
The Design and Evolution of Live Storage Migration in VMware ESX

Ali Mashtizadeh Emré Celebi Tal Garfinkel Min Cai
{ali, emre, talg, mcai}@vmware.com

VMware, Inc.

Abstract
Live migration enables a running virtual machine to
move between two physical hosts with no perceptible
interruption in service. This allows customers to avoid
costly downtimes associated with hardware maintenance
and upgrades, and facilitates automated load-balancing.
Consequently, it has become a critical feature of enter-
prise class virtual infrastructure.

In the past, live migration only moved the mem-
ory and device state of a VM, limiting migration to
hosts with identical shared storage. Live storage mi-
gration overcomes this limitation by enabling the move-
ment of virtual disks across storage elements, thus en-
abling greater VM mobility, zero downtime maintenance
and upgrades of storage elements, and automatic storage
load-balancing.

We describe the evolution of live storage migration in
VMware ESX through three separate architectures, and
explore the performance, complexity and functionality
trade-offs of each.

1 Introduction

Live virtual machine migration is a key feature of en-
terprise virtual infrastructure, allowing maintenance and
upgrades of physical hosts without service interruption
and enabling manual and automated load-balancing [1].

Live migration works by copying the memory and de-
vice state of a VM from one host to another with negli-
gible VM downtime [2]. The basic approach is as fol-
lows: we begin by copying most of the VM state from
the source host to the destination host. The VM contin-
ues to run on the source, and the changes it makes are
reflected to the destination , at some point the source and
destination converge – generally because the source VM
is momentarily suspended allowing the remaining differ-
ences to be copied to the destination. Finally, the source
VM is killed, and the replica on the destination is made
live.

Earlier live migration solutions did not migrate virtual
disks, instead requiring that virtual disks reside on the
same shared volume accessible by both the source and
destination hosts. To overcome this limitation, various
software and hardware solutions to enable live migra-
tions to span volumes or distance have been developed.
One such solution is live storage migration in VMware
ESX.

Live storage migration has several important use
cases. First, zero downtime maintenance – allowing cus-
tomers to move on and off storage volumes, upgrade
storage arrays, perform file-system upgrades, and ser-
vice hardware. Next, manual and automatic storage load-
balancing – customers in the field already manually load
balance their ESX clusters to improve storage perfor-
mance and automatic storage load balancing will be a
major feature of the next release of the VMware vSphere
platform. Finally, live storage migration increases VM
mobility in that VMs are no longer pinned to the storage
array they are instantiated on.

Multiple approaches to live storage migration are
possible, each offering different trade-offs by way of
functionality, implementation complexity and perfor-
mance. We present our experience with three differ-
ent approaches: Snapshotting (in ESX 3.5), Dirty Block
Tracking (in ESX 4.0/4.1) and IO Mirroring (in ESX
5.0). We evaluate each approach using the following cri-
teria:

• Migration time: Total migration time should be
minimized, and the algorithm should guarantee con-
vergence in the sense that the source and destina-
tion copies of the virtual disk eventually match. We
show that some algorithms do not guarantee conver-
gence and carry the risk of not completing without
significant disruption to the workload. We also em-
phasize predictability – Live storage migrations can
take a while; predictability allows end users to bet-
ter plan maintenance schedules.

1



• Guest Penalty: Guest penalty is measured in ap-
plication downtime and IOPS penalty on the guest
workload. All live migration technologies strive to
achieve zero downtime – in the sense that there is
no perceptible service disruption. However, live mi-
gration of any sort always requires some downtime
during the hand-off from the source to the destina-
tion machine. Most applications can handle several
seconds of downtime without any network connec-
tivity loss. Highly available applications may only
handle one or two seconds of disruption before an
instance is assumed down. The final approach dis-
cussed in this paper exhibits no visible downtime
and a moderate performance penalty.

• Atomicity: The algorithm should guarantee an
atomic switchover between the source and destina-
tion volumes. This increases reliability and avoids
creating a dependence on multiple volumes. Atomic
switchover is a requirement to make physically
longer distance migrations safe, and for mission
critical workloads that cannot tolerate any notice-
able downtime.

We also compare how the three approaches perform
when migrating between volumes with similar and dif-
fering performance, and analyze their performance with
a synthetic online transaction processing (OLTP) and
real application (Exchange 2010) workload.

2 Design

We compare three approaches to live storage migration.
The first, based on snapshots was introduced in ESX 3.5,
the second based on an iterative copy with a Dirty Block
Tracking (DBT) mechanism was introduced in ESX 4.0
and refined in 4.1, and the most recent approach leverag-
ing synchronous IO Mirroring, will ship with ESX 5.0.

2.1 Background
Live storage migration can take place between any two
storage elements whether over fiber channel, iSCSI or
NFS.

All approaches to live migration follow a similar pat-
tern. A virtual disk(s) is migrated (copied) from a source
volume to a destination volume. Initially, a running vir-
tual machine is using the virtual disk on the source vol-
ume. As the disk on the source is copied to the desti-
nation, bits are still being modified on the source copy.
These changes are reflected to the destination so that
source and destination ultimately converge. Once the
two copies are identical, the running VM can be retar-
geted to use the destination copy of the virtual disk.

Guest  OS

Virtual  SCSI  (VSCSI)

Filter  Stack





Snapshot  
Filter

Mirror  
Filter

VMFS

LUN

DBT
Filter

Figure 1: Simplified ESX storage architecture diagram:
The guest operating system issues IO through the virtu-
alized SCSI (VSCSI) storage stack. The IOs are passed
through a stack of one or more filter drivers. As an ex-
ample, this diagram shows the snapshot filter that imple-
ments the virtual disk snapshot file format. Once IOs
pass through the filter stack, they are translated into file
handles that are used by VMware’s VMFS file-system or
NFS client service.

Our migration system is built with a combination of a
storage stack filter driver and a user-level thread. The
user-level thread, which facilitates the migration, is a
part of the VM management executive (VMX). The filter
drivers are depicted in the ESX storage stack in Figure 1.

More recent architectures i.e. DBT and IO Mirroring,
use the data mover (DM) copy engine that was added in
ESX 4.0. The DM is a kernel service that copies disk
blocks between locations with only DMAs. This elimi-
nates user-space and kernel crossing overheads, and en-
ables the use of copy off-load engines sometimes present
in storage arrays [3].

2.2 Snapshotting
Snapshotting, our first version of live storage migration,
was built to enable VMFS file system upgrades. To up-
grade from VMFS version 2 to version 3, version 2 vol-
umes were rendered read-only and virtual disks migrated
onto version 3 volumes.

