the fact that it
is possible to find identical disk blocks in different VM disk
images with similar operating systems by scheduling VMs with
high content similarity on the same hosts. That allows us to
reduce the amount of data transferred when deploying a VM
on a destination host. In this paper, we first present our study
of content similarity between different VMs, based on a large
set of VMs with different operating systems that represent
the majority of popular operating systems in use today. Our
analysis shows that content similarity between VMs with the
same operating system and close version numbers (e.g., Ubuntu
12.04 vs. Ubuntu 11.10) can be as high as 60%. We also show
that there is close to zero content similarity between VMs with
different operating systems. Second, based on the above results,
we designed a content-based scheduling algorithm that lowers the
network traffic associated with transfer of VM disk images inside
data centers. Our experimental results show that the amount of
data transfer associated with deployment of VMs and transfer of
virtual disk images can be lowered by more than 70%, resulting
in significant savings in data center network utilization and
congestion.

Index Terms—Scheduling, Virtualization, Data center, Cloud-
computing.

I. INTRODUCTION

Today, large cloud service providers like Amazon Web
Services (AWS), Rackspace, and Microsoft Azure have made
it very cost-effective for companies to host their services on
the cloud. Fast deployment and the pay-only-for-what-you-use
nature of the cloud make it easy and convenient for companies
to migrate applications and services to the cloud rather than
own and maintain their own IT infrastructures. The rapid
growth of cloud service providers can be seen in the size of
their data centers. For example, according to [1], there are
seven AWS data center locations around the world (four in
the U.S.), and the total number of blade servers across all the
locations is estimated at half a million.

The number of virtual machines (VMs) deployed in a
large cloud data center each day can be very large, and
their deployment introduces a significant load on the data
center network. For example, we observed that an estimated

360,000 VMs were deployed in 24 hours in the East Coast
data center of a major cloud provider (using the technique
described in [2]). In typical data centers, VM disk images
are stored in specialized storage racks and then transferred
to compute nodes in other racks when a VM based on the
image is deployed. The VM disk image sizes typically range
from around 1 GB to tens of GBs. Transfer of such large
numbers of such large VM disk images inside a data center
introduces a significant amount of network traffic between
racks. While the network architecture inside a data centers
has been designed to accommodate such high network traffic,
mainly through installation of expensive, specialized 10GbE
switches between racks, it introduces a significant network
cost and contention, for the limited network resources with
application traffic to/from the VMs.

We propose a novel content-based VM scheduling algorithm
that can significantly reduce the network traffic associated with
transfer of VMs from storage racks to host racks in a cloud
data center. Specifically, our algorithm takes advantage of the
fact that different VM disk images share many common pages,
especially if they use the same operating system and operating
system version. While cloud providers typically provide a wide
choice of VM images, and users can also bring their own
VM images, the same operating systems and operating system
versions are often used by different cloud users, resulting in
many common pages. Furthermore, even though the contents
of a VM disk change after the VM has been deployed and
is in use, they still retain most of their similarity with the
base image from which they were deployed. We used that
characteristic of VMs to design our content-based scheduling
algorithm. When deploying a VM, we search for potential
hosts that have VMs that are similar in content to the VM
being scheduled. Then, we select the host that has the VM with
the highest number of disk blocks that are identical to ones
in the VM being scheduled. Once we have chosen that host
node, we calculate the difference between the new VM and the
VMs residing at the host; then, we transfer only the difference
to the destination host. Finally, at the destination host, we
can reconstruct the new VM from the difference that was
transferred and the contents of local VMs. Our experimental
results show that this algorithm can result in a reduction
of over 70% in the amount of data transfer associated with
deployment of VM images. That saving is significant enough
to have implications for data center network design and the

network congestion observed by VMs running on a cloud.
While researchers have utilized the observation of identical

pages in different VM images in the past to optimize VM
deployment or live migration [3]–[6], our algorithm is to our
knowledge the first one to utilize content similarity in VM
disk images to optimize VM scheduling in a data center.

This paper is organized as follows. Section II presents
related work and motivation. Section III presents design and
technical details of our scheduling algorithm. In Section IV,
we present our study and analysis of content similarity be-
tween large sets of VM disk images we have collected. In
Section V, we present a simulation of our scheduling algorithm
in a data center and its results. Finally, we conclude in Section
VII.

II. RELATED WORK

An extensive evaluation of different sets of virtual machine
disk images was done in [7] to test the effectiveness of
deduplication for storing VM disk images. That paper shows
promising results regarding content similarity among VM disk
images.

A number of research projects have applied deduplication of
identical pages among a group of related VMs being deployed
[4] or migrated [5] from one source node to a specified
destination node. However, our algorithm determines the node
on which to deploy the new VM based on content similarity
(scheduling), while those projects have taken the destination
as given and did not consider scheduling. A special case
of content similarity is considered in [6], which describes a
process in which a VM is repeatedly migrated back and forth
between two nodes. The pages of the migrated VM are stored
at the original source node, and when the VM is migrated
back to this node, only the pages that were modified need to
be migrated back.

In the procedure described in [3], replicas of the VMs are
stored in different nodes in order to speed up live migration of
VMs. When a VM needs to be live-migrated, it is migrated to
another node, where a replica of that VM is stored. In order
to lower storage costs associated with storage of VM replicas,
the authors use deduplication. Placement of VM replicas is
based on content similarity between VMs; replicas are placed
at nodes where storage savings can be maximized. Unlike our
work, that project used content similarity to improve storage
efficiency.

