
2012 Proceedings IEEE INFOCOM 

Network Aware Resource Allocation in Distributed 

Clouds 

Mansoor Alicherry 
Bell Labs India, Alcatel-Lucent 

Bangalore, India 

Abstract-We consider resource allocation algorithms for dis
tributed cloud systems, which deploy cloud-computing resources 
that are geographically distributed over a large number of 
locations in a wide-area network. T his distribution of cloud
computing resources over many locations in the network may 
be done for several reasons, such as to locate resources closer 
to users, to reduce bandwidth costs, to increase availability, etc. 
To get the maximum benefit from a distributed cloud system, we 
need efficient algorithms for resource allocation which minimize 
communication costs and latency. In this paper, we develop 
efficient resource allocation algorithms for use in distributed 
clouds. Our contributions are as follows: Assuming that users 
specify their resource needs, such as the number of virtual 
machines needed for a large computational task, we develop 
an efficient 2-approximation algorithm for the optimal selection 
of data centers in the distributed cloud. Our objective is to 
minimize the maximum distance, or latency, between the selected 
data centers. Next, we consider use of a similar algorithm to 
select, within each data center, the racks and servers where the 
requested virtual machines for the task will be located. Since the 
network inside a data center is structured and typically a tree, 
we make use of this structure to develop an optimal algorithm 
for rack and server selection. Finally, we develop a heuristic 
for partitioning the requested resources for the task amongst the 
chosen data centers and racks. We use simulations to evaluate the 
performance of our algorithms over example distributed cloud 
systems and find that our algorithms provide significant gains 
over other simpler allocation algorithms. 

I. INTRODUCTION 

A key function performed by cloud management and au
tomation software is resource allocation. Typically, user re
quests for a service hosted in the cloud require the allocation 
of virtual machines (VMs) in the cloud data centers, to meet 
the requested service's computational needs. A basic example 
is a request for infrastructure-as-a-service where the user may 
explicitly request a number of VMs and also the desired 
connectivity between the VMs. The cloud management and 
automation software then identifies the right physical resources 
for each of the requested VMs and allocates them. For this 
the resource allocator maintains a continually updated view 
of all the resources available in the different data centers, 
their capabilities, and their current and future allocations. 
Resource allocation algorithms, used by the cloud automation 
software, have a very high impact on the performance of 
users' applications as well as on the ability of the data center 
to accommodate the maximal number of user requests. This 
is particularly true for distributed cloud systems where the 

T.V. Lakshman 
Bell Labs, Alcatel-Lucent 

New Jersey, USA 

resource allocation algorithms may have to split the resource 
allocation for a user-request over multiple relatively smaller 
data centers. 

When a user makes a request to run an application in 
the data center, the request specifies the needed number of 
VMs and the desired communication requirement among those 
VMs. The cloud automation software's objective is to choose 
data-centers and racks for assignment of the requested VMs 
so as to reduce the overall resource usage and provide the 
best performance to the application. These two goals are 
complementary since the best performance is obtained when 
all the VMs are located in the same rack and this also uses 
the least amount of inter-rack traffic. When a user request 
arrives, a rack may not exist that has sufficient residual 
capacity to accommodate all the requested VMs. Hence, VMs 
may be allocated from amongst multiple racks. One goal of 
the cloud automation software is to minimize the inter-rack 
communication. 

Resource allocation algorithms that handle a variety of 
usage scenarios are needed. Typically, user requests Gobs) 
may arrive and leave at any time. A user may also make 
requests for more resources as time progresses. To handle 
these, online algorithms are needed. However, When jobs are 
scheduled in an online manner, the data center capacity may 
get fragmented. This may lead to VMs of the applications 
being scheduled in multiple racks, reducing the utilization as 
well as affecting the performance of the applications. The 
utilization of the DC and the application performance may 
be improved by bringing together the VMs that are dispersed. 
Periodically, cloud automation can performs defragmentation 
by running live migration to bring those VMs together. This 
need to be done in such a way that the resulting data center 
utilization is improved. The defragmentation algorithm also 
needs to minimize the number of VM movements. 

Another resource allocation problem in cloud automation 
arises when requests come in batches. This can happen when 
customers request for resources that need to be scheduled in 
future. Here the cloud automation tool has opportunity to per
form optimization across the jobs, called batch optimization. 
It may also be necessary to perform admission control of the 
new jobs, based on the commitments already made. 

In this paper, our focus is on resource allocation problems 
in distributed cloud systems. In these systems, the cloud 
resources are geographically distributed and interconnected 

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 963 



over a wide-area network. Because of the distribution and 
the relatively smaller size of the data centers, it is possible 
that a single user request may have its resources allocated 
from amongst multiple data centers. Consequently, the latency 
in communication between the different centers is far more 
significant than in the case of centralized cloud architectures 
where the cloud resources are concentrated inside a few 
large data centers. We develop resource allocation algorithms 
for distributed cloud systems and a primary objective is to 
minimize the maximum latency in communication between 
the virtual machines allocated for a user request. We pick 
this objective so as to reduce the possibility of tasks running 
on distant pairs of virtual machines which will lead to large 
communication latencies and hence delay overall completion 
times for the user request. 