Snapshotting leverages virtual machine snapshots, to
recap how snapshots work: when a snapshot is taken,
all disk contents at snapshot time are preserved. Future
modifications to the disk are logged in a separate snap-
shot file. Multiple levels of snapshots are possible, and

2



multiple snapshots can be consolidated into a single disk
or a snapshot by applying modifications in each to the
previous snapshot or base disk. Once consolidated, in-
termediate snapshots can be discarded.

The migration begins by taking a snapshot of the base
disk, all new writes are sent to this snapshot. Concur-
rently, we copy the base disk to the destination volume.
Our first snapshot may reside on the source or destina-
tion volume, though the former is preferable to minimize
the time the virtual disk spans two volumes.

After we finish copying the base disk, we take another
snapshot. We then consolidate the first snapshot into the
base disk. By the time this consolidation is complete, we
expect more writes have occurred, the result is again a
delta between our source and destination.

We repeat the process until the amount of data in the
snapshot becomes smaller than a threshold. Once this
threshold is reached, the VM is suspended, the final snap-
shot is consolidated into the destination disk, and the VM
is resumed, now running with the virtual disk on the des-
tination volume.

Snapshot consolidation cannot be done using an ac-
tive writable snapshot due to the risk of inconsistency.
Consequently, the VM must be suspended to render it
inactive, resulting in downtime in our final consolida-
tion step. Online consolidation of a read-only snapshot is
possible, allowing us to implement our iterative consol-
idation step with minimal down time. A threshold, that
can be determined dynamically, specifies when to per-
form the final consolidation and what the resulting down-
time will be.

Snapshotting inherits the simplicity and robustness of
the existing snapshot mechanism. When compared with
the next design (DBT), Snapshotting shows significant
resilience in the face of differing performance character-
istics on the source and destination volumes. However, it
also exhibits two major limitations.

First, migration using snapshots is not atomic. Conse-
quently, canceling a migration in progress can leave the
migration in an intermediate state where multiple snap-
shots and virtual disks are spread on both source and
destination volumes. Similarly, a storage failure on ei-
ther volume necessitates termination of the VM. Snap-
shotting is not suitable for long distance migrations to a
remote destination volume, since a network outage can
cause an IO stall requiring us to halt the VM. We attempt
to create the initial snapshot on the source volume to help
mitigate this issue.

Second, there are performance and space costs associ-
ated with running a VM with several levels of snapshots.
More specifically, when iteratively consolidating snap-
shots there are multiple outstanding snapshots, a writable
snapshot that is absorbing all new disk modifications and
a read-only snapshot that is being consolidated. Using

both snapshots concurrently increases memory and IO
overheads during the migration. In the worst case, as-
suming both levels of snapshots grow to the size of the
full disk, the VM may temporarily use three times its
normal disk space.

2.3 Dirty Block Tracking

Our next design sought to overcome the limitations of
Snapshotting, including downtime penalties from con-
solidation overhead and the lack of atomic switches from
source to destination volumes for failure robustness.

Our approach, informed by our experience with live
VM migration, uses a very similar architecture. Dirty
Block Tracking (DBT) uses a bitmap to track modified
aka dirty blocks on the source disk, and iteratively copy
those blocks to the destination disk.

With DBT, we begin by copying the disk to the desti-
nation volume, while concurrently tracking dirty blocks
on the source disk in the DBT kernel filter. At the end
of the first copy iteration, we atomically get and clear
the bitmap from the kernel filter, blocks marked in the
bitmap are copied to the destination. This process is re-
peated until the number of dirty blocks remaining at each
cycle stabilizes i.e. no forward progress is being made or
a threshold based on a target downtime is reached. At
this point, the VM is suspended and the remaining dirty
blocks are copied.

DBT is done concurrently with bulk copying the disk
contents to the destination. If a block is dirtied but not
yet copied, we do not need to track that block, as it will
later be bulk copied. Using this technique results in a
roughly 50% speedup for the first copy iteration, assum-
ing a workload consisting of uniformly distributed ran-
dom writes, leading to an optimization we call incremen-
tal DBT.

DBT has several attractive properties. Operating at
the block instead of snapshot granularity makes new
optimizations possible. Also, DBT guarantees atomic
switch-over between the source and destination volumes
i.e. a VM on the source can continue running even if the
destination hardware or link fail, improving reliability
and making DBT suitable for migrating in less reliable
conditions, such as over the WAN.

DBT also introduces new challenges. Migrations may
take longer to converge if the guest workload is write in-
tensive. If the workload on the source dirties blocks at
a rate greater than the copy throughput then the migra-
tion cannot converge. The only remedy is to quiesce the
guest, imposing significant downtime, or to cancel the
migration.

3



2.3.1 Hot Block Avoidance

We present an optimization that detects frequently writ-
ten blocks and defers copying them. We discuss the mo-
tivations for this optimization in section 2.3.2. In Sec-
tions 2.3.3 and 2.3.4 we present the implementation and
some preliminary results. Finally, in Sections 2.3.5 we
explore some of the challenges we encountered imple-
menting this solution. Due to these challenges, this fea-
ture was never enabled by default in a shipping release.
While we present these optimizations in the context of
DBT, we hope to apply them to future versions of IO
Mirroring.

2.3.2 Distribution of Disk IO Repetition

Real-world disk IO often exhibits temporal and spatial
locality. To help us better understand locality in a com-
mon enterprise workload, we analyzed VSCSI traces
from an Exchange 2003 workload with 100 users.

Our workload was generated using the Exchange Load
Generator [4] in a VM configured with three disks: a sys-
tem disk of 12GB with Windows 2003 server, a mailbox
disk of 20GB, and a log disk of 10GB. Exchange is con-
figured to use circular logs.

Our results are shown in Figure 2 that plots logical
block numbers (LBNs) sorted by decreasing popularity
i.e. most to least frequently written blocks, for all three
disks. All traces follow a zipf-like distribution. Once hot
blocks are identified, we can ignore them during the iter-
ative copy phase, and defer copying of hot blocks to the
end of the migration. This eliminates numerous repeated
copies that reduces IO costs and overall migration time.

2.3.3 Multi-stage Filter for Hot Blocks

We collect data from the DBT filter to identify candidate
hot blocks. Using a hash table to index the repetition
counters for large disks would be quite memory inten-
sive. Therefore, we use a multi-stage filter [5] to identify
blocks that have been written at least t times, where t is a
threshold. The multi-stage filter is similar to a counting
version of bloom filter, which can accurately estimate the
dirty blocks. Multi-stage filters provide a compact repre-
sentation of this data.

