
New Directions in Traffic Measurement and Accounting

Cristian Estan
Computer Science and Engineering Department

University of California, San Diego
9500 Gilman Drive

La Jolla, CA 92093-0114
cestan@cs.ucsd.edu

George Varghese
Computer Science and Engineering Department

University of California, San Diego
9500 Gilman Drive

La Jolla, CA 92093-0114
varghese@cs.ucsd.edu

ABSTRACT
Accurate network traffic measurement is required for ac-
counting, bandwidth provisioning and detecting DoS at-
tacks. These applications see the traffic as a collection of
flows they need to measure. As link speeds and the number
of flows increase, keeping a counter for each flow is too ex-
pensive (using SRAM) or slow (using DRAM). The current
state-of-the-art methods (Cisco’s sampled NetFlow) which
log periodically sampled packets are slow, inaccurate and
resource-intensive. Previous work showed that at different
granularities a small number of “heavy hitters” accounts for
a large share of traffic. Our paper introduces a paradigm
shift for measurement by concentrating only on large flows
— those above some threshold such as 0.1% of the link ca-
pacity.

We propose two novel and scalable algorithms for iden-
tifying the large flows: sample and hold and multistage fil-
ters, which take a constant number of memory references per
packet and use a small amount of memory. If M is the avail-
able memory, we show analytically that the errors of our new
algorithms are proportional to 1/M ; by contrast, the error
of an algorithm based on classical sampling is proportional
to 1/

√
M , thus providing much less accuracy for the same

amount of memory. We also describe further optimizations
such as early removal and conservative update that further
improve the accuracy of our algorithms, as measured on re-
al traffic traces, by an order of magnitude. Our schemes
allow a new form of accounting called threshold accounting
in which only flows above a threshold are charged by usage
while the rest are charged a fixed fee. Threshold accounting
generalizes usage-based and duration based pricing.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—traffic measurement, identifying large flows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’02,August 19-23, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-570-X/02/0008 ...$5.00.

General Terms
Algorithms,Measurement

Keywords
Network traffic measurement, usage based accounting, scal-
ability, on-line algorithms, identifying large flows

1. INTRODUCTION

If we’re keeping per-flow state, we have a scaling
problem, and we’ll be tracking millions of ants to
track a few elephants. — Van Jacobson, End-to-
end Research meeting, June 2000.

Measuring and monitoring network traffic is required to
manage today’s complex Internet backbones [9, 4]. Such
measurement information is essential for short-term moni-
toring (e.g., detecting hot spots and denial-of-service attacks
[14]), longer term traffic engineering (e.g., rerouting traffic
and upgrading selected links[9]), and accounting (e.g., to
support usage based pricing[5]).

The standard approach advocated by the Real-Time Flow
Measurement (RTFM) [3] Working Group of the IETF is to
instrument routers to add flow meters at either all or selected
input links. Today’s routers offer tools such as NetFlow [16]
that give flow level information about traffic.

The main problem with the flow measurement approach is
its lack of scalability. Measurements on MCI traces as early
as 1997 [22] showed over 250,000 concurrent flows. More
recent measurements in [8] using a variety of traces show
the number of flows between end host pairs in a one hour
period to be as high as 1.7 million (Fix-West) and 0.8 million
(MCI). Even with aggregation, the number of flows in 1 hour
in the Fix-West used by [8] was as large as 0.5 million.

It can be feasible for flow measurement devices to keep
up with the increases in the number of flows (with or with-
out aggregation) only if they use the cheapest memories:
DRAMs. Updating per-packet counters in DRAM is already
impossible with today’s line speeds; further, the gap between
DRAM speeds (improving 7-9% per year) and link speeds
(improving 100% per year) is only increasing. Cisco Net-
Flow [16], which keeps its flow counters in DRAM, solves
this problem by sampling: only sampled packets result in
updates. But NetFlow sampling has problems of its own (as
we show later) since it affects measurement accuracy.

Despite the large number of flows, a common observation
found in many measurement studies (e.g., [9, 8]) is that a

small percentage of flows accounts for a large percentage of
the traffic. [8] shows that 9% of the flows between AS pairs
account for 90% of the byte traffic between all AS pairs.

For many applications, knowledge of these large flows is
probably sufficient. [8, 17] suggest achieving scalable differ-
entiated services by providing selective treatment only to a
small number of large flows. [9] underlines the importance
of knowledge of “heavy hitters” for decisions about network
upgrades and peering. [5] proposes a usage sensitive billing
scheme that relies on exact knowledge of the traffic of large
flows but only samples of the traffic of small flows.

We conclude that it is infeasible to accurately measure all
flows on high speed links, but many applications can benefit
from accurately measuring only the few large flows. One
can easily keep counters for a few large flows using a small
amount of fast memory (SRAM). However, how does the
device know which flows to track? If one keeps state for all
flows to identify the few large flows, our purpose is defeated.