II. SYSTEM ARCHITECTURE 

A. Distributed Cloud 

Distributed cloud architectures [16] consist of a large num
ber of small sized data centers distributed across a geo
graphic area. This architecture is appealing to network service 
providers who already have the necessary distributed facilities 
(such as central offices that are geographically dispersed 
and close to users) for deploying a large number of dis
tributed data centers interconnected by high-speed networks. 
Distributed cloud architectures can provide several benefits 
over the traditional centralized cloud architectures, where large 
datacenters are placed at a few locations. In a distributed 
datacenters, customer requests can be serviced from locations 
closest to them. This helps reduce network capacity needs, 
for high-bandwidth applications, which constitute a significant 
cost when accessing centralized datacenters [6]. Distributing 
the datacenters also reduces the latency of access compared 
to traditional datacenters. In fact, the access latency of the 
traditional datacenter may have large variation due to the long 
path lengths and going through multiple service providers [12]. 
Figure 1 illustrates a distributed cloud. 

Though several novel intra-data-center network architec
tures have been recently been proposed in the research lit
erature [7], [8], [14], current intra-data-center network de
ployments are typically organized in a hierarchical manner 
(Figure 2). As the figure shows, each rack contains a fixed 
number of blade servers. Each blade server has a few proces
sors each having several processing cores. The VMs that are 
running in different cores of the same blade can communicate 
directly without going through any external switch. Machines 
in different blade servers that are part of the same rack 
communicate using a top-of-the-rack (TOR) switch that is 
attached to the rack. Two racks communicate using aggregator 
switches. Hence, machines in blade servers located in adjacent 
racks communicate using a path that consists of the TOR 
switch of the source rack, aggregator switch and the TOR 
switch of the destination rack. If the racks are located farther 
apart, there may be multiple levels of aggregate switches. 
Hence, the latency of the communication for the VMs of an 

application depends on the location of the physical machines 
on which they are scheduled. 

Current data center networks are designed with the as
sumption of locality of communication. That is most of the 
communication is assumed to be amongst machines in the 
same rack. Aggregate switches can carry only a fraction of a 
rack's network capacity. As the distance between the machines 
increase, the available bandwidth between them decreases. 
Hence, the available bandwidth for the VMs of the application 
depends on the physical machines that they are assigned 
to. Furthermore, the overall efficiency of the datacenter also 
depends on this assignment. The number of requests that the 
cloud management and automation software will be able to 
admit will depend on the available bandwidth of the datacenter. 

B. Cloud Management and Automation Architecture 

Figure 3 shows the high-level architecture of the cloud 
management and automation system. Users request services 
from the cloud. Each user request consists of a number of VMs 
that need to be allocated and the communication requirements 
among the VMs. It is possible that the user many not have a 
priori knowledge of the communication requirements amongst 
the VMs. In that case, the cloud automation system may need 
to do an initial assignment based on worst-case assumptions 
and re-optimize based on actual measurements. For our al
gorithms, we assume that knowledge of the communication 
requirements amongst the VMs is known and made available 
for resource allocation computations. The user may also spec
ify additional constraints to meet fault tolerance and elasticity 
needs. For example, the user may specify a limit on the number 
of VMs that may be placed at a datacenter for fault tolerance 
purposes. The system may also impose a restriction that a 
data center needs to host at least a certain minimum number 
of VMs to reduce the inter-data-center traffic. 

The cloud automation software computes a placement of 
VMs for the user request. The output contains a mapping of 
VMs to the physical resources. This mapping specifies the 
datacenter, rack, blade, and the CPU where the VM will be 
scheduled. It also specifies any network configurations that 
need to be performed. 

To perform its assignment function, the cloud automa
tion software interacts with the network management system 
(NMS) and the local cloud management system (CMS) in the 
data centers. NMS provides a view of the current network 
between the datacenters. Cloud automation uses it to infer 
the cost and bandwidth availability for inter-data-center traffic. 
CMS provided the view of the individual data centers. They 
include the availability of network, storage and compute re
sources in the datacenter. Cloud automation software provides 
the placement to the CMS and NMS to allocate resources for 
the user request. 

The cloud automation software module has two main func
tionalities: Keeping track of resource usage, and optimized 
assignment of user requests. It maintains the availability and 
usage of networking and compute resources in its database. 

964 



Fig. 1. A distributed cloud architecture Fig. 2. A typical datacenter in the dis- Fig. 3. Architecture of a cloud resource allocation 
tributed cloud 

This database is kept current by getting information from the 
NMS and eMS. 

The assignment of resources to a user request consists of 
identifying the datacenters and the machines (racks and blades) 
where the user's request will be run. The goal here is to reduce 
the inter-datacenter and intra-datacenter traffic as well as to 
minimize the path length of the data packets to improve the 
application performance. The assignment is performed in four 
steps: 

1) Datacenter Selection: Identify the datacenters to place 
the user request. Based on user constraints and avail
ability the request may be placed in more than one 
datacenter. We identify a subset of the datacenters that 
satisfy the resource needs and minimize the length of 
the paths between the datacenters .. In particular, we are 
interested in minimizing the length of longest path or 
more generally in minimizing the largest communication 
latency. This is because VMs that incur large communi
cation latency are likely to lag in their task completion 
times and hence increase overall completion times for 
the user request. 

2) Request partitioning across datacenters: After identi
fying the set of datacenters suitable for assigning VMs 
for the current user request, we need to determine the 
data-center assignment for each individual VM. For 
this assignment, our objective is to minimize the inter
datacenter traffic. The requests might also have specified 
additional constraints on placing different types of VMs 
on different data centers. The cloud automation software 
adheres to these constraints during placement. 

3) Rack, blade and processor selection: Here we identify 
the physical compute resources in each of the selected 
datacenters. The goal again is to identify machines that 
have low inter-rack traffic. 