The fact that many VM instances share many common
chunks or pages is utilized to speed up VM deployment and
reduce the workload at the storage nodes in [8]. The strategy
has compute nodes act as peers in a VDN (Virtual machine
image Distribution Network), where a VM being deployed
can be constructed from chunks being pulled from different
compute nodes. However, [8] does not consider using content
similarity in the scheduling decision.

A memory-sharing-aware placement of VMs in a data center
was presented in [9]. Many data center virtualization solutions
use content-based page sharing to consolidate the server’s

RAM resources. [10]–[12] studied maximization of page shar-
ing in virtualized systems. In [9], running VMs with similar
memory content are live-migrated to the same hosts. The costs
associated with live-migration may diminish the benefits of
memory-sharing in a data center. In our work, we saw that
content-based scheduling of VMs leads to significant memory-
sharing opportunities. VM disk images with high content
similarity share many common libraries and applications. Our
proposed content-based scheduling of VMs can lead to high
memory sharing without live-migration of running VMs.

III. DESIGN

In this section, we first present background information on
scheduling of VMs in data centers, and then describe design
and implementation of our scheduling algorithm.

A. Background

In a typical Infrastructure as a Service (IaaS) deployment,
a pool of VM disk images is stored in storage nodes. The
images are templates for virtual machine file systems. VM
instances are instantiated from these images at compute nodes.
To deploy a VM instance, a user selects an image and instance
type. An instance type typically specifies physical resources
(such as CPU and RAM) that will be allocated for the instance
once deployed. Once the user has specified the image he or
she wants to deploy, a scheduling algorithm selects a compute
node and copies the image from the storage node to the local
storage of the compute node. Once copied, the VM can be
booted up at the compute node.

The part of this process in which we are interested is the
scheduling of VMs. The methods of VM scheduling algo-
rithms used by major cloud service providers are proprietary.
Hence, to explain VM scheduling in data centers, we will
refer to the scheduling algorithm implemented in OpenStack
[13]. OpenStack is open-source cloud software supported by
thousands of developers, researchers, and the open-source
community, in addition to hundreds of leading companies.
The default scheduling implementation in OpenStack is the
filter scheduler, which consists of two phases: filtering and
weighting.

The task of the filtering phase is to eliminate the compute
nodes without sufficient resources (such as CPU and RAM)
to host the new VM. The weighting phase assigns weights
to the remaining compute nodes based on the states of the
compute nodes and properties of the VM being scheduled. Its
purpose is to select the most appropriate host for the VM
being scheduled. For example, it would not be optimal to
schedule a simple VM with low resource requirements on
a high-performance host. The weights can incorporate load-
balancing policies in the data center, utilization of nodes, and
how well the available resources of the compute nodes match
up with the VM resource requirements.

B. Scheduling Algorithm

Our scheduling algorithms were designed with the goal of
lowering the amount of data transferred between racks in the

1: function SELECT HOST(VMN)
2: Filter nodes based on available resources
3: Filter nodes if VMN OS different from node OS
4: N ← n randomly selected nodes from filtered nodes
5: maxSimilarity = −1
6: for node ∈ N do
7: for VM ∈ node do
8: similarity = calcSimilarity(VM, VMN)
9: if similarity > maxSimilarity then

10: maxSimilarity = similarity
11: selectedNode = node
12: selectedNodeVM = VM
13: end if
14: end for
15: end for
16: return (selectedNode, selectedNodeVM)
17: end function

Fig. 1. Dedicated node scheduling algorithm.

data center when VM disk images are being copied to the host
nodes. We achieved that goal through the colocation of VMs
with high content similarity at the same hosts.

The architecture of our scheduler is as follows. There are
management nodes that are separate from the compute and
storage nodes in the data center that host the scheduler. Re-
quests to deploy VMs are sent to the scheduler, which selects
an appropriate compute node for each VM. The scheduler
stores fingerprints for all of the virtual disk images from the
image library. It also stores fingerprints for every running VM
in the data center. For a running VM, the scheduler maintains a
mapping between the VM’s fingerprint and the compute node
hosting the VM. All the fingerprints are stored on the man-
agement nodes. When VMs terminate, their fingerprints are
removed from management nodes. Fingerprints are described
in Section III-C1; they are used to estimate content similarity
between two VM disk images.

We have designed two different content-based scheduling
algorithms.
Dedicated nodes algorithm: In this algorithm, each compute
node is dedicated to hosting VMs with the same OS. For
example, if a compute node is hosting a Ubuntu VM, then all
the VMs hosted on the node will be Ubuntu VMs. We do not
require the version numbers of the VMs to be the same on a
compute node. Nodes get assigned specific OSs dynamically,
as follows. When some VM with OSX is being scheduled,
if there are no nodes dedicated to OSX or if all the nodes
dedicated to OSX are full, then the VM is assigned to a node
that has no VMs running on it. As a result, that node becomes
a dedicated node for OSX . When all the running VMs on a
certain node are terminated, that node is no longer dedicated
to any OS.