Thus a reasonable goal is to devise an algorithm that iden-
tifies large flows using memory that is only a small constant
larger than is needed to describe the large flows in the first
place. This is the central question addressed by this paper.
We present two algorithms that provably identify large flows
using such a small amount of state. Further, our algorithms
use only a few memory references, making them suitable for
use in high speed routers.

1.1 Problem definition
A flow is generically defined by an optional pattern (which

defines which packets we will focus on) and an identifier (val-
ues for a set of specified header fields). We can also general-
ize by allowing the identifier to be a function of the header
field values (e.g., using prefixes instead of addresses based
on a mapping using route tables). Flow definitions vary with
applications: for example for a traffic matrix one could use
a wildcard pattern and identifiers defined by distinct source
and destination network numbers. On the other hand, for
identifying TCP denial of service attacks one could use a
pattern that focuses on TCP packets and use the destina-
tion IP address as a flow identifier.

Large flows are defined as those that send more than a giv-
en threshold (say 0.1% of the link capacity) during a given
measurement interval (1 second, 1 minute or even 1 hour).
The technical report [6] gives alternative definitions and al-
gorithms based on defining large flows via leaky bucket de-
scriptors.

An ideal algorithm reports, at the end of the measurement
interval, the flow IDs and sizes of all flows that exceeded the
threshold. A less ideal algorithm can fail in three ways: it
can omit some large flows, it can wrongly add some small
flows to the report, and can give an inaccurate estimate of
the traffic of some large flows. We call the large flows that
evade detection false negatives, and the small flows that are
wrongly included false positives.

The minimum amount of memory required by an ideal al-
gorithm is the inverse of the threshold; for example, there
can be at most 1000 flows that use more than 0.1% of the
link. We will measure the performance of an algorithm by
four metrics: first, its memory compared to that of an ideal
algorithm; second, the algorithm’s probability of false neg-
atives; third, the algorithm’s probability of false positives;
and fourth, the expected error in traffic estimates.

1.2 Motivation
Our algorithms for identifying large flows can potentially

be used to solve many problems. Since different applications
define flows by different header fields, we need a separate
instance of our algorithms for each of them. Applications
we envisage include:

• Scalable Threshold Accounting: The two poles
of pricing for network traffic are usage based (e.g., a
price per byte for each flow) or duration based (e.g.,
a fixed price based on duration). While usage-based
pricing [13, 20] has been shown to improve overall u-
tility, usage based pricing in its most complete form is
not scalable because we cannot track all flows at high
speeds. We suggest, instead, a scheme where we mea-
sure all aggregates that are above z% of the link; such
traffic is subject to usage based pricing, while the re-
maining traffic is subject to duration based pricing. By
varying z from 0 to 100, we can move from usage based
pricing to duration based pricing. More importantly,
for reasonably small values of z (say 1%) threshold
accounting may offer a compromise between that is s-
calable and yet offers almost the same utility as usage
based pricing. [1] offers experimental evidence based
on the INDEX experiment that such threshold pricing
could be attractive to both users and ISPs. 1.

• Real-time Traffic Monitoring: Many ISPs moni-
tor backbones for hot-spots in order to identify large
traffic aggregates that can be rerouted (using MPLS
tunnels or routes through optical switches) to reduce
congestion. Also, ISPs may consider sudden increases
in the traffic sent to certain destinations (the victims)
to indicate an ongoing attack. [14] proposes a mecha-
nism that reacts as soon as attacks are detected, but
does not give a mechanism to detect ongoing attacks.
For both traffic monitoring and attack detection, it
may suffice to focus on large flows.

• Scalable Queue Management: At a smaller time
scale, scheduling mechanisms seeking to approximate
max-min fairness need to detect and penalize flows
sending above their fair rate. Keeping per flow state
only for these flows [10, 17] can improve fairness with
small memory. We do not address this application
further, except to note that our techniques may be
useful for such problems. For example, [17] uses clas-
sical sampling techniques to estimate the sending rates
of large flows. Given that our algorithms have better
accuracy than classical sampling, it may be possible
to provide increased fairness for the same amount of
memory by applying our algorithms.

The rest of the paper is organized as follows. We de-
scribe related work in Section 2, describe our main ideas in
Section 3, and provide a theoretical analysis in Section 4.
We theoretically compare our algorithms with NetFlow in
Section 5. After showing how to dimension our algorithms in
Section 6, we describe experimental evaluation on traces in
Section 7. We end with implementation issues in Section 8
and conclusions in Section 9.

1Besides [1], a brief reference to a similar idea can be found
in [20]. However, neither paper proposes a fast mechanism
to implement the idea.

2. RELATED WORK
The primary tool used for flow level measurement by IP

backbone operators is Cisco NetFlow [16]. NetFlow keeps
per flow state in a large, slow DRAM. Basic NetFlow has two
problems: i) Processing Overhead: updating the DRAM
slows down the forwarding rate; ii) Collection Overhead:
the amount of data generated by NetFlow can overwhelm
the collection server or its network connection. For example
[9] reports loss rates of up to 90% using basic NetFlow.