4) VM placement: In this step, we assign individual VMs 
to the physical resource (i.e rack, blade, processor) 
identified in step 3. In this step we try to minimize the 
inter-rack traffic between the VMs. 

In the rest of the paper, we develop optimization algorithms 
for each of these resource allocation steps. In both Steps 2 and 
4, we partition the VMs such that it reduces the inter-partition 
traffic and the algorithms used in these steps are similar in 
objective. Solving steps 2 and 4 as separate problems, instead 
of combining them together reduces the problem size as well 

system 

as enables adding additional user constraints to the scheduling. 

III. DATA CENTER SELECTION 

In a distributed cloud environment, datacenters are placed 
at multiple geographic locations. The first step in servicing a 
user request is selection of the right datacenters to place the 
VMs. A single datacenter may not have enough capacity to 
host all the VMs of the user. Even if there is enough capacity 
a datacenter, the user may not want to have all the VMs hosted 
in one datacenter, in order to guard against complete failure 
if the data center has a service outage. The cloud automation 
software needs to select the datacenters for VM deployment 
that meet user constraints, optimize network use, and maxi
mize the application performance. In this section, we present 
an algorithm that selects a subset of datacenters for placing the 
VMs of a user request such that it minimizes the maximum 
distance (or the hop count) between any two datacenters. We 
use this objective since we want to avoid the chances of certain 
VMs strongly lagging others in task completion due to large 
communication latencies between some pairs of VMs (lagging 
VMs result in increased completion times for user requests). 
The algorithm that we present can also handle additional 
user constraints like minimum and maximum number of VMs 
placed in any datacenter. 

Datacenter selection problem may be viewed as a subgraph 
selection problem, which we call MINDIAMETER. We are 
given a complete graph G = (V, E ,  w, l). The vertices V,  
represents the datacenters, and weights w on them denotes 
the number of available VMs in that datacenter. The edges 
E represents the path between the datacenters and the labels 
(length) l on them denotes the distance, number of hops or 
latency of the shortest path. We use the term lengths and 
weights to denote the weights on the edge and the vertices 
respectively. If the user request has any constraint on the 
maximum number of VMs that may be placed at a datacenter, 
then the weights of the vertices are capped to that number. 
Similarly, if the request has constraint on minimum number 
of VMs on a datacenter, then the vertices with fewer weights 
are removed from the graph. 

Let s be the number of VMs requested by the user. Data 
center selection problem MINDIAMETER(s) corresponds to 
finding a subgraph of G, whose sum of weights is at least 
s and with minimum diameter (i.e maximum length of any 
shortest between the vertices). Since the original graph is a 
complete graph, the subgraph induced by the selected vertices 

965 



MINDIAMETER Instance 
CLIQUE Instance 

Fig. 4. Reduction from MAXCLIQUE to MINDIAMETER problem 

is also complete. Hence, our goal is to find such a subgraph 
whose length of the longest edge is minimum. 

A. Hardness of approximation 

MINDIAMETER problem is NP-hard and cannot be ap
proximated within 2 - E for any E > O. We can reduce it from 
MAXCLIQUE problem [4], where the problem is to find a 
clique of maximum size. The reduction is as follows. Given 
an instance G = (V, E)  of MAX CLIQUE problem, we create 
an instance of MINDIAMETER problem. We create a new 
complete graph G' = (V', E', w, l). The vertices of G' are 
same as G, and has weight 1. If there is an edge between two 
vertices U and v in G, then the length of the edge between the 
corresponding vertices of G' is 1. Otherwise, the length of the 
edge between the vertices is 2. The edges in this graph satisfy 
the triangle inequality. A subgraph of G' has a diameter 1, 
if and only if the corresponding subgraph in G is a clique. 
This is because, if G has a clique of size k, then we can 
take the corresponding vertices of G' to form a subgraph of 
weight k and diameter 1. Similarly, if G' has a subgraph of 
weight k and diameter 1, then the corresponding vertices of 
G forms a clique of size k. Hence, we can find the solution 
to MAX CLIQUE by finding maximum s E {n, n - 1, ... , I} 
for which there exist a subgraph of size s and diameter 1. 

Example: Figure 4 gives an instance of the MAXCLIQUE 
problem and the equivalent MINDIAMETER problem. The 
labels on the edge show the link costs. Dotted lines are the 
new edges added to make the graph a complete graph. Thick 
lines shows the edges of the MINDIAMETER solution, where 
the diameter of the graph is 1. This is also the maximum clique 
in the original graph. 

Lemma 1: MINDIAMETER problem cannot be approxi
mated in polynomial time within a factor 2 - E for any E > 0, 
unless P = NP. 

Proof: If there is 2 - E approximation algorithm for MIN
DIAMETER, we can solve the MAXCLIQUE problem as 
follows. To find a clique of size k, create a MINDIAMETER 
problem with weight k using the above reduction. If there is 
a clique of size k, then there exists a subgraph for MINDI
AMETER problem of diameter 1. If there is no such clique, 
then the diameter of the MINDIAMETER problem is at least 
2. Hence, if a 2 - E algorithm for MINDIAMETER returns a 
subgraph whose diameter is less than 2, then there is clique 
of size k in the original graph. 

B. Approximation algorithm 

We describe an algorithm for minimum diameter subgraph 
problem that gives the best approximation guarantees. The 
diameter of the subgraph output by the algorithm is at most 
twice the diameter of the optimal subgraph. We assume 
triangle inequality for the edge weights in the graph. Triangle 
inequality is expected to be generally valid in our problem 
settings since the length of the edges corresponds to path 
length between the corresponding data centers. If there is a 
triangle inequality violation between three data centers, then 
we can conform to the triangle inequality by forcing the longer 
edge to take a path formed by the shorter edges. 