In lines 2 and 3 in Figure 1, the scheduler eliminates the
nodes that are not dedicated to the same OS as the new VM,
and the nodes that do not have enough available resources to
host the new VM. What remains are nodes that are dedicated
to the new VM’s OS. Next, the scheduler selects n nodes
randomly from the remaining nodes. In Section V, we will
discuss how the different values of n affect the performance
of the algorithm. The reason for randomly selecting the nodes

1: function GENERATE FINGERPRINT(diskImage)
2: fingerprint← bitArray(m)
3: fingerprint.setAll(0)
4: hf1, . . . , hfk ← k different hash functions
5: while block = diskImage.read(4096) do
6: for i = 1→ k do
7: arrayIndex = hfi(block) % m
8: fingerprint[arrayIndex] = 1
9: end for

10: end while
11: return fingerprint
12: end function

Fig. 2. Fingerprint generation for VM disk images.

is to balance the load in the data center. Then, the scheduler
does content comparison between the new VM and all the
running VMs at the n selected nodes (lines 5–15 in Figure 1).
The new VM is assigned to the node hosting the VM with
the highest content similarity to the new VM. The algorithm
returns the selected node and the VM on that node with the
highest content similarity, and that VM is used during transfer
of the new VM to that node.
Greedy algorithm: In this algorithm, we do not require
the host nodes to be dedicated to any one OS; rather, the
nodes can host VMs with any combination of OSs. As in
the above algorithm, in the first step, the scheduler filters out
all the nodes that do not have enough resources available to
host the new VM. Then, it iterates over all the remaining
nodes, computing content similarity between the new VM
and all the VMs running on the host nodes. It selects the
node hosting the VM with the highest content similarity.
Compared to the dedicated nodes scheduler, this approach is
more computationally intensive, because many more nodes are
evaluated to find the highest content similarities. The greedy
algorithm can be adjusted to limit the number of nodes it
inspects, so that it does not need to inspect all the nodes in
the system. In our experiments (see Section V), we studied
how well the greedy algorithm works even when all the nodes
are inspected to identify the maximal content similarity.

C. Implementation

1) VM disk image fingerprints: We implemented the VM
disk image fingerprints using Bloom filters [14]. A Bloom
filter is a space-efficient randomized data structure used to
represent a set in order to support membership queries. Large
sets can be represented using Bloom filters while keeping the
size of the filters small.

Figure 2 shows the algorithm for generating fingerprints
using a Bloom filter. Each fingerprint represents the contents of
one VM disk image. In Figure 2, a fingerprint is represented
by a bit array of size m. We also define k different hash
functions. In our implementation, we use common hash func-
tions, such as md5, sha1, and sha256. To get k different hash
functions, we generate multiples of md5, sha1, and sha256
using different salt values.

Starting on line 5 of the algorithm, we read the contents of
the disk image in 4096B chunks. The whole VM disk image is
split into 4096B fixed-size disk blocks, and each 4096B disk

block represents an element in the set. For each disk block, we
generate k different hash values using the hash functions, and
set to 1 the entries of the fingerprint bit array corresponding
to the hash values. The algorithm finishes when all the disk
blocks of the disk image have been added to the fingerprint.
Since each VM disk image is represented as a set, duplicate
disk blocks of the image are ignored in the fingerprint.

One of the main reasons we selected Bloom filters, besides
space efficiency, is that they allow for easy and efficient
calculation of the intersections between two sets [14] as
follows:

1

m

(
1− 1

m

)−k|S1∩S2|

≈ Z1 + Z2 − Z12

Z1Z2
(1)

Here, k and m are the same as in Figure 2. S1 and S2

represent the two sets; Z1 and Z2 represent the number of
0s in the bit arrays for S1 and S2, respectively. Finally, Z12

represents the number of 0s in the inner product of the two
bit arrays. We solve the equation for | S1 ∩ S2 | to calculate
the approximate size of the intersection of S1 and S2.

We use (1) to calculate content similarity between two
fingerprints representing two VM disk images. Solving for
| S1 ∩ S2 | in (1) gives an estimate of the number of 4096B
disk blocks that are identical between the two VM disk
images. We ran VM comparisons using fingerprints with
smaller block sizes (512B, 1024B), but the accuracy of the
content similarity calculation increased very little. Also, using
4096B disk blocks for fingerprints resulted in smaller-sized
fingerprints; therefore, we chose 4096B disk blocks for the
fingerprints.

2) Transfer algorithm: Figure 3 shows the algorithm for
transferring VM disk images from storage nodes to host nodes
once the scheduler has selected a host node. It is similar to the
rsync algorithm, and has four phases. Let VMN be the VM
that is being transferred, and VML be the VM that is running
on the destination node. In the first phase, the source (storage)
generates the md5 hash values for each of the 4KB disk blocks
that make up the VMN . Then, these hash values are sent to
the destination (compute) node. In the second phase, once the
destination node has received the list of hash values from the
source node, it also calculates the md5 hash values for the disk
blocks of the local VML. Next, the destination node makes
a list of the VMN ’s hash values that do not appear in VML.
They correspond to the VMN ’s disk blocks that are not in
VML. The destination node requests the missing disk blocks
from the source node. In phases 3 and 4, the source node sends
the missing blocks to the destination node, and the destination
node reconstructs the VMN using the blocks from VML and
the missing blocks received from the source node.

The size of each md5 hash value is 16B, and each hash
value represents a 4KB disk block; therefore, the list of hash
values in phases 1 and 2 is much smaller than the VM being
deployed.

1: Phase 1: Source node
2: Let VMN be the VM disk image being transferred
3: while block ← VMN .read(4096) do
4: blockHash← md5(block)
5: hashList.append(blockHash)
6: end while
7: Send hashList to destination node
8:
9: Phase 2: Destination node

10: Receive hashList from source node
11: Let VML be the local VM with highest content similarity
12: while localBlock ← VML.read(4096) do
13: blockHash← md5(localBlock)
14: localHashList.append(blockHash)
15: end while
16: for blockHash ∈ hashList do
17: if blockHash /∈ localHashList then
18: missingBlocksList.appendP (blockHash)
19: end if
20: end for
21: Send missingBlocksList to source node
22:
23: Phase 3: Source node
24: Receive missingBlocksList from destination node
25: for blockHash ∈ missingBlocksList do
26: offset← hashList.indexOf(blockHash) · 4096
27: block ← VMN .read(offset)
28: missingBlocksKeyV alue[blockHash]← block
29: end for
30: Send (missingBlocksKeyV alue, md5(VMN)) to destination node
31:
32: Phase 4: Destination node
33: Receive (missingBlocksKeyV alue, md5(VMN)) from source
34: Combine local blocks from VML and received blocks from VMN to

reconstruct VMN locally
35: Generate md5 hash for local VMN and verify it matches md5 of VMN

received from source node

Fig. 3. VM disk image transfer algorithm.