The processing overhead can be alleviated using sampling:
per-flow counters are incremented only for sampled packets.
We show later that sampling introduces considerable inaccu-
racy in the estimate; this is not a problem for measurements
over long periods (errors average out) and if applications do
not need exact data. However, we will show that sampling
does not work well for applications that require true low-
er bounds on customer traffic (e.g., it may be infeasible to
charge customers based on estimates that are larger than ac-
tual usage) and for applications that require accurate data
at small time scales (e.g., billing systems that charge higher
during congested periods).

The data collection overhead can be alleviated by having
the router aggregate flows (e.g., by source and destination
AS numbers) as directed by a manager. However, [8] shows
that even the number of aggregated flows is very large. For
example, collecting packet headers for Code Red traffic on a
class A network [15] produced 0.5 Gbytes per hour of com-
pressed NetFlow data and aggregation reduced this data
only by a factor of 4. Techniques described in [5] can be
used to reduce the collection overhead at the cost of further
errors. However, it can considerably simplify router process-
ing to only keep track of heavy-hitters (as in our paper) if
that is what the application needs.

Many papers address the problem of mapping the traffic of
large IP networks. [9] deals with correlating measurements
taken at various points to find spatial traffic distributions;
the techniques in our paper can be used to complement their
methods. [4] describes a mechanism for identifying packet
trajectories in the backbone, that is not focused towards
estimating the traffic between various networks.

Bloom filters [2] and stochastic fair blue [10] use similar
but different techniques to our parallel multistage filters to
compute very different metrics (set membership and drop
probability). Gibbons and Matias [11] consider synopsis da-
ta structures that use small amounts of memory to approx-
imately summarize large databases. They define counting
samples that are similar to our sample and hold algorithm.
However, we compute a different metric, need to take into
account packet lengths and have to size memory in a differ-
ent way. In [7], Fang et al look at efficient ways of answering
iceberg queries, or counting the number of appearances of
popular items in a database. Their multi-stage algorithm
is similar to multistage filters that we propose. However,
they use sampling as a front end before the filter and use
multiple passes. Thus their final algorithms and analyses
are very different from ours. For instance, their analysis is
limited to Zipf distributions while our analysis holds for all
traffic distributions.

3. OUR SOLUTION
Because our algorithms use an amount of memory that is

a constant factor larger than the (relatively small) number

of large flows, our algorithms can be implemented using on-
chip or off-chip SRAM to store flow state. We assume that
at each packet arrival we can afford to look up a flow ID in
the SRAM, update the counter(s) in the entry or allocate
a new entry if there is no entry associated with the current
packet.

The biggest problem is to identify the large flows. Two
approaches suggest themselves. First, when a packet arrives
with a flow ID not in the flow memory, we could make place
for the new flow by evicting the flow with the smallest mea-
sured traffic (i.e., smallest counter). While this works well
on traces, it is possible to provide counter examples where
a large flow is not measured because it keeps being expelled
from the flow memory before its counter becomes large e-
nough, even using an LRU replacement policy as in [21].

A second approach is to use classical random sampling.
Random sampling (similar to sampled NetFlow except us-
ing a smaller amount of SRAM) provably identifies large
flows. We show, however, in Table 1 that random sam-
pling introduces a very high relative error in the measure-
ment estimate that is proportional to 1/

√
M , where M is

the amount of SRAM used by the device. Thus one needs
very high amounts of memory to reduce the inaccuracy to
acceptable levels.

The two most important contributions of this paper are
two new algorithms for identifying large flows: Sample and
Hold (Section 3.1) and Multistage Filters (Section 3.2). Their
performance is very similar, the main advantage of sam-
ple and hold being implementation simplicity, and the main
advantage of multistage filters being higher accuracy. In
contrast to random sampling, the relative errors of our two
new algorithms scale with 1/M , where M is the amount of
SRAM. This allows our algorithms to provide much more
accurate estimates than random sampling using the same
amount of memory. In Section 3.3 we present improve-
ments that further increase the accuracy of these algorithms
on traces (Section 7). We start by describing the main ideas
behind these schemes.

3.1 Sample and hold
Base Idea: The simplest way to identify large flows is

through sampling but with the following twist. As with or-
dinary sampling, we sample each packet with a probability.
If a packet is sampled and the flow it belongs to has no entry
in the flow memory, a new entry is created. However, after
an entry is created for a flow, unlike in sampled NetFlow,
we update the entry for every subsequent packet belonging
to the flow as shown in Figure 1.

Thus once a flow is sampled a corresponding counter is
held in a hash table in flow memory till the end of the mea-
surement interval. While this clearly requires processing
(looking up the flow entry and updating a counter) for ev-
ery packet (unlike Sampled NetFlow), we will show that the
reduced memory requirements allow the flow memory to be
in SRAM instead of DRAM. This in turn allows the per-
packet processing to scale with line speeds.