Algorithm 1 FindMinStar(G, v, s) 

I: Input: G = (V, E ,  w, l): Complete graph with vertex 
weight and edge lengths 
v: Starting vertex 
s: Required weight of the subgraph 

2: Output: Subgraph G' = (V', E') of weight at least s 
formed by v and its closest neighbors. 

3: V' +--- {v} , E' +--- c/J, size +--- w( v) 
4: Let Ul, U2, ... , Un-l be the vertices of G sorted in in-

creasing order of length to v. (i.e. l(v, Ui) ::; l(v, Ui+l» 
5: i +--- 1 
6: diameter +--- 0 
7: while size < sand i < n do 

8: V' +--- V' U {Ui} 
9: size +--- size + W(Ui) 

\0: i +--- i + 1 
II: diameter +--- max (diameter, {l(v', Ui) : v

' E V'}) 
12: E' +--- E' U {(V', Ui): v

' E V'} 
13: end while 

14: if size < s then 

15: No subgraph of size s exist in G. Return NULL 
16: end if 

17: return G' = (V', E') and diameter 

The algorithm FindMinStar(G, v, s) in Algorithm 1 finds 
a subgraph of weight at least s that includes vertex v. It 
finds a star topology centered at vertex v by adding nodes 
in increasing order of length to v, until the weight of the 
star topology is at least s. The edges of the subgraph are the 
edges induced by the nodes in the star. The algorithm also 
computes the diameter of the resulting subgraph. This is done 
by maintaining the diameter as the nodes are added. When a 
node is added, the diameter of the subgraph can change only 
if the length of the edges induced by that node is greater than 
the current diameter. 

Algorithm MinDiameterGraph(G, s) in Algorithm 2 
finds a subgraph of weight at least s, by invoking 
FindM inStar for each of the vertices, and selecting the one 
with smallest diameter. 
C. Analysis 

In this section, we show that the algorithm presented above 
is a 2-approximation algorithm. 

966 



Algorithm 2 MinDiameterGraph(G, s) 

1· Input: G = (V, E ,  w, l) : Complete graph with vertex 
weight and edge lengths. 
s: Weight of the subgraph 

2: Output: Subgraph G' = (V', E') of weight at least s. 
3: mindiameter f- 00 

4· for all vertex v E V do 

5: Gil f- FindMinStar(G, v, s) 
6: if diameter( Gil) < mindiameter then 

7: mindiameter f- diameter(G") 
8: G' f- Gil 
9: end if 

10: end for 

11: return G' and mindiameter 

Lemma 2: FindMinStar(G, v, s) finds the subgraph of 
weight at least s, whose length of any edge incident on v is 
minimum. 

Proof: FindM inStar( G, v, s) algorithm first adds vertex v 
to the subgraph. Then it adds the vertices adjacent to v, in the 
increasing order of edge weights, until the sum of the weight 
of the vertices in the subgraph is s. Hence, the algorithm finds 
a subgraph with smallest edge lengths for the edges incident 
on v. 

Theorem 3: MinDiameterGraph(G, s) finds a subgraph 
of weight at least s, whose diameter is at most twice the 
optimum. 

Proof: MinDiameterGraph(G, s) invokes 
FindM inStar algorithm for each of the vertices of G 
and selects the one with minimum diameter. Let v' be the 
node for which the diameter of the graph G' returned by 
FindM inStar was minimum. Let l' be the length of the 
longest edge incident on v' in the sub graph G'. Since the 
edge lengths follow triangle inequality and G' is a complete 
graph, the length of any edge in G' is at most 2l'. Hence, 
diameter of G' is at most 2l'. 

Let Gopt be the optimal solution to MINDIAMETER(s). 
Let l" be the longest edge of Gopt. Let u" and v" be the 
end points of l". Since the edges of Gopt satisfies triangle 
inequality the shortest distance in Gopt between u" and v" is 
l". Hence the diameter of Gopt is at least l". Now consider the 
graph Gil returned by FindM inStar( G, s, v") while running 
the MinDiameterGraph(G, s). According to the lemma 2, 
the lengths of edges incident on v" on Gil is at most l". Since 
the diameter of Gil is at most 2l", the diameter of the subgraph 
returned by M inDiameterGraph( i.e.G") is at most 2l". 
Hence, our algorithm is a 2-approximation algorithm. 

Running time: Algorithm FindM instar needs to sort the 
lengths of edges incident on a node, which takes 0 (n log n), 
where n is number of datacenters. While loop in the algorithm 
may be executed once per node. Computing diameter takes 
O(n2) as there are n2 edges. Hence, the worst case running 
time of FindMinstar is O(n2). MinDiameterGraph in
vokes FindMinstar n times, one for each node giving the 
worst case complexity O(n3). 

IV. MACHINE SELECTION INSIDE DATACENTER 

Once the datacenters have been identified to place the user 
request, we need to identify the physical resources inside 
the chosen datacenters where the VMs could be assigned. 
A datacenter may have more available VMs than the one 
requested by the user. In those cases, choosing the right set 
of physical resources to run the VMs can help to improve 
both datacenter utilization as well as performance of the user 
application. 

The goal of the machine selection is to find the machines 
that reduce the inter-rack communication and avoid long paths 
for the communication. In a data center that consists of 
100s of racks, it is important that VMs of an application 
be scheduled in racks that are physically located close to 
each other. Otherwise, the communication may have to go 
through multiple aggregate switches leading to large latency 
and resource (bandwidth) usage. 