IV. VM COMPARISON

In this section, we present our findings on content similarity
between VM disk images. We mainly studied VMware images,
and some Amazon machine images (AMIs). We collected
about 50 different VM images (Linux- and Unix-based OSs)
from [15] and 10 images from [16]; some of them are listed
in Table I.

We used the Bloom-filter-based fingerprints (described in
Section 2) in all of our comparisons. We generated a finger-
print for each VM disk image. To calculate content similarity
between two images, we calculated the intersection of the
corresponding fingerprints. In our experiments, content sim-
ilarity estimates based on the fingerprints were within 1% of
the actual content similarities. VM disk images often have
duplicate blocks, but the fingerprints allow us to determine the
total size of the VM disk image without the duplicate blocks.
In Table I, in the second column, we first show the size of each
stored VM disk image on the file system (size with duplicate
blocks), and then, in parentheses, its size without duplicate
blocks.

A. Comparison between Base Virtual Disk Images

In this section, we discuss the content similarity results
between the base VM disk images. Results of our comparisons
are shown in Table II. We found that VMs with different

OS Name and Version Image Size FS
CentOS Server 5.0 i386 1.27GB (1.13GB) ext3
CentOS Server 5.5 i386 1.32GB (1.17GB) ext3
CentOS Server 5.8 x86 64 1.62GB (1.40GB) ext3
CentOS Server 6.0 x86 64 0.98GB (0.77GB) ext3
CentOS Server 6.1 x86 64 2.16GB (1.94GB) ext3
CentOS Server 6.2 x86 64 2.18GB (1.96GB) ext3
Debian 6.0.2.1 x86 64 0.91GB (0.76GB) ext3
Fedora 16 x86 64 2.49GB (2.24GB) ext3
Fedora 17 x86 64 2.66GB (2.40GB) ext3
RHEL 6.0 x86 64 1.50GB (1.36GB) ext4
RHEL 6.1 x86 64 1.80GB (1.66GB) ext4
RHEL 6.2 x86 64 1.80GB (1.70GB) ext4
Ubuntu Server 9.10 i386 0.90GB (0.75GB) ext3
Ubuntu Server 10.04 i386 0.85GB (0.74GB) ext3
Ubuntu Server 11.04 i386 0.92GB (0.78GB) ext3
Ubuntu Server 11.10 i386 1.00GB (0.84GB) ext3
Ubuntu Server 12.04 i386 1.05GB (0.85GB) ext3
Windows Server 2008 32bit 19.0GB (6.57GB) NTFS
Windows Server 2008 64bit 21.0GB (10.1GB) NTFS
Windows Server 2008 R2 20.0GB (8.60GB) NTFS
Windows Server 2008 R2 SQL 21.5GB (10.5GB) NTFS

TABLE I
VM DISK IMAGES FROM [15] AND [16].

VM 1 VM 2 Shared
CentOS 5.0 33% CentOS 5.5 32% 376MB
CentOS 5.0 28% CentOS 5.8 23% 376MB
CentOS 5.0 0% CentOS 6.0 – 6.2 0% 0MB
CentOS 5.5 38% CentOS 5.8 32% 444MB
CentOS 5.5 0% CentOS 6.0 – 6.2 0% 0MB
CentOS 5.8 0% CentOS 6.0 – 6.2 0% 0MB
CentOS 6.0 36% CentOS 6.1 15% 280MB
CentOS 6.0 28% CentOS 6.2 12% 220MB
CentOS 6.1 60% CentOS 6.2 60% 1.15GB
Fedora 16 33% Fedora 17 30% 720MB
RHEL 6.0 56% RHEL 6.1 46% 730MB
RHEL 6.0 50% RHEL 6.2 38% 650MB
RHEL 6.1 56% RHEL 6.2 53% 890MB
Ubuntu 9.10 0% Ubuntu 10.04 – 12.04 0% 0MB
Ubuntu 10.04 18% Ubuntu 11.04 17% 132MB
Ubuntu 10.04 14% Ubuntu 11.10 12% 100MB
Ubuntu 10.04 7.6% Ubuntu 12.04 6.6% 56MB
Ubuntu 11.04 26% Ubuntu 11.10 24% 204MB
Ubuntu 11.04 13% Ubuntu 12.04 12% 100MB
Ubuntu 11.10 16% Ubuntu 12.04 16% 136MB
Win 2008 32b 67% Win 2008 64b 44% 4.4GB
Win 2008 32b 23% Win 2008 R2 17% 1.5GB
Win 2008 32b 23% Win 2008 R2 SQL 14% 1.5GB
Win 2008 64b 31% Win 2008 R2 36% 3.1GB
Win 2008 64b 31% Win 2008 R2 SQL 30% 3.1GB
Win 2008 R2 96% Win 2008 R2 SQL 79% 8.3GB

TABLE II
CONTENT SIMILARITY BETWEEN VMS.