Let p be the probability with which we sample a byte.
Thus the sampling probability for a packet of size s is ps =
1−(1−p)s. This can be looked up in a precomputed table or
approximated by ps = p ∗ s. Choosing a high enough value
for p guarantees that flows above the threshold are very like-
ly to be detected. Increasing p unduly can cause too many
false positives (small flows filling up the flow memory). The

F3 2

F1 3

F1 F1 F2 F3 F2 F4 F1 F3 F1

Entry updated

Sampled packet (probability=1/3)

Entry created

Transmitted packets

Flow memory

Figure 1: The leftmost packet with flow label F1
arrives first at the router. After an entry is created
for a flow (solid line) the counter is updated for all
its packets (dotted lines)

advantage of this scheme is that it is easy to implement and
yet gives accurate measurements with very high probability.

Preliminary Analysis: The following example illustrates
the method and analysis. Suppose we wish to measure the
traffic sent by flows that take over 1% of the link capaci-
ty in a measurement interval. There are at most 100 such
flows. Instead of making our flow memory have just 100
locations, we will allow oversampling by a factor of 100 and
keep 10, 000 locations. We wish to sample each byte with
probability p such that the average number of samples is
10, 000. Thus if C bytes can be transmitted in the measure-
ment interval, p = 10, 000/C.

For the error analysis, consider a flow F that takes 1% of
the traffic. Thus F sends more than C/100 bytes. Since we
are randomly sampling each byte with probability 10, 000/C,
the probability that F will not be in the flow memory at
the end of the measurement interval (false negative) is (1−
10000/C)C/100 which is very close to e−100. Notice that
the factor of 100 in the exponent is the oversampling factor.
Better still, the probability that flow F is in the flow mem-
ory after sending 5% of its traffic is, similarly, 1− e−5 which
is greater than 99% probability. Thus with 99% probability
the reported traffic for flow F will be at most 5% below the
actual amount sent by F .

The analysis can be generalized to arbitrary threshold val-
ues; the memory needs scale inversely with the threshold
percentage and directly with the oversampling factor. No-
tice also that the analysis assumes that there is always space
to place a sample flow not already in the memory. Setting
p = 10, 000/C ensures only that the average number of flows
sampled is no more than 10,000. However, the distribution
of the number of samples is binomial with a small standard
deviation (square root of the mean). Thus, adding a few
standard deviations to the memory estimate (e.g., a total
memory size of 10,300) makes it extremely unlikely that the
flow memory will ever overflow.

Compared to Sampled NetFlow our idea has three signif-
icant differences shown in Figure 2. Most importantly, we
sample only to decide whether to add a flow to the mem-
ory; from that point on, we update the flow memory with
every byte the flow sends. As shown in section 5 this will
make our results much more accurate. Second, our sampling

All

packets
Every xth Update entry or

create a new one
Large flow

packet

Large reports to

management station

Sampled NetFlow

Sample and hold

memory

Yes

No

Update existing entry

Create

Small flow
p ~ size

Pass with
probability

management station

Small reports to

new entry

memory
All packets

Has entry?

Figure 2: Sampled NetFlow counts only sampled
packets, sample and hold counts all after entry cre-
ated

Packet with
flow ID F

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

All Large?
Memory

Flow

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

h2(F)

h1(F)

h3(F)
Stage 3

Stage 2

Stage 1

Figure 3: In a parallel multistage filter, a packet
with a flow ID F is hashed using hash function h1 in-
to a Stage 1 table, h2 into a Stage 2 table, etc. Each
table entry contains a counter that is incremented
by the packet size. If all the hashed counters are
above the threshold (shown bolded), F is passed to
the flow memory for individual observation.

technique avoids packet size biases unlike NetFlow which
samples every x packets. Third, our technique reduces the
extra resource overhead (router processing, router memo-
ry, network bandwidth) for sending large reports with many
records to a management station.

3.2 Multistage filters
Base Idea: The basic multistage filter is shown in Figure 3.

The building blocks are hash stages that operate in parallel.
First, consider how the filter operates with only one stage.
A stage is a table of counters which is indexed by a hash
function computed on a packet flow ID; all counters in the
table are initialized to 0 at the start of a measurement in-
terval. When a packet comes in, a hash on its flow ID is
computed and the size of the packet is added to the corre-
sponding counter. Since all packets belonging to the same
flow hash to the same counter, if a flow F sends more than
threshold T , F ’s counter will exceed the threshold. If we
add to the flow memory all packets that hash to counters of
T or more, we are guaranteed to identify all the large flows
(no false negatives).

Unfortunately, since the number of counters we can afford
is significantly smaller than the number of flows, many flows
will map to the same counter. This can cause false positives
in two ways: first, small flows can map to counters that hold
large flows and get added to flow memory; second, several

small flows can hash to the same counter and add up to a
number larger than the threshold.

To reduce this large number of false positives, we use mul-
tiple stages. Each stage (Figure 3) uses an independent hash
function. Only the packets that map to counters of T or
more at all stages get added to the flow memory. For exam-
ple, in Figure 3, if a packet with a flow ID F arrives that
hashes to counters 3,1, and 7 respectively at the three stages,
F will pass the filter (counters that are over the threshold
are shown darkened). On the other hand, a flow G that
hashes to counters 7, 5, and 4 will not pass the filter be-
cause the second stage counter is not over the threshold.
Effectively, the multiple stages attenuate the probability of
false positives exponentially in the number of stages. This
is shown by the following simple analysis.