For the machine selection, we could use the same algorithm 
as the datacenter selection to get a 2-approximation algorithm 
to minimize the maximum distance between the machines. 
Here the vertices of the graph would represent the racks whose 
weights would represent the number of available VMs, and the 
edges lengths would represent inter-rack distance. 

However, as noted earlier, since the datacenter topology 
is often organized as hierarchical network, we can solve the 
machine selection problem for this case optimally in the min
max sense. Here, the topology may be considered as a tree 
topology, where the root represents the core level switches, its 
children represents top-level aggregate switches, grandchildren 
represents second-level aggregate switches and so on. Finally, 
the leaf nodes represent the racks. In this tree, all the leaves 
are at the same level (i.e. distance from the root). We also 
add labels on the leaves to represent the number of available 
VMs on each rack. It is also possible to extend this tree to 
blade level, where the leaf nodes represent the blades and their 
parents represents the racks. 

For the machine selection problem, we minimize the max
imum communication distance between any two VMs. Here 
the problem can be translated into finding a rooted sub tree 
of minimal height whose sum of the labels on the leaves is at 
least the target number of VMs required. Like the datacenter 
selection problem, we may include additional constraints like 
the maximum and minimum VMs that are placed per rack. 
We can include these constraints by changing the weight of 
the leaves accordingly. 

Let s be the number of VMs that needs to be placed 
at a datacenter. Let T be the tree representation of the 
datacenter compute and networking resource. We associate two 
variables with each node in T; weight(v) represents number 
of available VMs rooted at node v and height(v) represents 
the height of the node. Before running the algorithm the weight 
variables are set only for the leaf nodes. 

Algorithm FindM inH eightTree(T, r, s) in Algorithm 3 
finds a subtree of the tree rooted at r whose leaf nodes have a 
cumulative weight of at least s and of minimum height. The 

967 



algorithm performs the post-order traversal of the tree, and 
maintains the height and weight of each node as well as root 
of the minimum height subtree with weight at least s. 

Running time: The algorithm has the same complexity as 
tree traversal: O(n). 

Algorithm 3 FindMinHeightTree(T, r, s) 

1: Input: T : Tree representation of the datacenter resource 
r : Root of the subtree where we want to start search 
s : Required weight of the subtree 

2: Output: Root of the subtree with weight at least s that 
has minimum height. Algorithm also computes the weight 
and height of the current subtree. 

3: if r is a leaf node then 

4: height(r) f- 1 
5: if weight(r) 2": s then 

6: return r 
7: else 

8: return NULL 
9: end if 

10: end if 

11: height f- 0, weight f- 0 
12: minheight f- 00, mintree f- NULL 
13: for each vertex v in children(r) do 

14: n f- FindMinHeightTree(T, v, s) 
15: if n -=I- NULL and minheight < height(n) then 

16: minheight f- height(n) 
17: mintree f- n 
18: end if 

19: if height(v) > height then 

20: height f- height(v) 
21: end if 

22: weight f- weight + weight(v) 
23: end for 

24: height(r) f- height + 1 
25: weight(r) f- weight 
26: if mintree = NULL and weight 2": s then 

27: return r 
28: else 

29: return mintree 
30: end if 

V. VIRTUAL MACHINE PLACEMENT 

In this section, we provide heuristic algorithms for assigning 
individual VMs to datacenters and to CPUs within the datacen
ters. This problem is a variant of graph partitioning and k-cut 
problems (Section VII). Our goal is to device algorithms that 
can be implemented on cloud automation systems, and does 
not require expensive computations. 

We represent the user request as a graph G = (V, E), where 
the nodes represent the tasks (VMs) to be placed and the edges 
represent the communication requirements between them. Our 
goal is to partition V into disjoint sets C1, C2, ... Cm , such 
that communication between vertices belonging to different 
partition is minimized. For ease of representation, we assume 

symmetric communication. For asymmetric traffic, we take the 
average of incoming and outgoing traffic in each link. 

Each partition of the graph represents the set of VMs 
that need to be scheduled in the same datacenter (for global 
or cloud scheduling) or same rack (for inside datacenter 
scheduling). The size of the each partition needs to be upper
bounded by the number of available VMs in the corresponding 
datacenter or rack. Unlike the traditional graph partition prob
lem, our problem may not specify the exact number of nodes in 
each partition; it only specifies the maximum nodes in each of 
the partition. This is because at any point, there may be more 
VMs available in the system than the request. The algorithm 
tries to optimize the communication by scheduling the VMs 
within the maximum available VMs of each datacenter or rack. 

Algorithm 4 Algorithm: FindCluster(G, s) 

1: Input: G = (V, E)  : Input graph with communication 
requirement between the nodes. Weight w of an edge 
represents the communication requirement 
s : Number of nodes in the cluster. 

2: Output: Set of nodes C to schedule in the cluster. 
3: v f- vertex with maximum LUEv w(v, u) 
4: C f- ¢ 
5: traff(u) f- 0 for all u E V 
6: while s > 101 and s > IVI do 

7: C f- C U {v} 
8: for each vertex u E V - C adjacent to v do 

9: traf f(u) f- traf f(u) + w(v, u) 
10: end for 

11: v f- argmaxuEv-Etraff(u) 
12: end while 

13: return C 

Algorithm 5 Partition(G, K) 
1: Input: G = (V, E)  : Input graph with communication 

requirement between the nodes. 
K = k1' k2, . . .  kr: Size of clusters to partition. 