Our multi-stage filter has n stages. Each stage includes
an array of m counters and a uniform hash function Hi,
where 0 ≤ i ≤ n. When a block with LBN x gets modi-
fied, n different hash values of a block are calculated, and
the corresponding counters in all stages are increased.
The hotness of a block can be determined by checking
the counters of the block in all stages. When all counters
are greater than a threshold t, the corresponding block is
considered to be hot. Since the collision probability of

100 101 102 103 104 105 106

Logical Block Number (sorted by Hit Frequency)

100

101

102

103

104

105

106

H
it

 F
re

q
u
e
n
cy

System Disk

Mailbox Disk

Log Disk

Figure 2: Distribution of Disk Write Repetition of Ex-
change Server Workload. The x-axis shows the logical
block number (LBN) of the disk sorted by hit frequency.
The y-axis shows the hit frequency for disk blocks from
hottest to coldest. The writes follow a zipf-like distribu-
tion.

all n counters decrease exponentially with n, the multi-
stage filter is able to filter out hot blocks accurately with
limited memory.

2.3.4 Analysis of Hot Block Avoidance

Our hot block avoidance algorithm uses the heat map
from our multi-stage filter to determine which blocks are
hot. Sampling is done during the initial copy phase. In
the iterative copy phase, we query the multi-stage filter
and defer copying of the hot blocks. At the end of the
migration, hot blocks are copied, prior to the last copy
iteration.

To appreciate the potential benefits, consider the dis-
tribution of write frequencies for the Exchange workload
shown in Figure 2. Several hundred megabytes of blocks
are hot, ignoring these until the final copy iteration can
yield substantial benefits.

These benefits can be seen in Figure 3, a migration us-
ing same Exchange workload described previously, with
and without our hot block and incremental DBT opti-
mizations. The initial copy phase is not shown, as it is in-
dependent of optimizations. Shorter bars on the left rep-
resent a migration with optimizations, the taller bars on
the right, without. Iterations 5 through 10 are not present
for our optimized case, since incremental DBT and hot
block avoidance eliminates the need for those iterations.

The consistent height of the bars with the red hatch
pattern shows the hot block avoidance algorithm detected
the approximate working set correctly. Note that the
blocks labeled with the red hatch pattern are not copied

4



0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9

1
0

D
at

a 
C

o
p

ie
d

 (
M

B
) 

Iteration 

Hot Block

Cold Block

Baseline without Heat

1 2 3 4 5 6 7 8 9 10 

Figure 3: Dirty blocks copied vs. Iteration number. Ex-
change workload migration with and without our hot
block and incremental DBT optimizations. Shorter bars
on the left represent a migration with optimizations, the
taller bars on the right, without. The initial copy phase
is not shown, as it is independent of optimizations. Itera-
tions 5 through 10 are not present for our optimized case,
since hot block avoidance eliminates the need for those
iterations.

for the first two iterations. We displayed the graph like
this to make it easier to see the remaining blocks that
need to be copied. Most of the blocks copied in third it-
eration are so hot that they are necessarily copied again
during the switchover and completion of the virtual ma-
chine. In our implementation we attempted to copy the
hot blocks in next to last iteration in order to reduce the
remaining blocks for the final iteration. This is critical
because the final iteration occurs while the VM execu-
tion is suspended and accounts for our downtime.

Incremental DBT saves more than 50% on the first it-
eration. Our workload issues more writes towards the
end of the disk, and incremental DBT allows us to ig-
nore those blocks during our iterative copy phase, allow-
ing them to be taken care of by the bulk copy of the base
disk that is happening concurrently.

2.3.5 Problems with Hot Block Avoidance

Our hot block avoidance algorithm performed well in
most scenarios, however, we encountered several prob-
lems. First, we found hot block avoidance complex to
tune. Success was hard to reason about and we were con-
cerned about harming the performance of untested work-
loads.

Hot block avoidance also consumed significant
amounts of memory. Even with the multi-stage filter, we
could envision large VMs consuming upwards of a giga-

byte of memory. Our customers, many of whom run with
memory overcommitted, could find additional memory
pressure problematic.

Finally, some workloads e.g. the OLTP workload dis-
cussed in our evaluation, have little or no temporal local-
ity, and thus receive minimal benefit from this optimiza-
tion.

2.4 IO Mirroring

DBT is an adaptation of the technique used for live vir-
tual machine migration, namely, iterative pre-copying of
virtual machine memory pages. While DBT has benefits
over Snapshotting, they come at the cost of complexity.
To improve on DBT, we note a critical distinction be-
tween virtual memory and storage systems.

Virtual machine memory accesses are usually trans-
parent to the hypervisor and write traps are quite expen-
sive. Consequently, write traps are used only to note if
an already copied page has again been dirtied – i.e. only
the first write to a copied page is trapped – necessitat-
ing an iterative copying approach where all the writes to
a page of a given “generation” are captured by copying
the entire dirty page. In contrast, intercepting all storage
writes is relatively cheap. Our next approach leverages
this observation, using a much simpler architecture based
on synchronous write mirroring.

IO Mirroring, our most recent architecture, works by
mirroring all new writes from the source to the destina-
tion concurrent with a bulk copy of the base disk. We
again use a filter driver as shown in Figure 1. Our bulk
copy process is implemented using the VMKernel data
mover (DM). We drive the copy process from user-level
by issuing DM operations. The DM issues reads and
writes directly to the underlying file without the inter-
vention of the filter driver. Thus, if a VM could issue a
write while a DM read operation is in progress, without a
synchronization mechanism we would copy an outdated
version of the disk block. To prevent this situation, the
filter driver implements a synchronization mechanism to
prevent DM and VM IOs to the same region. When a
DM operation is issued first the filter acquires a lock on
the region in question, and then releases it on completion.

Locking in the IO Mirroring filter driver works by
classifying all VM writes into one of three types: writes
to a region that has been copied by the DM, writes to a
region being copied by the DM, and writes to a region
that will be copied by the DM. Two integers are used
to maintain the disk offsets that delineate these three re-
gions.

Writes to a region that has already been copied will be
mirrored to the source and destination – as the DM has
already passed this area and any new updates must be
reflected by the IO Mirror. Writes to the region currently

5



being copied (in between the two offsets) will be deferred
and placed into a queue. Once the DM IO completes we
enqueue those writes and unlock the region by updating
the offsets. As part of the updating operation we wait
for inflight writes to complete. The final region is not
mirrored and all writes are issued to the source only – as
eventually any changes to this area will be copied over
by the DM. Reads are only issued to the source disk.