Preliminary Analysis: Assume a 100 Mbytes/s link2,
with 100,000 flows and we want to identify the flows above
1% of the link during a one second measurement interval.
Assume each stage has 1,000 buckets and a threshold of 1
Mbyte. Let’s see what the probability is for a flow sending
100 Kbytes to pass the filter. For this flow to pass one stage,
the other flows need to add up to 1 Mbyte - 100Kbytes = 900
Kbytes. There are at most 99,900/900=111 such buckets
out of the 1,000 at each stage. Therefore, the probability
of passing one stage is at most 11.1%. With 4 independent
stages, the probability that a certain flow no larger than 100
Kbytes passes all 4 stages is the product of the individual
stage probabilities which is at most 1.52 ∗ 10−4.

Based on this analysis, we can dimension the flow memo-
ry so that it is large enough to accommodate all flows that
pass the filter. The expected number of flows below 100K-
bytes passing the filter is at most 100, 000∗15.2∗10−4 < 16.
There can be at most 999 flows above 100Kbytes, so the
number of entries we expect to accommodate all flows is at
most 1,015. Section 4 has a rigorous theorem that proves
a stronger bound (for this example 122 entries) that holds
for any distribution of flow sizes. Note the potential scala-
bility of the scheme. If the number of flows increases to 1
million, we simply add a fifth hash stage to get the same
effect. Thus to handle 100,000 flows, requires roughly 4000
counters and a flow memory of approximately 100 memory
locations, while to handle 1 million flows requires roughly
5000 counters and the same size of flow memory. This is
logarithmic scaling.

The number of memory accesses per packet for a multi-
stage filter is one read and one write per stage. If the num-
ber of stages is small, this is feasible even at high speeds by
doing parallel memory accesses to each stage in a chip im-
plementation.3 While multistage filters are more complex
than sample-and-hold, they have a two important advan-
tages. They reduce the probability of false negatives to 0
and decrease the probability of false positives, thereby re-
ducing the size of the required flow memory.

3.2.1 The serial multistage filter
We briefly present a variant of the multistage filter called

a serial multistage filter. Instead of using multiple stages
in parallel, we can place them serially after each other, each
stage seeing only the packets that passed the previous stage.

2To simplify computation, in our examples we assume that
1Mbyte=1,000,000 bytes and 1Kbyte=1,000 bytes.
3We describe details of a preliminary OC-192 chip imple-
mentation of multistage filters in Section 8.

Let d be the number of stages (the depth of the serial
filter). We set a threshold of T/d for all the stages. Thus for
a flow that sends T bytes, by the time the last packet is sent,
the counters the flow hashes to at all d stages reach T/d, so
the packet will pass to the flow memory. As with parallel
filters, we have no false negatives. As with parallel filters,
small flows can pass the filter only if they keep hashing to
counters made large by other flows.

The analytical evaluation of serial filters is more compli-
cated than for parallel filters. On one hand the early stages
shield later stages from much of the traffic, and this con-
tributes to stronger filtering. On the other hand the thresh-
old used by stages is smaller (by a factor of d) and this
contributes to weaker filtering. Since, as shown in Section
7, parallel filters perform better than serial filters on traces
of actual traffic, the main focus in this paper will be on
parallel filters.

3.3 Improvements to the basic algorithms
The improvements to our algorithms presented in this sec-

tion further increase the accuracy of the measurements and
reduce the memory requirements. Some of the improve-
ments apply to both algorithms, some apply only to one
of them.

3.3.1 Basic optimizations
There are a number of basic optimizations that exploit

the fact that large flows often last for more than one mea-
surement interval.

Preserving entries: Erasing the flow memory after each
interval, implies that the bytes of a large flow that were sent
before the flow was allocated an entry are not counted. By
preserving entries of large flows across measurement inter-
vals and only reinitializing stage counters, all long lived large
flows are measured nearly exactly. To distinguish between a
large flow that was identified late and a small flow that was
identified by error, a conservative solution is to preserve the
entries of not only the flows for which we count at least T
bytes in the current interval, but also all the flows who were
added in the current interval (since they may be large flows
that entered late).

Early removal: Sample and hold has a larger rate of
false positives than multistage filters. If we keep for one
more interval all the flows that obtained a new entry, many
small flows will keep their entries for two intervals. We can
improve the situation by selectively removing some of the
flow entries created in the current interval. The new rule for
preserving entries is as follows. We define an early removal
threshold R that is less then the threshold T . At the end of
the measurement interval, we keep all entries whose counter
is at least T and all entries that have been added during the
current interval and whose counter is at least R.