OSs have no content in common; therefore, such pairs are not
displayed in the table. In Table II, we show the comparison
between base VM disk images with the same OS but different
version numbers. The sizes of the VM disk images are shown
in Table I, and the last column of Table II shows the amount
of data that is common to VM 1 and VM 2. The percentages
of content similarity (columns 2 and 4) between images are
calculated by comparing the Shared column in Table II against
the Image Size column in Table I. For example, consider the
first row of Table II as an example. The size of the CentOS

VM Name Image Size Shared Size
CentOS Server 5.0 2.3GB (1.9GB) 1.0GB
CentOS Server 5.5 2.4GB (1.8GB)
CentOS Server 6.1 3.5GB (2.9GB) 2.2GB
CentOS Server 6.2 3.7GB (2.9GB)

TABLE III
CONTENT SIMILARITY: CENTOS SERVERS WITH ALL UPDATES.

Server 5.0 is 1.27GB (1.13GB), where 1.13GB is the size
of the image without the duplicate blocks. The shared size
between CentOS Server 5.0 and CentOS Server 5.5 is 376MB,
which does not include duplicate blocks either. Hence, to
calculate what percent of CentOS Server 5.0’s content appears
in CentOS Server 5.5, we take 376MB

1.13GB = 0.33 or 33%.
Content similarity for Red Hat Enterprise Linux VMs is

between 38% and 56%; for Fedora VMs, content similarity is
30%. Content similarities are fairly high, considering that the
VMs have different version numbers. Later, we will discuss
how content similarity is higher for VMs that have the same
OS and version numbers, but have different packages installed
to perform different tasks. Content similarity among CentOS
Servers 5.0 through 5.8 is also approximately 30%. Further,
as shown in Table II, there is no content similarity between
CentOS VMs with version numbers 5.8 and earlier, and
those with version numbers 6.0 and later. There is much
higher content similarity between CentOS Servers 6.1 and
6.2 (1.15GB or 60%). The content similarity is much higher
between VMs with close version numbers. It is not shown in
Table II, but the content similarity between CentOS Servers
5.5 and 5.7 is 550MB, while the content similarity between
CentOS Servers 5.5 and 5.8 is 444MB. CentOS Server 6.0 is a
minimal version of the server; hence, there is very low content
similarity between it and the later versions of CentOS Server.

For most OSs, we note that content similarity goes down
drastically after each major release. That was also true for
Ubuntu VMs where major releases of Ubuntu Server were 8.04
and 10.04. Ubuntu Server 8.04 and Ubuntu Server 10.04 are
Long Term Support (LTS) releases of Ubuntu. As with CentOS
Server VMs, there was no content similarity between VMs
with version numbers prior to 10.04, and the ones with 10.04
and later. Indeed, compared to other OSs, content similarity
between different versions of Ubuntu Server VMs is very low.

For Windows servers, Windows Server 2008 R2 was re-
leased after Windows Server 2008, and is a 64-bit-only OS.
Hence, the content similarity between R2 and Windows Server
2008 64-bit is higher than the content similarity between R2
and Windows Server 2008 32-bit. The Windows Server 2008
R2 SQL VM has SQL Server Express 2008 & IIS installed.
The content similarity between R2 and R2 SQL is very high,
even after R2 SQL has been customized with new applications.

So far in this paper, we have compared base VMs. For
CentOS Servers, content similarity increased after the latest
updates were applied. Table III shows comparisons after
application of updates to CentOS Servers. Content similarity
between CentOS Server 5.0 and CentOS Server 5.5 increased

Ubuntu packages
Web Servers Apache2 Web Server, Squid Proxy Server
Databases MySQL, PostgreSQL
Wiki Apps Moin Moin, MediaWiki
File Servers FTP Server, CUPS Print Server
Email Services Postfix, Exim4
Version Control System Subversion, CVS, Bazaar

TABLE IV
LIST OF PACKAGES USED TO CUSTOMIZE UBUNTU SERVER VMS.

Ubuntu Version Avg. Similarity Avg. Size
Ubuntu Server 10.04 680MB 920MB
Ubuntu Server 11.10 925MB 1.15GB
Ubuntu Server 12.04 870MB 1.09GB

TABLE V
AVERAGE CONTENT SIMILARITY BETWEEN CUSTOMIZED UBUNTU

SERVER VMS.

from about 33% to 53%. For CentOS Servers 6.1 and 6.2, it
went up from 60% to 75%. This gain comes at a cost, because
the overall sizes of the CentOS VMs increased by about a
GB after the updates were applied. Similar behavior was not
observed for other OSs.

B. Comparison between Customized VMs

In this section, we compare VMs that have the same OS and
version numbers, but are customized with different packages.
In the previous section, we saw that content similarity between
VMs with the same OSs but different versions is not always
very high. But in data centers, hundreds of thousands of VMs
are deployed daily, and hence there will be opportunities to
schedule VMs with both the same OSs and the same versions
at the same hosts. Typically, certain versions of each OS will
be more widely used than other versions, and users may have
their own customized VMs of that version. To compare these
types of VMs, we started with the same base image, installed
different sets of packages on that image to create customized
VMs, and measured the content similarity between them.

Table IV describes the set of packages we used to customize
Ubuntu VMs. For each version of Ubuntu Server, we created
three VMs from the same base image. Then, for each of the
VMs, we installed different subsets of the packages shown in
Table IV. We selected at least one package from each category
in the table for each custom VM. The comparison results are
shown in Table V. In the last column of that table, we display
the average sizes of the three customized VMs after installation
of the packages, without the duplicate blocks. In the second
column, we averaged the content similarities in each pair of
VMs. Even after we installed very different sets of packages,
the content similarity between VMs with the same OS versions
remained very high.