IO Mirroring fulfills all of our criteria, guaranteeing
an atomic switchover between the source and destination
volumes, making this method viable for long distance
migrations. It also guarantees convergence as the mir-
rored VM IOs are naturally slowed down to the speed of
the slower volume.

2.5 Implementation Experience

Snapshotting benefited from leveraging the existing
snapshot mechanism, making it simpler to implement,
and easier to bring into a hardened production quality
state. Further, it was the only approach that was feasi-
ble for the file system upgrade use case that originally
motivated its creation. For this use case, the source vir-
tual disk lives on an older read-only file system, and both
DBT and IO Mirroring require a writable source disk.
Finally, it required no complex tuning. Unfortunately,
it also inherited substantial limitations from leveraging
snapshots, most notably the atomicity, and the perfor-
mance limitations of snapshots.

DBT overcame most of those performance inadequa-
cies, but introduced many parameters that required sig-
nificant engineering effort to tune. Specifically, for the
convergence detection logic that determines whether a
migration needs additional copy iterations, is safe to
complete, or needs to be terminated.

This logic required several threshold values to deter-
mine whether the remaining dirty blocks at the end of the
iteration seem to be getting smaller. If the algorithm de-
tects a significant reduction in the remaining dirty blocks,
it continues for another iteration. If there is no dis-
cernible reduction or possibly an increase, the algorithm
determines whether to complete or abort the migration.

Two scenarios occur often enough that may cause
a noticeable increase in the dirty blocks remaining.
First, the workload may make a burst of changes e.g. a
database may flush its buffer cache, causing the migra-
tion progress to temporarily regress. To handle this, the
algorithm monitors progress for the last two copy itera-
tions. Analyzing the last two iterations prevents nearly
all migration aborts due to workload spikes. The second
cause of failure to converge is a slow destination. If the
workload running in a VM is too fast for the destination
the migration will terminate. There is no solution other
than to ask the user to quiesce such workloads manually.

IO Mirroring removed all of the tunable parameters
and convergence logic. Using a synchronous mirror nat-
urally throttles the workload to the speed of the destina-
tion volume. Switching to this approach eliminated sig-
nificant engineering and performance testing effort. To
our surprise, customers seemed most interested in the
predictability aspect of IO Mirroring, as it allows them
to better plan their maintenance schedules.

3 Evaluation

We evaluated total migration time, downtime, guest
performance penalty and convergence, using synthetic
(Iometer [6]) and real application (Exchange 2010)
workloads for each of our architectures. We also present
the IOPS profile for each architecture over the duration
of a migration.

Our synthetic workload uses Iometer in a VM running
Windows Server 2003 Enterprise, we varied disk size and
outstanding IOs (OIOs) to simulate workloads of vary-
ing size and intensity. The IO pattern simulates an OLTP
workload with 30% write, 70% read of 8KB IO com-
mands with a 32GB preallocated virtual disk. We used
Exchange 2010 for our application workload with loads
of 44 tasks/sec and 22 tasks/sec.

Snapshotting and DBT were evaluated using ESX 4.1.
IO Mirroring was evaluated using a pre-release version
of ESX 5.0. Our snapshot implementation was first avail-
able in ESX version 3.5 however, we used the version in
ESX 4.1 that included support for the DM and other ma-
jor performance improvements to get a more fair com-
parison with DBT.

Our synthetic workload ran on a Dell Poweredge R710
server with dual Intel Xeon X5570 2.93 GHz processors,
and two EMC CX4-120 arrays connected to the server
via 8Gb Fibre Channel(FC) links. We created 450GB
sized VMFS version 3 volumes on each array. Our test
VM has a 6GB system disk running Windows Server
2003 and Iometer, and a separate data disk. The Snap-
shotting implementation requires all disks to move to-
gether to the same destination. For a fair comparison we
migrated the system and data disk for all architectures.

Our application workload ran on a Dell PE R910 4
socket 8-core Intel Nehalem-EX processor with 256GB
of memory. Migration is done with 6 disks in RAID-0
configuration on the same EMC CX3-40 Clariion array
with separate spindles. Our Exchange 2010 VM is con-
figured with 8-vCPU with 28GB of memory and con-
tains multiple virtual disks. We only migrated the 350GB
Mailbox disk containing 2000 user mailboxes. We omit-
ted Snapshotting from this workload because it requires
all disks to be migrated together.

6



0

200

400

600

800

1000

1200

2 4 8 16 32

M
ig

ra
ti

o
n

 T
im

e
 (

se
co

n
d

s)
 

Outstanding IO 

Snapshot DBT

Incremental DBT Mirror

Figure 4: Migration Time vs. OIO. IO Mirroring exhibits
the smallest increase by 11.8% at most. DBT variants
exhibit the largest increase up to 2.74x and 3.96x. At 32
OIOs, the DM struggles to keep up with the workload’s
dirty rate. Snapshotting exhibits a 1.4x increase.

3.1 Migration Time
Minimizing total migration time reduces the impact on
guest workloads, decreases response time for mainte-
nance events, and makes load balancing more responsive.
Ideally, migration time should not vary when workload
size and intensity change, as this makes migrations more
predictable, easing manual and automated planning.

Total migration time vs. OIOs for our synthetic work-
load is shown in Figure 4. For OIOs less than 16, each
architecture performs better than the previous one. In-
cremental DBT does marginally better than DBT, be-
cause the incremental dirty block tracking improvement
reduces the number of dirty blocks copied in the first it-
eration. The VMKernel data mover (DM), used by both
DBT variants, supports a maximum of 16 OIOs. Conse-
quently, for workloads with more than 16 OIOs, Snap-
shotting outperforms both DBT variants, which has a
bottleneck on the DM. IO Mirroring consistently offers
the lowest total migration time.

IO Mirroring also offers the smallest change in mi-
gration time under increasing load, as we see in Fig-
ure 4. Migration time only grows by 11.8% when chang-
ing OIOs from 2 to 32, a 4.9x increase in guest write and
read throughputs. In contrast, migration time increases
by 1.4x for Snapshotting, and 2.74x and 3.96x for DBT
and incremental DBT. IO Mirroring is less sensitive to
OIOs because it implements a single pass copy opera-
tion. The increased IO slows that single pass copy rather
than inducing additional copy iterations.