Shielding: Consider large, long lived flows that go through
the filter each measurement interval. Each measurement in-
terval, the counters they hash to exceed the threshold. With
shielding, traffic belonging to flows that have an entry in flow
memory no longer passes through the filter (the counters in
the filter are not incremented for packets with an entry),
thereby reducing false positives. If we shield the filter from
a large flow, many of the counters it hashes to will not reach
the threshold after the first interval. This reduces the proba-
bility that a random small flow will pass the filter by hashing
to counters that are large because of other flows.

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Incoming
packet

Counter 1 Counter 3Counter 2 Counter 1 Counter 3Counter 2

Figure 4: Conservative update: without conserva-
tive update (left) all counters are increased by the
size of the incoming packet, with conservative up-
date (right) no counter is increased to more than
the size of the smallest counter plus the size of the
packet

3.3.2 Conservative update of counters
We now describe an important optimization for multistage

filters that improves performance by an order of magnitude.
Conservative update reduces the number of false positives
of multistage filters by two subtle changes to the rules for
updating counters. In essence, we endeavour to increment
counters as little as possible (thereby reducing false positives
by preventing small flows from passing the filter) while still
avoiding false negatives (i.e., we need to ensure that all flows
that reach the threshold still pass the filter.)

The first change (Figure 4) applies only to parallel filters
and only for packets that don’t pass the filter. As usual,
an arriving flow F is hashed to a counter at each stage.
We update the smallest of the counters normally (by adding
the size of the packet). However, the other counters are
set to the maximum of their old value and the new value of
the smallest counter. Since the amount of traffic sent by the
current flow is at most the new value of the smallest counter,
this change cannot introduce a false negative for the flow the
packet belongs to. Since we never decrement counters, other
large flows that might hash to the same counters are not
prevented from passing the filter.

The second change is very simple and applies to both par-
allel and serial filters. When a packet passes the filter and it
obtains an entry in the flow memory, no counters should be
updated. This will leave the counters below the threshold.
Other flows with smaller packets that hash to these counters
will get less “help” in passing the filter.

4. ANALYTICAL EVALUATION OF OUR AL-
GORITHMS

In this section we analytically evaluate our algorithms.
We focus on two important questions:

• How good are the results? We use two distinct mea-
sures of the quality of the results: how many of the
large flows are identified, and how accurately is their
traffic estimated?

• What are the resources required by the algorithm? The
key resource measure is the size of flow memory need-
ed. A second resource measure is the number of mem-
ory references required.

In Section 4.1 we analyze our sample and hold algorithm,
and in Section 4.2 we analyze multistage filters. We first
analyze the basic algorithms and then examine the effect of
some of the improvements presented in Section 3.3. In the
next section (Section 5) we use the results of this section to
analytically compare our algorithms with sampled NetFlow.

Example: We will use the following running example to
give numeric instances. Assume a 100 Mbyte/s link with
100, 000 flows. We want to measure all flows whose traffic
is more than 1% (1 Mbyte) of link capacity in a one second
measurement interval.

4.1 Sample and hold
We first define some notation we use in this section.

• p the probability for sampling a byte;

• s the size of a flow (in bytes);

• T the threshold for large flows;

• C the capacity of the link – the number of bytes that
can be sent during the entire measurement interval;

• O the oversampling factor defined by p = O · 1/T ;

• c the number of bytes actually counted for a flow.

4.1.1 The quality of results for sample and hold
The first measure of the quality of the results is the prob-

ability that a flow at the threshold is not identified. As
presented in Section 3.1 the probability that a flow of size T
is not identified is (1−p)T ≈ e−O. An oversampling factor of
20 results in a probability of missing flows at the threshold
of 2 ∗ 10−9.

Example: For our example, p must be 1 in 50,000 bytes
for an oversampling of 20. With an average packet size of
500 bytes this is roughly 1 in 100 packets.

The second measure of the quality of the results is the
difference between the size of a flow s and our estimate.
The number of bytes that go by before the first one gets
sampled has a geometric probability distribution4: it is x
with a probability5 (1 − p)xp.

Therefore E[s− c] = 1/p and SD[s− c] =
√

1 − p/p. The
best estimate for s is c + 1/p and its standard deviation is√

1 − p/p. If we choose to use c as an estimate for s then
the error will be larger, but we never overestimate the size
of the flow. In this case, the deviation from the actual value
of s is

p
E[(s − c)2] =

√
2 − p/p. Based on this value we

can also compute the relative error of a flow of size T which
is T

√
2 − p/p =

√
2 − p/O.

Example: For our example, with an oversampling factor
O of 20, the relative error for a flow at the threshold is 7%.

4We ignore for simplicity that the bytes before the first sam-
pled byte that are in the same packet with it are also count-
ed. Therefore the actual algorithm will be more accurate
than our model.
5Since we focus on large flows, we ignore for simplicity the
correction factor we need to apply to account for the case
when the flow goes undetected (i.e. x is actually bound by
the size of the flow s, but we ignore this).

4.1.2 The memory requirements for sample and hold
The size of the flow memory is determined by the number

of flows identified. The actual number of sampled packets is
an upper bound on the number of entries needed in the flow
memory because new entries are created only for sampled
packets. Assuming that the link is constantly busy, by the
linearity of expectation, the expected number of sampled
bytes is p · C = O · C/T .