For Fedora VMs, we followed a similar technique to cus-
tomize the VMs. The results, shown in Table VI, are very
similar to the Ubuntu results.

V. EXPERIMENTS

To evaluate the effectiveness of the content-based schedul-
ing algorithms in lowering network traffic in data centers, we

Fedora Version Avg. Similarity Avg. Size
Fedora 16 2.45GB 3.1GB
Fedora 17 2.3GB 3GB

TABLE VI
AVERAGE CONTENT SIMILARITY BETWEEN CUSTOMIZED FEDORA VMS.

did a simulation of a deployment of VMs in a data center. In
this section, we describe the simulator, simulation parameters,
and the simulation results.

A. Simulation Setup

For our simulation, we generated a VM deployment trace.
The trace consisted of all the VMs deployed during the
simulation. Each VM deployment event in the trace contained
the following information: start and termination time, OS name
and version number, and instance type. We describe how we
assigned each of these properties to the VMs next. Start and
termination times are described in Section V-A1; OS name and
version number assignments are covered in Section V-A2; and
instance types are described in Section V-A3.

1) VM deployment rates: We wanted to use realistic esti-
mates of how many VMs were getting deployed at any given
time of day. We followed the technique described in [2] to
estimate the VM deployment rates. According to [2], for AWS
data centers, given two AMI IDs and their start times, it is
possible to calculate the number of VMs that were deployed
in the same AWS data center between the start times of the two
VMs. Following that technique, we periodically deployed new
VM in the AWS Virginia data center every five minutes for
24 hours. From the resulting data, we were able to gather the
number of VMs deployed in each 5-minute period in one day.
We used those data in generating start times and the number
of VMs to deploy in our simulation.

Although we were able to estimate the start times of VMs,
we could not perform any similar experiment to estimate
the duration or termination times of the VMs in commer-
cial clouds. Using all the information we had available, we
estimated that a small portion of the VMs last only a few
hours, and another small portion of the VMs stay in operation
for weeks to months. Hence, in our simulation, we set the
duration for 25% of the VMs to be between a few minutes
to a couple of hours; specifically, we uniformly selected time
lengths between 5 minutes and 2 hours for those VMs. We also
set 15% of the VMs to have a duration between one day and a
few weeks. Since we simulated one week of VM deployments
in a data center, any durations longer than one week had the
same effect. For the rest of the VMs, meaning the majority of
the VMs, we uniformly selected running times between two
hours and 15 hours.

2) OS distribution: Since many websites are hosted in
cloud data centers, we used the distribution of Web server
OSes listed in [17] to assign OSes to VMs in our simulation.
However, [17] does not provide a breakdown of distributions
by version numbers. Therefore, we assigned much higher
probabilities to the latest versions of the OSes in our sim-

Storage	 Rack	

Storage	 Rack	

Switch	 Switch	

Storage	 Cluster	

Com
pute	 Rack	

Com
pute	 Rack	

Switch	 Switch	

Compute	 Cluster	

Com
pute	 Rack	

Com
pute	 Rack	

Switch	 Switch	

Compute	 Cluster	

Switch	 Switch	 Switch	 Switch	 Switch	 Switch	

Switch	 Switch	

Fig. 4. Data center architecture

Instance type Resource Usage
Small 1.70GB RAM, 1 Compute Unit
Medium 3.75GB RAM, 2 Compute Units
Large 7.50GB RAM, 4 Compute Units
XLarge 15.0GB RAM, 8 Compute Units

TABLE VII
DESCRIPTION OF VM INSTANCE TYPES

ulation trace than to the older versions (e.g., 70% for CentOS
6.2, 75% for Fedora 17, and 50% for Ubuntu 12.04).

3) VM instance types: VM instance types specify the
resource allocation for VMs when they are deployed. Table
VII shows different instance types. Like the duration times of
VMs, information about VM instance type distributions in data
centers is not publicly available. Hence, we assigned instance
types to VMs in our simulation based on the numbers that
were provided in [18].

4) Data center: In our simulation, we simulated deploy-
ment of VMs in a single data center. We implemented a
data center architecture that was inspired by a real cloud
architecture deployed by a major U.S. ISP and is shown in
Figure 4. Each node was represented by a blade server, and
each rack contained several blade servers. In our deployment,
the amount of RAM was the limiting resource of the blade
servers; therefore, the RAM determined the number of VMs
that could be hosted on a single blade server. The blade
servers in our data center were equipped with 140GB of
RAM. Table VII shows the resource requirements for each VM
instance type. As shown in the table, we decided to use EC2
Compute Units as the measure of CPU requirements. Given
the blade server specs and Table VII, we could deploy at most
9 XLarge VMs simultaneously on a single blade (compute
node). Alternatively, we could have a combination of at most
2 XLarge, 6 Large, and 17 Medium VMs deployed at the same
time (2 · 15 + 6 · 7.5 + 17 · 3.75 = 138.75 ≤ 140). During the
simulation, at a VM’s termination time, we removed the VM
from the node, and the resources occupied by the VM became
available again.