For comparison with the ideal case, we performed an
off-line disk copy with a 32GB virtual disk and 6GB
system disk, it took 176 seconds on the same hardware

0

200

400

600

800

1000

1200

4GB 8GB 16GB 32GB 64GB

M
ig

ra
ti

o
n

 T
im

e
 (

se
co

n
d

s)
 

Disk Size 

Snapshot DBT

Incremental DBT Mirror

Figure 5: Migration Time vs. Disk Size. The x-axis de-
notes only the data disk size. Migration time includes
the additional 6GB system disk. The migration times
of IO Mirroring grows less than 3.4% with increasing
disk size. DBT, Incremental DBT and Snapshotting takes
13%, 2.4% and 85% longer than expected.

Type Migration Time Downtime
DBT 2935.5s 13.297s
Incremental DBT 2638.9s 7.557s
IO Mirroring 1922.2s 0.220s
DBT (2x) Failed -
Incremental DBT (2x) Failed -
IO Mirroring (2x) 1824.3s 0.186s

Table 1: Migration time and downtime for DBT, Incre-
mental DBT, and IO Mirroring with the Exchange work-
load. The double intensity version only completes with
IO Mirroring.

setup. Migration with IO Mirroring with 2 OIO and 32
OIO OLTP workloads took only 5.8% and 15.7% longer
to complete.

Total migration time vs. disk size for our synthetic
workload is shown in Figure 5. Again, each architec-
ture migrates faster than the previous one. Generally mi-
gration time grows linearly with disk size however, for
64GB disks, Snapshotting performs worse than expected.
This occurs because all subsequent snapshots grow in
size leading to an increase in the number of snapshot cre-
ation and consolidation iterations. IO Mirroring exhibits
minimal change as the disk size increases, with migra-
tion time growing less than 4%. Our figures include the
6GB system disk’s migration time. Thus, the migration
time for the 4GB and 64GB data disk tests corresponds
to a seven fold increase.

Our Exchange workloads are depicted in Table 1. For
the initial run, Incremental DBT offers a 11.2% reduction

7



0

5

10

15

20

25

30

35

2 4 8 16 32

D
o

w
n

ti
m

e
 (

se
co

n
d

s)
 

Outstanding IO 

Snapshot DBT

Incremental DBT Mirror

Figure 6: Downtime vs. OIO. IO Mirroring exhibits
near constant downtime below 0.5s. DBT variants ex-
hibit moderate downtime until OIO is 32 when the DM
becomes a bottleneck. Snapshotting exhibits the worst
downtimes except when OIO is 32.

in migration time compared to DBT. IO Mirroring re-
duces the migration time by 52.7% compared to DBT. IO
Mirroring is the only architecture to complete the double
intensity workload successfully. The migration time ap-
pears lower, but the 5% difference is within the noise
margin.

Overall, IO Mirroring exhibits the least change across
workload intensity and disk size variations, while DBT
and Snapshotting migration times increase significantly
with such variations.

3.2 Downtime

While outages up to five seconds and beyond can be tol-
erated by some applications, others such as highly avail-
able applications, audio and video make even sub-second
outages noticeable. Therefore we prefer to minimize
downtime.

Downtime vs. OIOs is shown in Figure 6. With IO
Mirroring downtime increases with increasing OIO by
one tenth of a millisecond. This slight increase is due
to the additional time required to quiesce the VM IO.
There is no other downtime dependence on OIO for this
architecture.

Both DBT variants choose their final copy thresh-
olds with the intention of keeping downtimes under five
seconds. Usually the algorithms overestimate, putting
downtime consistently in the two to three second range
for OIO under 8. From 8 to 16 we see that the downtime
increases slightly as the DM begins to struggle to keep
up. From 16 to 32, we see that the downtime jumps to
values greater than 28 seconds.

0

5

10

15

20

25

30

35

4GB 8GB 16GB 32GB 64GB

D
o

w
n

ti
m

e
 (

se
co

n
d

s)
 

Disk Size 

Snapshot DBT

Incremental DBT Mirror

Figure 7: Downtime vs. Disk Size. IO Mirroring exhibits
near constant downtime under 0.5s. DBT variants ex-
hibit downtimes below the 5s convergence logic thresh-
old. Snapshotting shows significant degradation beyond
32GB as snapshot overheads become prominent.

The reasons for this are two fold, first the DM becomes
a serious bottleneck however, our convergence logic also
takes into account total migration time. If we were will-
ing to wait an additional, potentially much longer time
to converge, we might end up with a smaller final dirty
page set, resulting in a shorter downtime.

Snapshotting shows a near linear growth in downtime
as the workload increases, better than the DBT variants
for the OIO equal to 32 case because the snapshot ap-
proach is consolidating the final snapshots on the desti-
nation volume.

Figure 7 shows the downtime as a function of disk
size. Both DBT and IO Mirroring scale well with disk
size. Snapshotting shows significant growth in down-
time and total migration time when moving 64GB disks.
As disk size increases, each snapshot create and consol-
idate iteration takes longer since there is increased disk
fragmentation, increased virtual disk block lookup over-
head, and other overheads related to the implementation
of snapshots that accrue. Migration times also increase
because the number of snapshot create and consolidate
operations has to increase to keep downtime low.

Our Exchange workload shown in Table 1 exhibits
larger downtimes for DBT and incremental DBT of
roughly 8 and 13 seconds. For the double intensity work-
load, the DBT variants do not converge. IO Mirroring
completes the migration for both the normal and double
intensity workloads with roughly 0.1s and 0.2s of down-
time.

IO Mirroring guarantees small constant downtimes.
DBT variants offer low downtimes if the DM can keep up
with the workload, but a slow destination volume or high

8



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32

A
ve

ra
ge

 IO
 P

e
n

al
ty

 

Outstanding IO 

Snapshot DBT

Incremental DBT Mirror

Figure 8: Average Guest IO Penalty vs. OIO. IO Mir-
roring exhibits lower penalties as OIOs increase as guest
IOs come to dominate DM IOs. DBT variants exhibit
similar pattern until 32 OIO when iterative copy times
become an increasing portion of the overall cost. Snap-
shotting costs increase consistently as snapshot over-
heads worsen with increased OIO.

intensity workload may make that impossible. Snapshot-
ting tends to have the highest downtimes.

3.3 Guest Performance Penalty

Minimizing the guest IO penalty and total cost during a
migration improves user experience and lessens the im-
pact on application IO performance. Average guest IO
penalty vs. OIO for our synthetic workload is shown in
Figure 8. The percentage IO penalty is identical for read
and write IOs.

Snapshotting incurs the largest penalty because it uses
snapshots, where IOs issued to new blocks require allo-
cation and maintenance of indirection data structures. As
OIOs increase, these overheads increase proportionally.
If the workload runs long enough, these penalties will
eventually start to amortize. However, since migration
times are relatively short, these penalties remain high.