2: Output: A partition of G with components C1, C2, ... Cr 

such that I Ci I ::; ki. 

3: Let k1' k2, . . .  kr be in decreasing order 
4: V'=V 
5: for i = 1 to r do 

6: G' f- subgraph of G induced by vertex set V' 
7: Ci f- FindCluster(G', ki) 
8: V' f- V' - Ci 
9: end for 

10: return C1, C2, ... , Cr 

Algorithms 4 and 5 give a heuristic solution for the partition 
problem. Algorithm Partition( G, K) is given the user request 
graph G, the maximum number of nodes in each partition 
K = k1' . . .  ,kr as input. Set K is derived from the output of 
algorithms in Sections III and IV. 

This algorithm selects datacenters (or racks) in the decreas
ing order of available capacity and fills as many VMs as pos
sible in those datacenters (or racks) using FindCluster. The 

968 



FindCluster algorithm selects a VM with maximum amount 
of incoming/outgoing bandwidth (or number of neighbors) and 
places it in the datacenter (or rack). This VM is added to a 
set C, which is the set of scheduled VMs in the datacenter (or 
rack). Then it considers all the neighbors of C. It schedules the 
one that has maximum traffic towards/out of C and adds the 
VM to set C. This process is repeated until all the available 
VMs of the datacenter (or rack) have exhausted or there are 
no more VMs to schedule. 

The greedy solution may be improved by exchanging certain 
nodes in the schedule using Kernighan-Lin [11] heuristic or 
its variants. The idea is to consider pairs of nodes that are 
present in different partition and checks if interchanging of 
these nodes improves the solution (i.e. uses less inter-rack 
bandwidth). We also can check if moving a node from one 
partition to another that has available capacity improves the 
solution. The algorithm selects the best move possible and 
commits that move. This process is repeated until a threshold 
number of moves have been performed or there is no further 
improvement in solution. 

Running time: In FindCluster, while loop is executed 
one for each node (VM). tra!! variable may be maintained in 
an heap. For each node, this variable gets updated at most once 
for every neighbor, giving the time complexity of O(n210g n). 

VI. SIMULATION RESULTS 

In this section, we evaluate the performance of our algo
rithms. First, we compare our placement algorithm in Sec
tion III (Approx) with two other algorithms: Random and 
Greedy. Random algorithm selects a random datacenter and 
places as many VMs from the request as possible in that 
datacenter. If there are more VMs in the request than what 
is available in the selected datacenter, then the algorithm 
randomly chooses the next datacenter to place the remaining 
VMs. This process is repeated until all the VMs in the request 
are placed in some datacenter. Greedy algorithm selects the 
datacenter with maximum number of available VMs. It places 
as many VMs from the request as possible on that datacenter. 
If there are remaining VMs in the request to be placed, then 
the algorithm selects the next datacenter with largest number 
of available VMs. This process continues until all the VMs 
are placed. 

To measure the performance of the algorithms, we cre
ate random topologies and user requests, and measure the 
maximum distance (diameter) between any two VMs in the 
placement output by these algorithms. The locations of dat
acenters are randomly selected from 1 OOOx 1 000 grid. The 
distance between these datacenters is the Euclidean distance 
between the points. There are five different distributed cloud 
scenarios containing 100, 75, 50, 25 and 10 datacenters. The 
average number of machines in each of the clouds is the same. 
Hence, the number of machines in a datacenter is inversely 
proportional to number of datacenter in the corresponding 
cloud. Number of machines per datacenter on a 100-datacenter 
cloud is chosen uniformly random between 50 and 100. For 
the 50-datacenter cloud the number of machines is uniformly 

1.400 

I 
\.200 

1.000 

� 800 il 
-!l 600 
'0 

I 400 

C 200 

Number or daw centers 

Fig. 5. Diameter of the placement for a request of 1000 VMs 
400 

I 
350 

300 

� 250 

il 200 
-!l 
'0 150 

I 100 
C 50 

Number or daw CCIlICrs 

Fig. 6. Diameter for placing 100 requests of 50 to 100 VMs 

random between 100 and 200, and so on. In each of the 
experiments below, we report the results as average of 100 
runs. 

In the first experiment, we measure the diameter of the 
placement for a single request of 1000 VMs. Figure 5 shows 
the results for each of the algorithms. Our approximation algo
rithm significantly outperforms Greedy and Random in all the 
distributed cloud scenarios by 79%. Greedy and Random have 
similar performance. It can also be noted that the diameter 
decreases as number of datacenters decrease. This is because, 
number of machines available per datacenter increases as 
number of datacenter decrease. Hence, a smaller number of 
datacenters can service the request in dense clouds, reducing 
the diameter of the placement. 

Now we study the cloud systems with a series of user 
requests. We conduct two sets of experiments and measure 
the average diameter of placement. In the first set, there are 
100 requests for 50 to 100 VMs uniformly distributed. We 
call it large requests. In the second set, there are 500 requests 
for 10 to 20 VMs. We call it small requests. Note that the 
average number of VMs requested in both the experiments is 
the same. Figures 6 and 7 give the average diameter for the 
algorithms for large and small requests respectively. In these 
experiments greedy performs better than random by 32.6% 
and 66.5% respectively. Approx performs better than greedy 

80 

E 70 
g 

i 60 � 50 

� 40 

! 30 

� 20 
� 10 

Number or data centers 

Fig. 7. Diameter for placing 500 requests of 10 to 20 VMs 

969 



5oo r-
------

.-
------

-.
--------, o�0�D�C- �

--
--. 