Example: Using an oversampling of 20 requires 2,000 en-
tries on average.

The number of sampled bytes can exceed this value. Since
the number of sampled bytes has a binomial distribution, we
can use the normal curve to bound with high probability the
number of bytes sampled during the measurement interval.
Therefore with probability 99% the actual number will be
at most 2.33 standard deviations above the expected val-
ue; similarly, with probability 99.9% it will be at most 3.08
standard deviations above the expected value. The standard
deviation of the number of sampled packets is

p
Cp(1 − p).

Example: For an oversampling of 20 and an overflow prob-
ability of 0.1% we need at most 2,147 entries.

4.1.3 The effect of preserving entries
We preserve entries across measurement intervals to im-

prove accuracy. The probability of missing a large flow de-
creases because we cannot miss it if we keep its entry from
the prior interval. Accuracy increases because we know the
exact size of the flows whose entries we keep. To quantify
these improvements we need to know the ratio of long lived
flows among the large ones.

The cost of this improvement in accuracy is an increase
in the size of the flow memory. We need enough memory to
hold the samples from both measurement intervals6. There-
fore the expected number of entries is bounded by 2O ·C/T .

To bound with high probability the number of entries we
use the normal curve and the standard deviation of the the
number of sampled packets during the 2 intervals which isp

2Cp(1 − p).
Example: For an oversampling of 20 and acceptable prob-

ability of overflow equal to 0.1%, the flow memory has to
have at most 4,207 entries to preserve entries.

4.1.4 The effect of early removal
The effect of early removal on the proportion of false neg-

atives depends on whether or not the entries removed early
are reported. Since we believe it is more realistic that im-
plementations will not report these entries, we will use this
assumption in our analysis. Let R < T be the early removal
threshold. A flow at the threshold is not reported unless one
of its first T −R bytes is sampled. Therefore the probability
of missing the flow is approximately e−O(T−R)/T . If we use
an early removal threshold of R = 0.2 ∗T , this increases the
probability of missing a large flow from 2∗10−9 to 1.1∗10−7

with an oversampling of 20.
Early removal reduces the size of the memory required by

limiting the number of entries that are preserved from the
previous measurement interval. Since there can be at most
C/R flows sending R bytes, the number of entries that we

6We actually also keep the older entries that are above the
threshold. Since we are performing a worst case analysis we
assume that there is no flow above the threshold, because if
there were, many of its packets would be sampled, decreasing
the number of entries required.

keep is at most C/R which can be smaller than OC/T , the
bound on the expected number of sampled packets. The
expected number of entries we need is C/R + OC/T .

To bound with high probability the number of entries we
use the normal curve. If R ≥ T/O the standard deviation
is given only by the randomness of the packets sampled in
one interval and is

p
Cp(1 − p).

Example: An oversampling of 20 and R = 0.2T with over-
flow probability 0.1% requires 2,647 memory entries.

4.2 Multistage filters
In this section, we analyze parallel multistage filters. We

only present the main results. The proofs and supporting
lemmas are in [6]. We first define some new notation:

• b the number of buckets in a stage;

• d the depth of the filter (the number of stages);

• n the number of active flows;

• k the stage strength is the ratio of the threshold and
the average size of a counter. k = T b

C
, where C de-

notes the channel capacity as before. Intuitively, this
is the factor we inflate each stage memory beyond the
minimum of C/T

Example: To illustrate our results numerically, we will
assume that we solve the measurement example described
in Section 4 with a 4 stage filter, with 1000 buckets at each
stage. The stage strength k is 10 because each stage memory
has 10 times more buckets than the maximum number of
flows (i.e., 100) that can cross the specified threshold of 1%.

4.2.1 The quality of results for multistage filters
As discussed in Section 3.2, multistage filters have no false

negatives. The error of the traffic estimates for large flows is
bounded by the threshold T since no flow can send T bytes
without being entered into the flow memory. The stronger
the filter, the less likely it is that the flow will be entered into
the flow memory much before it reaches T . We first state
an upper bound for the probability of a small flow passing
the filter described in Section 3.2.

Lemma 1. Assuming the hash functions used by different
stages are independent, the probability of a flow of size s <
T (1−1/k) passing a parallel multistage filter is at most ps ≤�

1
k

T
T−s

�d

.

The proof of this bound formalizes the preliminary anal-
ysis of multistage filters from Section 3.2. Note that the
bound makes no assumption about the distribution of flow
sizes, and thus applies for all flow distributions. The bound
is tight in the sense that it is almost exact for a distribution
that has b(C − s)/(T − s)c flows of size (T − s) that send all
their packets before the flow of size s. However, for realistic
traffic mixes (e.g., if flow sizes follow a Zipf distribution),
this is a very conservative bound.

Based on this lemma we obtain a lower bound for the
expected error for a large flow.

Theorem 2. The expected number of bytes of a large flow
undetected by a multistage filter is bound from below by

E[s − c] ≥ T

�
1 − d

k(d − 1)

�
− ymax (1)

where ymax is the maximum size of a packet.