Penalties for DBT variants hover around 39%, due to
guest IO competing with IO induced by the DM. With
increased OIO, guest IO takes an increasing share of IO
away from the DM. This causes slightly longer migra-
tions. We observe slightly less IO penalty on the guest
up until 16, since the DM has a maximum of 16 OIOs.

At 32 OIO the DBT variants show an increased IO
penalty. The average instantaneous penalty is a combina-
tion of the penalty during the initial copy and the subse-
quent iterative copy phases. In the iterative copy phase,
the IO penalty tends to be much higher than in the ini-
tial copy phase, because the DM is inducing a random

0

50

100

150

200

250

300

350

400

450

500

2 4 8 16 32

To
ta

l I
O

 C
o

st
 (

Ti
m

e
 x

 P
e

n
al

ty
) 

Outstanding IO 

Snapshot DBT

Incremental DBT Mirror

Figure 9: Aggregate migration cost (total migration time
× instantaneous penalty) vs. OIO. IO Mirroring exhibits
the lowest aggregate migration costs as OIO increases.
As migration times stay near constant, average penalty
decreases. DBT variants exhibit higher costs especially
for 32 OIOs since migration times increase significantly.
Snapshotting exhibits the greatest penalty as migration
time and instantaneous penalty grow with OIO.

IO workload on both volumes. In the 32 OIO case, the
migration time increases significantly as shown in Fig-
ure 4. Consequently, the iterative copy phase contributes
substantially more to the instantaneous penalty.

IO Mirroring begins with a penalty greater than both
DBT variants but less than Snapshotting. Figure 8 shows
that, as the workload OIOs increase the IO penalty be-
comes smaller than that of the DBT. The IO Mirroring ar-
chitecture does not contain an iterative copy phase, thus
it does not suffer from the higher performance penalties
that DBT does with 32 OIOs. The only impact on the
workload, assuming the destination is not a bottleneck,
is due to the DM, we have a monotonically decreasing
plot for performance penalty, because the workload con-
sumes a proportionally larger share of the throughput.

Figure 9, shows the total guest penalty vs. OIOs.
Penalty is measured in units of time, the total IOPS lost
as if the workload was not executing for that many sec-
onds. This shows that Snapshotting incurs the worst
penalty amongst other migration implementations. The
DBT variants both have similar migration penalties. Fi-
nally, IO Mirroring starts off with a penalty very similar
to that of the DBT variants and gradually decreases as
OIOs of the workload increase.

Exchange workload runs initially did not appear to
show any degradation in throughput or IOPS. A closer
look revealed that while average read latency remained
the same, there was a slight increase in average write la-
tency values per IO. However, write latency did not im-

9



Type Latency Variance Penalty
No migration 0.777 ms 0.106 -
DBT 3.622 ms 0.363 4.7x
Incremental DBT 3.571 ms 0.544 3.6x
Mirror 3.338 ms 0.362 3.3x
Iterative Copy Phases
DBT 5.922 ms 1.550 6.6x
Incremental DBT 5.171 ms 1.468 5.7x

Table 2: Comparison of changes in write latency ob-
served on the Exchange 2010 workload.

pact IOPS or throughput, because the array could still
consume the increased IO rate during the migration op-
eration.

In Table 2, we list the write latency values observed
during the migration of Exchange 2010 workload. The
first number corresponds to the no migration case. The
next three numbers corresponding to the migration ar-
chitectures are obtained from the same amount of sam-
ples, during the copy phase of the disk. IO Mirroring
completes as soon as the copy phase completes. The last
two latency values are observed during the iterative copy
phase of the DBT and incremental DBT methods, where
the incremental DBT completes sooner than the DBT as
shown in Table 1.

3.4 Convergence

We define convergence as an architecture’s ability to re-
duce the number of blocks that differ between a source
and destination to a level where a migration can complete
with an acceptable downtime. We discuss convergence
in our previous experiments, then examine a migration
from a faster to slower volume, which is a challenging
case for DBT variants. We omit Snapshotting from our
discussion, as it always converges, but may still incur
significant downtimes.

Every migration of the synthetic workload in the pre-
vious sections completes successfully however, when run
with 32 OIOs, both DBT variants shows excessive down-
times and migration times. Downtimes larger than five
seconds imply that the DBT convergence detection algo-
rithm notices when the workload is not converging fast
enough or at all, and considers aborting the migration.
When the expected downtime is short enough the con-
vergence logic forces the migration to complete, inflict-
ing that downtime on the guest.

We know that DBT variants are not guaranteed to con-
verge. For DBT to converge, it requires that the workload
dirties blocks at a slower rate than the copy rate, and the
destination volume should not be slower than the source.

An example of our DBT variants being overwhelmed

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000

IO
PS


Time  (seconds)

Read  IOPS  Source

Write  IOPS  Source

Write  IOPS  Des9na9on

Figure 10: Graceful throttling of the 16 OIO synthetic
OLTP workload during a migration from an FC to a
slower NFS volume. The workload begins with approxi-
mately 2600 read and 1100 write IOPS and at the desti-
nation the workload runs at 200 write and 95 read IOPS.

is found among the 2x intensity Exchange workloads in
Table 1, where neither variant completes successfully.
Nevertheless, IO Mirroring completes the migration with
negligible downtime. When running the normal inten-
sity workload, all architectures complete their migrations
successfully, but with significant downtime for the DBT
variants.

In contrast, IO Mirroring converges even with a 10x
slower destination volume. This is shown in Figure 10,
where the total source and destination read and write
IOPS observed during a migration from a Fibre Chan-
nel attached volume to a slower NFS attached volume,
using our synthetic OLTP workload with 16 OIOs. The
graph also shows that when IO Mirroring is involved, the
gradual slow down is not linear but instead governed by
the saturation of the OIO on the destination.

The left hand side of the graph shows the starting IOPS
of the workload, which is approximately 2500 for read
and 1000 for write. The shape of the gradual diminishing
of IOPS may not be immediately clear. One may think
that as an increasing percentage of IOs are mirrored the
workload should also slow down linearly. That is not
the case, because when the latency of the destination is
more than an order of magnitude slower, the IOs on the
destination will saturate the device. The mirror driver
waits for write IOs on the destination to complete, while
IOs on the source get acknowledged much faster. If we
were to examine the number of OIOs at each device we
would see that the source has only a few IOs while the
destination is full. Equation 1, allows us to compute the
approximate IOPS as a function of the OIOs, latency, and
percentage of IOs sent to the destination (DestIOPct).