5) Content similarity: During the simulation, the schedul-
ing algorithm decisions were based on content similarity

 0

 50

 100

 150

 200

 250

 300

 350

Random

Greedy

Dedicated (1)

Dedicated (5)

Dedicated (10)

Optimal

T
ra

n
s
fe

rr
e
d
 D

a
ta

 (
T

B
)

64GB RAM Node
140GB RAM Node

Fig. 5. Total amount of data transferred for different scheduling algorithms.
The total size of all VMs deployed is 578TB, and the size of all VMs with
duplicate disk blocks eliminated is 455TB. The confidence interval bound
in either direction is less than 1TB for algorithms involving randomness
(Dedicated, Random).

between the VM being scheduled and the rest of the VMs
running on the compute nodes. We calculated the content
similarity between VMs as follows. When there was a request
from the scheduling algorithm to calculate content similarity
between VM1 and VM2, we looked at two things. First, if
the two VMs had different OSs, we returned zero content
similarity. If the two VMs had the same OS but different
versions, we returned the size of the shared content noted in
Table II. If the request was for two VMs with the same OS and
the same version, then we treated the two VMs as customized
VMs based on the same base image. In Section IV, we show
content similarity only between customized VMs for Ubuntu
and Fedora VMs, but we have collected similar results for
the VMs with other OSs as well. For customized VMs of
each OS and version number, we have four different content
similarity values for each pair of comparisons. In response to
a content similarity request for a pair of customized VMs, we
returned a number uniformly chosen between the minimum
and maximum of the four comparison values.

B. Simulation Results

We ran the simulation with different scheduling algorithms.
The greedy and dedicated node algorithms are described
in Section III. We tried the dedicated node algorithm with
n = 1, 5, and 10, where n is the number of nodes we
evaluated to find the greatest content similarity. We also used a
random algorithm, which worked as follows. A random node
in the data center was selected, and a local VM from that
node that had the highest content similarity to the VM being
scheduled was used to determine which other blocks needed
to be transferred from the new VM to that selected node.

In the simulation, the amount of data transferred was
calculated as follows. Let VMnew be the VM disk image we
were transferring to a node. The VM on that node with the
highest content similarity to VMnew is VMlocal. Let sizeorig

be the size of the VMnew on the file system; sizedist be
the size of the VMnew without the duplicate blocks; and
sizeshared be the size of shared content between VMnew and
VMlocal. To transfer VMnew, it is only necessary to transfer
missing blocks to the destination, and each unique disk block
is transferred only once. Hence, the amount of data transferred
to the destination is sizedist − sizeshared.

The simulation results are shown in Figure 5. The sim-
ulations consisted of deploying VMs for a duration of one
week. Initially, we started with a data center with no VMs
running. We ran simulations with two data center setups, one
with 140GB RAM nodes, and another with 64GB RAM nodes.
We used the 64GB nodes to see how node RAM capacities
affected the different algorithms. Each run of the simulation
was performed on the same trace file that we generated.

The total size of all the deployed VMs was 578TB, and
the size without the duplicate blocks was 455TB. Figure 5
shows the total amount of data transferred while the virtual
disk images was being copied during the VM deployments.
In the bars labeled Optimal, we show how much data would
have to be transferred if, during the deployment of each VM,
there existed another VM with the highest possible content
similarity, and the new VM was scheduled on the same node
as the other VM. Such a scenario cannot be guaranteed in
a real scheduling algorithm execution, because there is no
guarantee that there will be another VM with the highest
content similarity running when each VM is deployed or that
there is space on the compute node with this VM.

It can be seen in Figure 5 that the scheduling algorithms
performed better when 140GB RAM nodes were used. The
difference is the largest for the random algorithm. That was
expected, because 140GB RAM nodes can host more than
twice as many VMs as the 64GB RAM nodes can. In the
random algorithm, VMs are scheduled to random nodes. Since
a 140GB RAM node can host more VMs than a 64GB RAM
node can, a randomly chosen node is more likely to have a
VM with higher content similarity. Other algorithms are not
affected as much, because the scheduler in the other algorithms
evaluates multiple nodes to find the one with the highest
content similarity.

From here on, we will refer to the results from the sim-
ulation with the 140GB RAM nodes. The random algorithm
transferred 256TB, where the total size of the VMs in the file
system was 578TB. Even the random algorithm decreases the
amount of transferred data by 1− 256TB

578TB = 56%. The dedicated
node algorithms with N = 1, 5, and 10 decreased the amount
of data transferred by 1 − 155TB

578TB = 73.2%, 1 − 151TB
578TB =

73.9%, and 1 − 150TB
578TB = 74%, respectively. The greedy

algorithm decreased the amount by 1− 151TB
578TB = 73.9%.

The greedy algorithm performed only as well as the ded-
icated nodes algorithm with N = 5. The greedy algorithm
evaluates all the nodes in the data center, while the dedicated
nodes algorithm only evaluates 5 nodes with the same OS
as the VM being deployed. Hence, in terms of how long it
takes the scheduling algorithm to find the destination node,
the dedicated node algorithms have a big advantage over the

greedy algorithm. But, as we mentioned earlier, the greedy
algorithm does not have the same restriction as the dedicated
node algorithm, where each node can only run VMs with the
same OS.

There was a small gain in going from N = 1 to N = 5
in the dedicated node algorithms, and an even smaller gain in
going from N = 5 to N = 10. That tells us that we do not
need to evaluate many dedicated nodes to find VMs with high
content similarity.

The results are very promising. Transferring 73% less
network data between racks inside a data center is a big
improvement. The cost is that there is extra computation
involved in transferring the VMs to the destination nodes. If
the network bandwidth is the bottleneck inside a data center,
then the benefits of the content-based scheduling algorithm are
significant.