450 75 DC ><;;;.-
50 DC - - - *:- - -

400 05 DC -£} 

350 10 DC .---

300 
250 
200 
150 
100 

50. 
0 ' L-------�

2
L-------�-------L

4
------�

5 
Total VMs to maximum VMs per DC (resilience) 

Fig. 8. Diameter for 100 requests of 50-100 VMs for different resilience 

'" 
i¥ 
� 
a:: 
g; 
'0 

I .'" 
0 

500 
450 
400 

350 
300 

250 
200 
150 
100 

50 

1 00 DC ---+-- ...I. 
75 DC �)(- -

50 DC ....... . 
-2 5 DC ····e·· 
10 DC ___ 

o
�------�---- --�------ --�------� 

5 
Total VMs to maximum VMs per DC (resilience) 

Fig. 9. Diameter for 500 requests of 10-20 VMs for different resilience 

by 83.4% and 86.4% respectively. For the same algorithm, 
placement of larger requests requires higher diameter than the 
smaller requests. This is because, larger requests may have to 
be placed in multiple datacenters, which increases the diameter 
of the placement. We also see the trend of decreasing diameter 
as the number of datacenter in the cloud decreases, as observed 
in the previous experiment. 

Now we study the performance of the cloud systems when 
user gives additional constraints on the maximum VMs that 
may be placed at a datacenter. We use the same set of requests 
as the previous experiment: large and small requests. In 
addition, user specifies the maximum number of VMs that can 
be placed at a datacenter. This is specified as the ratio of total 
number of VMs to maximum VMs in any datacenter, called 
resilience. The request needs to be placed in at least resilience 
number of datacenters. Since approx performs significantly 
better than other algorithms, we only present the results for 
approx. Other algorithms also behaved in a similar manner 
with larger diameters. 

Figures 8 and 9 show the diameter of the placement 
by approx as a function of resilience for clouds containing 
different number of datacenters for large and small requests 
respectively. As observed in the previous experiment, larger 
request have longer diameter. As the resilience increases, the 
diameter of the placement also increases. This is because the 
request needs to be placed in multiple datacenters, which 
increases the diameter. For resiliency of two and above, the 
diameter increases as the number of datacenter decreases. 
This is in contrast to the case of resiliency 1 as observed 
in the previous experiments. For resiliency 2 and above, 
the request needs to be placed in multiple datacenters. As 
number of datacenters in the cloud decreases, the average 
distance between neighboring datacenters increases. Hence, 
the distance between the datacenters in a placement increases. 

5000 Random ---e-
Greedy -e-

Heuristic ___ 4 _ _  

°
2
L----�

3
-----L

4
-----L----�

6
----�

7
----�8 

Number of datacenters 

Fig. 10. Inter-datacenter traffic for 100 VMs with excess capacity in DCs 

5000 Random ---e--

� 
� 4000 

Greedy --e-
Heurjs'� . 

. . . .  __ _ •. _ _  . __ ... . .. 0--.· ·· ·-_·· 

� 
� 3000 

! 2000 " 
.� 
J 

1000 

0 
2 3 6 7 8 

Number of datacenters 

Fig. II. Inter-datacenter traffic for 100 VMs with no excess capacity in DCs 

A. VM partitioning 

Now we study the performance of our heuristic algorithm 
to assign the VMs to the selected datacenters. Given the com
munication requirements between the VMs and the available 
capacity in each of the datacenters, the algorithm assigns 
VMs to the datacenters to minimize the inter-datacenter traf
fic. We compare the performance of the heuristic algorithm 
with two other algorithms: Greedy and Random. Random 

algorithm assigns random datacenter to each of the VMs. 
Greedy algorithm selects datacenters in the decreasing order 
of available capacity, and assigns as many VMs as possible. 
While selecting the VMs, it chooses VMs with maximum total 
traffi c firs t. 

In our experiment, we assign a 100 VMs request to the 
datacenters. The bandwidth required between these VMs was 
taken randomly between 0 and 1 Mbps. We studied the inter
datacenter traffic for assignment of these VMs to k datacenters, 
where k = 2, ... ,8. The available resources in each of the 
datacenter were between 100jk and 200jk. Hence, we were 
assigning 100 VMs to datacenters containing between 100 and 
200 VMs. We ran the experiment 100 times and report the 
average. 

Figure 10 plots inter-datacenter traffic as a function of 
number of datacenters for the three algorithm. For all the algo
rithms, inter-datacenter traffic increases as the number of dat
acenters increases. This is because, number of available VMs 
per datacenter decreases as the number of datacenter increases. 
As VMs are placed in more datacenters, inter-datacenter traffic 
increases. From the figure, we also see that greedy performs 
better than random by 10.2%, and heuristic algorithm performs 
better than greedy by 4.6%. Figure II shows the same plot 
where the datacenters did not have any excess capacity. Here, 
the inter-datacenter traffic for heuristic algorithm was 28.2% 
higher than the previous experiments, due to lower datacenter 

970 



5000 

I _ 4000 

� - 3000 

! 
rn 2000 

� - 1000 
� 

Random 15 DC -e-
Greedy 5 DC -e-

Heuristic 5 DC · ··4· · ·  
Random 3 DC • 

Greedy 3 DC - . -.., ," 
Heuristic 3 DC . "... . L�· 

�"'�""""'��S'�;� 

o L-------�------�------��----� 
20 40 60 80 100 

Percentage of links with traffic 

Fig. 12. Inter-datacenter traffic for VMs with partial traffic 

capacity. Heuristic algorithm performed better than the other 
two algorithms by 4.8%. Performance of random and greedy 
was almost the same. 