10



IOPS≈Min(
OIO

DestIOPct×LatDst
,

OIO
LatSrc

) (1)

The migration starts after the first two minutes of sta-
ble IO in the graph, with a dip due to the IO Mirroring
instantiation, followed by a rapid increase in read IOPS
on the source. The read IOPS consists of the aggregate
VM and migration read IOs. Similarly, the destination
IOPS consists of storage migration and VM mirror write
IOs. At the end of the migration, the VM IO workload
stabilizes at approximately 200 read and 95 write IOPS.

When we run this benchmark using DBT, the migra-
tion fails after several iterations because it is unable to
converge as the workload dirties blocks at a rate faster
than the copy rate. Using IO Mirroring the workload is
naturally throttled to the performance of the destination
volume.

3.5 Anatomy of a Migration
Looking at IOPS over time provides unique insights
about migration behavior. Figure 11, shows Time
vs. IOPS seen by the host for all three migration archi-
tectures. The labels S and D refer to the region where
the VM is the sole IO source. The initial disk copy is
marked by the region M. In all three graphs the through-
put for the initial disk copy is roughly the same. This
suggests that the time it takes to clone a virtual disk has
a constant cost, where enhancements such as hardware
off-loading may be helpful.

With Snapshotting, while the disk is being copied, an
initial snapshot is created on the source volume. Label
CS corresponds to the process of consolidating this initial
source snapshot into the base disk. In region CS the VM
is running on a destination snapshot. In region CD, we
are creating and consolidating multiple snapshots on the
destination. Each spike in IOPS marks the consolidation
of the previous snapshot, and we see the slight degrada-
tion in random read/write IO as we access deeper offsets
of a snapshot, until the next snapshot is created. Overall
IOPS also increases due to the use of smaller snapshot
sizes, resulting in few disk seeks.

DBT has a slightly better utilization of IO during the
disk copy, because only a dirty block tracking bitmap
is maintained in the kernel. In the region marked DBT,
the iterative copy process begins. We see a reduction in
throughput because the iterative copy process consists of
random access to dirtied blocks. Together with the ran-
dom IO workload, the total disk access pattern on the
source becomes more random. Incremental DBT, which
is not shown in Figure 11, shrinks the region DBT con-
siderably with the optimization previously explained in
Section 2.3.

IO Mirroring consists of a single pass copy, repre-
sented by region M. In this region, IO Mirroring shows
a slightly lower utilization towards the end of the migra-
tion, because within the copy process, write IO is also
mirrored to the destination volume. By the end of the mi-
gration all IOs will be mirrored. This method is shorter
since there is no copy process that follows.

4 Related Work

Clark et al. implemented VM live migration on top of
the Xen virtual machine monitor (VMM) [7]. Xen uses
a pre-copy approach to iteratively copy memory pages
from source host to destination host. It supports both
managed and self migrations. Managed migration is per-
formed by migration daemons running in the manage-
ment VMs on the source and destination hosts, while
self migration places the majority of the implementation
within the guest OS of the VM being migrated. The guest
OSes running on Xen are para-virtualized and are aware
that a migration is in progress. The guest OS is able to
improve migration performance by stunning rogue pro-
cesses and freeing page cache pages. The authors men-
tion, as possible future work, leveraging remote mirror-
ing or replication to enable long distance migrations.

VMware VMotion [2] was first introduced in VMware
ESX hypervisor and VirtualCenter suite in 2003. It
supports the live migration of VMs among physical
hosts that have access to shared storage, such as stor-
age area network (SAN) or network attached storage
(NAS). In VMotion, only VM memory pages are trans-
ferred from source host to destination. The virtual disks
of a VM have to reside on shared storage and cannot
move. VMware VMotion is the basic building block for
VMware’s Distributed Resource Scheduler (DRS) that
dynamically balances the workloads between a set of
hosts in a cluster, and for Distributed Power Manage-
ment, that uses migration to consolidate workloads to re-
duces power consumption during off-peak hours [1].

In addition to the pre-copy approaches, Hines et al.
proposed a post-copy approach for live VM migration [8]
for write-intensive workload by trading off fast migration
time with atomic switchover between source and destina-
tion hosts. Pre-paging and self-ballooning mechanisms
are also used to facilitate the post-copy approach. Pre-
paging utilizes locality of access to reduce the number
of network page faults. Self-ballooning is technique to
remove unneeded buffer cache pages from the guest so
they will not be transfered.

VM live migration has also been extended from local-
area networks (LAN) to wide-area networks (WAN) for
various use cases, including data center load balance and
disaster recovery. Bradford et al. extends the live mi-
gration in Xen to support the migration of a VM with

11



0

1000

2000

3000

4000

5000

1 21 41 61 81 101 121 141 161 181 201 221 241

(c
)  M

irr
or
  IO

PS


Time  (seconds)

Des-na-on  Read

Des-na-on  Write

Source  Read

Source  Write

300 400 500 600 700 800 900 1000 1100 1200

0

1000

2000

3000

4000

5000

(b
)  D

BT
  IO

PS


0

1000

2000

3000

4000

5000
(a
)  S
na

ps
ho

t  I
O
PS


S

S

S

D

D

D

M

M

M

Cs
CD

DBT

100 200

Figure 11: The IOPS observed for the duration of the three main architectures. region S, is prior to the migration, and
region D, corresponds to the post migration. Region M in all graphs refers to the copying process of the virtual disks.
In the Snapshot graph, the area denoted as CS and CD correspond to the consolidation of the source and destination
snapshots. Finally, the shaded region DBT refers to the iterative copy operation.

local disk states across WAN [9]. When a VM is be-
ing migrated, its local disks are transferred to destination
volume using a block level disk pre-copy. The write IO
workload from the guest OS is also throttled to reduce
the dirty block rate. Existing network connections to the
source VM are transparently forwarded to the destination
by using IP tunneling, while new connections are redi-
rected to the destination network using Dynamic DNS.
Further optimizations for wide area storage migration are
explored by Zheng et al. [10]

VM Turntable demonstrates live VM migration over
WAN links for Grid computing [11]. In this system, ded-
icated paths are dynamically setup between distant sites.
However, no local disk state is transferred over the WAN
in VM Turntable. CloudNet builds a private network
across different data centers using MPLS based VPN for
live WAN migration of VMs [12]. Disk state for VMs
is replicated to the destination volume using both asyn-
chronous and synchronous schemes in different migra-
tion stages.