VI. LESSONS LEARNED

There are several important lessons to be learned from
Section V. One of the biggest is that even without em-
ploying computation-intensive scheduling algorithms, we can
still achieve high network bandwidth savings using content-
based scheduling of VMs in data centers. The dedicated node
algorithm with N = 1 performed almost as well as the one
with N = 5. That tells us that if we dedicate each compute
node to host VMs with the same OS (but not necessarily
the same OS release version), then a scheduling algorithm
can perform very well by just randomly selecting a compute
node whose OS matches the VMs being scheduled. In other
words, the algorithm doesn’t have to examine more than
one compute node to find high content similarity between
VMs being scheduled and VMs already running on dedicated
compute nodes.

The results from Sections IV and V also suggest that content
similarity between VMs can sometimes be found through
techniques even simpler than Bloom filters. For example,
just matching OS name and release versions of VMs can
sometimes lead to significant content similarity between the
VMs. The reason, as we saw in Section IV, is that most content
similarity seems to exist between custom VMs with the same
origin OS and version.

The above discoveries make it easy to plug content-based
scheduling into existing cloud data centers, and can lead to
noticeable network bandwidth savings without involving too
much extra computation cost.

VII. CONCLUSION

Cloud computing makes it easy to deploy and terminate vir-
tual machines as desired, and the pay-for-what-you-use billing
model encourages users to keep VMs running only when
needed. As a result, hundreds of thousands of VMs may be
deployed in a day in a large cloud data center. To deploy a VM,
it is necessary to transfer the VM disk image from a storage
rack to be executed on a compute node on a compute rack. As
VM images can be tens of GB in size, intra-data-center traffic
due to VM deployments can put a significant strain on the

data center network infrastructure. In this paper, we presented
a novel scheduling algorithm that utilizes similarity between
VM disk images, a similarity that is maintained for VMs with
the same OS version even if the OS is customized and is in
use. We quantified the similarities between VM images and
showed that the similarity can be as high as 60–70%, or even
over 90% in some cases. We demonstrated using a simulation
that our scheduling algorithm can reduce the network utilized
for a VM image transfer by over 70%. Such savings are
significant enough to affect the networking design for cloud
data centers, and definitely reduce network congestion and
increase the available bandwidth for the VMs running in the
cloud data center. Since the optimization results in colocation
of VMs with shared pages on the same compute node, it also
increases the benefits of using memory page sharing on the
node resulting in better utilization of the often-bottlenecked
memory resources.

REFERENCES

[1] H. Liu. Amazon data center size. Visited on November 9, 2012.
[Online]. Available: http://huanliu.wordpress.com/2012/03/13/amazon-
data-center-size/

[2] T. von Eicken. Amazon usage estimates. Visited on November 9, 2012.
[Online]. Available: http://blog.rightscale.com/2009/10/05/amazon-
usage-estimates/

[3] S. K. Bose, S. Brock, R. Skeoch, and S. Rao, “CloudSpider: Combining
replication with scheduling for optimizing live migration of virtual
machines across wide area networks,” in Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE, 2011, pp. 13–22.

[4] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “VMFlock:
Virtual machine co-migration for the cloud,” in Proceedings of the 20th
International Symposium on High Performance Distributed Computing.
New York, NY, USA: ACM, 2011, pp. 159–170. [Online]. Available:
http://doi.acm.org/10.1145/1996130.1996153

[5] U. Deshpande, X. Wang, and K. Gopalan, “Live gang migration
of virtual machines,” in Proceedings of the 20th International
Symposium on High Performance Distributed Computing. New

York, NY, USA: ACM, 2011, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1996130.1996151

[6] K. Takahashi, K. Sasada, and T. Hirofuchi, “A fast virtual machine
storage migration technique using data deduplication,” in Proceedings of
CLOUD COMPUTING 2012: The 3rd Int. Conf. on Cloud Computing,
GRIDs, and Virtualization, 2012, pp. 57–64.

[7] K. Jin and E. L. Miller, “The effectiveness of deduplication
on virtual machine disk images,” in Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference. New York,
NY, USA: ACM, 2009, pp. 7:1–7:12. [Online]. Available:
http://doi.acm.org/10.1145/1534530.1534540

[8] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: Virtual machine image
distribution network for cloud data centers,” in Proceedings of IEEE
INFOCOM, 2012, 2012, pp. 181–189.

[9] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: Exploiting page sharing for smart
colocation in virtualized data centers,” in Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. New York, NY, USA: ACM, 2009, pp. 31–40. [Online].
Available: http://doi.acm.org/10.1145/1508293.1508299

[10] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using KSM,” in Proceedings of the Linux Symposium, 2009, pp. 19–28.

[11] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat, “Difference engine:
Harnessing memory redundancy in virtual machines,” Commun.
ACM, vol. 53, no. 10, pp. 85–93, Oct. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1831407.1831429

[12] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori:
Enlightened page sharing,” in Proceedings of the 2009 Conference on
USENIX Annual Technical Conference. USENIX Association, 2009.

[13] Openstack. Visited on November 10, 2012. [Online]. Available:
http://www.openstack.org/

[14] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” in Internet Mathematics, vol. 1, no. 4. Taylor &
Francis, 2004, pp. 485–509.

[15] VMware images. Visited on November 12, 2012. [Online]. Available:
http://www.thoughtpolice.co.uk/vmware/

[16] Amazon Web Services. [Online]. Available: https://aws.amazon.com/
[17] Usage of operating systems for websites. Visited on November 13,

2012. [Online]. Available: http://w3techs.com/technologies/overview/-
operating system/all

[18] T. von Eicken. More servers, bigger servers, longer servers, and
10x of that. Visited on November 9, 2012. [Online]. Available:
http://blog.rightscale.com/2010/08/04/more-bigger-longer-servers-10x/