In figure 12, we study the effect of VM traffic on the 
inter-datacenter traffic. We vary the percentage of links with 
traffic in the VM communication graph from 20% to 100% 
and measure the inter-datacenter traffic. Here, the datacenter 
did not have excess capacity. We show the results for 3 
and 5 datacenters. We observe that inter-datacenter traffic 
grows linearly with percentage of links with traffic for all the 
algorithms. 

VII. RELATED WORK 

Assigning individual VMs to datacenters and to CPUs 
within the datacenter falls under the category of graph par
titioning problems. The problem is to divide the graph into 
pieces of equal size, such that there are few connections 
between the pieces. Even the simple case of dividing into 2 
equal pieces, called graph bisection problem is NP-hard [4]. 
Well known Kernighan-Lin algorithm [II], and its variants [3], 
[10] are used for solving this problem heuristically. For par
titioning graphs into several components, recursive bisections 
are used [2]. Most of these problems assume equal partition. 

Another related problem is minimum k - cut problem, 
which is to divide the graph into k sets, and minimize the total 
weight of edges whose ends fall in two set . If the sizes of the 
set are not given, but number of sets need to be r, then the 
problem is solvable in polynomial time [5]. If r is part of input, 
problem is NP-hard and 2 - 2jr approximation algorithm 
exists [15]. When the size of the sets are given and r is 
fixed, 3-approximation algorithm exists, if the weights follow 
triangle inequality [9]. Triangle inequality is not satisfied 
in VM assignment problem, as the weights are bandwidth 
required between the nodes. 

A problem related to the datacenter selection is finding a 
maximum subgraph with a given diameter (MaxDBS) [I]. 
For general graphs, it is NP-hard to approximate MaxDBS 
to within a factor of n 

1/2-< for any f > 0 . 
The problem of assigning VMs inside a date center to 

minimize overall network costs has been studied in [13]. Here 
the objective is to place VMs that have large communication 
requirements, close to each other so as to reduce network 
capacity needs in the data center. A quadratic-assignment for
mulation of the traffic-aware placement problem is presented 
and solved with an approximation algorithm. 

VIII. CONCLUSIONS 

The main contribution of this paper is the development of 
algorithms for network-aware allocation of virtual machines 
in distributed cloud systems. In distributed cloud systems, 
inter-data-center latencies may be large and affect application 
performance when the VMs for an application are split over 
multiple data centers. Since the deployed cloud resources 
in each data center in a distributed cloud system are likely 
to be much smaller than in centralized data centers it is 
also more likely that a user request for resources gets split 
amongst multiple data centers. Hence, the use of good resource 
allocation algorithms is critical to achieving good applica
tion performance in distributed cloud systems. Based on the 
observation that VMs which are tardy in their completion 
times, due to communication latencies, can increase overall 
completion times for user requests (and so affect application 
performance), we developed data-center selection algorithms 
for VM placement that minimize the maximum distance be
tween the selected data centers. We showed that this problem 
is NP-hard and developed a 2-approximation algorithm. The 
same algorithm can also be used for locating VMs inside data 
centers. However, inside data centers the network topology is 
often hierarchical and for this case we developed an optimal 
algorithm. We also developed heuristic algorithms that perform 
well for assigning VMs to processing resources in the chosen 
data center locations. 

REFERENCES 

[I] Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum 
diameter-bounded subgraphs. LATIN' 10, pages 615-626, 2010. 

[2] C. E. Ferreira, A. Martin, C. de Souza, R. Weismantel, and L. Wolsey. 
The node capacitated graph partitioning problem: A computational study. 
Mathematical Programming, pages 229-256, 1998. 

[3] C. Fiduccia and R. Mattheyses. A linear-time heuristic for improving 
network partitions. Design Automation Conference, 1982. 

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide 
to the Theory of NP-Completeness. 1979. 

[5] O. Goldschmidt and D. Hochbaum. Polynomial algorithm for the k-cut 
problem. IEEE Symp. on Foundations of Comput. Sci., 1988. 

[6] A. Gottlieb. Beware the network cost gotchas of cloud computing. Cloud 
Computing Journal, June 2011. 

[7] A. Greenberg, 1. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, 
D. A. Maltz, P. Patel, and S. Sengupta. V12: a scalable and flexible data 
center network. ACM SIGCOMM, 2009. 

[8] c. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and 
S. Lu. Bcube: a high performance, server-centric network architecture 
for modular data centers. ACM SIGCOMM, 2009. 

[9] N. Guttmann-Beck and R. Hassin. Approximation algorithms for 
minimum k-cut. Algorithmica, page 198207, 1999. 

[10] G. Karypis and V. Kumar. A fast and high quality multilevel scheme 
for partitioning irregular graphs. Siam J. on Scientific Computing, 1999. 

[II] B. W. Kernighan and S. Lin. An efficient heuristic procedure for 
partitioning graphs. Bell Systems Technical Journal, 1970. 

[12] T. Leighton. Improving performance on the internet. Commun. ACM, 

52, February 2009. 
[I3] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of 

data center networks with traffic-aware virtual machine placement. 
INF O COM, 2010. 

[14] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, 
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable 
fault-tolerant layer 2 data center network fabric. ACM SIGCOMM, 2009. 

[15] H. Saran and V. Vazirani. Finding k-cuts within twice the optimal. IEEE 

Symp. on Foundations of Compul. Sci., 1991. 
[16] SCOPE Alliance. Telecom grade cloud computing. www.scope-

alliance.org, 2011. 

971 