Storage mirroring or disk shadowing is an existing
concept that was first explored for building redundant
disks [13]. Mirroring for redundancy and performance
reasons is very common in volume managers such as

LVM [14] and Vinum [15]. Network based mirroring for
replication and virtually shared volumes that span mul-
tiple physical hosts is done by distributed block devices
like DRBD [16] and HAST [17].

Live storage migration of VMs using IO Mirroring is
discussed in Meyer et al. [18]. This work presents a mod-
ular storage system that allows different storage systems
to be implemented by configuring a set of components.

SAN vendors provide volume level mirroring and
replication for redundancy such as NetApp’s SnapMirror
product [19] and EMC’s Synchronous and Asynchronous
SRDF [20]. The concept of LUN migration is also pro-
vided by some of the storage array vendors that is sim-
ilar to the problem of virtual disk migration. For exam-
ple, Data Motion [21] from NetApp uses asynchronous
SnapMirror to initiate the copy and achieve a small tar-
get recovery point objective (RPO) time. During the final
switchover the NetApp LUN may be unavailable for up
to 120 seconds. If the Data Motion is unable to complete
within that time it cancels the LUN migration [21]. The
NetApp Data Motion product functions similar to dirty
block copy approach discussed in Section 2.3 and does
not appear to meet our goals of no downtime and guar-
anteed success.

12



5 Conclusions

We present our experience with the design and imple-
mentation of three different approaches to live storage
migration: Snapshotting (in ESX 3.5), Dirty block track-
ing (in ESX 4.0/4.1) and IO Mirroring (in ESX 5.0).
Each design highlights different trade-offs by way of im-
pact on guest performance, overall migration time and
atomicity.

The first two approaches exhibit several shortcomings
that motivated our current design. Snapshotting imposes
substantial overheads and lacks atomicity, this hinders
reliability and makes long distance migrations fragile.
DBT adds atomicity, and by working at the block level
allows a number of new optimizations, but also cannot
guarantee convergence and zero downtime for every mi-
gration.

While the IOPS penalty caused by Snapshotting to the
OLTP workload is around 70%, DBT and IO Mirroring
reduce this penalty to around 32% and 34%. The total
penalty for IO Mirroring is approximately 2x better than
DBT.

Our latest approach based on IO Mirroring offers guar-
anteed convergence, atomicity and zero downtime with
only a slightly higher IOPS penalty than DBT. When
moving a virtual disk to a slower volume, IO Mirror-
ing exhibited a graceful transition and completion. We
achieved consistent reduction in total migration time,
bringing the total live migration duration close to that
of a plain disk copy. For the OLTP workload, IO Mir-
roring, takes less than half the time of Snapshotting and
only 9.7% longer than an off-line virtual disk copy. We
showed that under varying OIO and disk size, IO Mirror-
ing offered very low variation in migration time, down-
time, and guest performance penalty.

Acknowledgements
We would like to thank Vincent Lin for running Ex-
change workloads; Irfan Ahmad, Joel Baxter, Dilpreet
Bindra, Kit Colbert, Christian Czezatke, Ajay Gulati,
Jairam Ranganathan, Mayank Rawat, Yan Tang, Jayant
Kulkarni, Murali Vilayannur, Swathi Koundinya and
Chethan Kumar for their valuable discussions and feed-
back with the original work.

References

[1] “VMware Infrastructure: Resource Management with
VMware DRS,” Aug. 2010. http://www.vmware.
com/pdf/vmware_drs_wp.pdf.

[2] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transpar-
ent migration for virtual machines,” in ATEC ’05: Pro-
ceedings of the annual conference on USENIX Annual

Technical Conference, (Berkeley, CA, USA), pp. 25–25,
USENIX Association, 2005.

[3] “vstorage api for array integration and vmware
ready,” http://www.vmware.com/
partners/programs/vmware-ready/
vstorage-api-arrays.html.

[4] “Exchange Load Generator.” http://
technet.microsoft.com/en-us/library/
bb508866(EXCHG.80).aspx.

[5] Cristian Estan, et. al., “New Directions in Traffic Mea-
surement and Accounting: Focusing on the Elephants,
Ignoring the Mice,” ACM Transactions on Computer Sys-
tems, 2003.

[6] “Iometer.” http://www.iometer.org.

[7] C. Clark, et. al., “Live Migration of Virtual Machines,” in
NSDI, Oct 2005.

[8] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy
live migration of virtual machines,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 3, pp. 14–26, 2009.

[9] R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schiöberg, “Live wide-area migration of virtual ma-
chines including local persistent state,” in VEE ’07: Pro-
ceedings of the 3rd international conference on Virtual
execution environments, (New York, NY, USA), pp. 169–
179, ACM, 2007.

[10] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai, “Workload-
aware live storage migration for clouds,” in Proceedings
of the 7th ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments, VEE ’11, (New
York, NY, USA), pp. 133–144, ACM, 2011.

[11] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,
J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghu-
nath, and P. Y. Wang, “Seamless live migration of vir-
tual machines over the man/wan,” Future Gener. Comput.
Syst., vol. 22, no. 8, pp. 901–907, 2006.

[12] T. Wood, K. Ramakrishnan, J. van der Merwe, and
P. Shenoy, “Cloudnet: A platform for optimized wan mi-
gration of virtual machines,” University of Massachusetts
Technical Report TR-2010-002, January 2010.

[13] D. S. Dina, D. Bitton, and J. Gray, “Tandem tr 88.5,”
1988.

[14] “Logical volume manager (linux).” http:
//en.wikipedia.org/wiki/Logical_
Volume_Manager_(Linux).

[15] “The vinum volume manager.” http://www.
vinumvm.org/.

[16] “Distributed Replicated Block Device (DRBD).” http:
//www.drbd.org/.

[17] “Hast - highly available storage.” http://wiki.
freebsd.org/HAST.

[18] D. Meyer, B. Cully, J. Wires, N. Hutchinson, and
A. Warfield, “Block mason,” in WIOV ’08: First Work-
shop on I/O Virtualization, 2008.

13



[19] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara, “Snapmirror: File-system-
based asynchronous mirroring for disaster recovery,” in
FAST ’02: Proceedings of the 1st USENIX Conference
on File and Storage Technologies, (Berkeley, CA, USA),
p. 9, USENIX Association, 2002.

[20] “EMC SRDF Datasheet.” http://www.emc.
com/collateral/software/data-sheet/
1523-emc-srdf.pdf.

[21] L. Touchette, R. Weeks, and P. Goswami, “Ne-
tapp data motion,” NetApp Technical Report TR-
3814, March 2010. http://media.netapp.com/
documents/tr-3814.pdf.

14