This bound suggests that we can significantly improve the
accuracy of the estimates by adding a correction factor to
the bytes actually counted. The down side to adding a cor-
rection factor is that we can overestimate some flow sizes;
this may be a problem for accounting applications.

4.2.2 The memory requirements for multistage filters
We can dimension the flow memory based on bounds on

the number of flows that pass the filter. Based on Lemma 1
we can compute a bound on the total number of flows ex-
pected to pass the filter.

Theorem 3. The expected number of flows passing a par-
allel multistage filter is bound by

E[npass] ≤ max

b

k − 1
, n

�
n

kn − b

�d
!

+ n

�
n

kn − b

�d

(2)

Example: Theorem 3 gives a bound of 121.2 flows. Using
3 stages would have resulted in a bound of 200.6 and using 5
would give 112.1. Note that when the first term dominates
the max, there is not much gain in adding more stages.

In [6] we have also derived a high probability bound on
the number of flows passing the filter.

Example: The probability that more than 185 flows pass
the filter is at most 0.1%. Thus by increasing the flow memo-
ry from the expected size of 122 to 185 we can make overflow
of the flow memory extremely improbable.

4.2.3 The effect of preserving entries and shielding
Preserving entries affects the accuracy of the results the

same way as for sample and hold: long lived large flows have
their traffic counted exactly after their first interval above
the threshold. As with sample and hold, preserving entries
basically doubles all the bounds for memory usage.

Shielding has a strong effect on filter performance, since
it reduces the traffic presented to the filter. Reducing the
traffic α times increases the stage strength to k ∗ α, which
can be substituted in Theorems 2 and 3.

5. COMPARING MEASUREMENT METH-
ODS

In this section we analytically compare the performance
of three traffic measurement algorithms: our two new algo-
rithms (sample and hold and multistage filters) and Sampled
NetFlow. First, in Section 5.1, we compare the algorithms
at the core of traffic measurement devices. For the core
comparison, we assume that each of the algorithms is given
the same amount of high speed memory and we compare
their accuracy and number of memory accesses. This allows
a fundamental analytical comparison of the effectiveness of
each algorithm in identifying heavy-hitters.

However, in practice, it may be unfair to compare Sam-
pled NetFlow with our algorithms using the same amount
of memory. This is because Sampled NetFlow can afford to
use a large amount of DRAM (because it does not process
every packet) while our algorithms cannot (because they
process every packet and hence need to store per flow en-
tries in SRAM). Thus we perform a second comparison in
Section 5.2 of complete traffic measurement devices. In this
second comparison, we allow Sampled NetFlow to use more
memory than our algorithms. The comparisons are based

Measure Sample Multistage Sampling
and hold filters

Relative error
√

2
Mz

1+10 r log10(n)
Mz

1√
Mz

Memory accesses 1 1 + log10(n) 1
x

Table 1: Comparison of the core algorithms: sample
and hold provides most accurate results while pure
sampling has very few memory accesses

on the algorithm analysis in Section 4 and an analysis of
NetFlow taken from [6].

5.1 Comparison of the core algorithms
In this section we compare sample and hold, multistage

filters and ordinary sampling (used by NetFlow) under the
assumption that they are all constrained to using M memory
entries. We focus on the accuracy of the measurement of a
flow (defined as the standard deviation of an estimate over
the actual size of the flow) whose traffic is zC (for flows of
1% of the link capacity we would use z = 0.01).

The bound on the expected number of entries is the same
for sample and hold and for sampling and is pC. By mak-
ing this equal to M we can solve for p. By substituting in
the formulae we have for the accuracy of the estimates and
after eliminating some terms that become insignificant (as
p decreases and as the link capacity goes up) we obtain the
results shown in Table 1.

For multistage filters, we use a simplified version of the
result from Theorem 3: E[npass] ≤ b/k +n/kd. We increase
the number of stages used by the multistage filter logarith-
mically as the number of flows increases so that a single
small flow is expected to pass the filter7 and the strength
of the stages is 10. At this point we estimate the memory
usage to be M = b/k+1+rbd = C/T +1+r10C/T log10(n)
where r depends on the implementation and reflects the rel-
ative cost of a counter and an entry in the flow memory.
From here we obtain T which will be the maximum error of
our estimate of flows of size zC. From here, the result from
Table 1 is immediate.

The term Mz that appears in all formulae in the first
row of the table is exactly equal to the oversampling we de-
fined in the case of sample and hold. It expresses how many
times we are willing to allocate over the theoretical mini-
mum memory to obtain better accuracy. We can see that
the error of our algorithms decreases inversely proportional
to this term while the error of sampling is proportional to
the inverse of its square root.

The second line of Table 1 gives the number of memory
locations accessed per packet by each algorithm. Since sam-
ple and hold performs a packet lookup for every packet8,
its per packet processing is 1. Multistage filters add to the
one flow memory lookup an extra access to one counter per
stage and the number of stages increases as the logarithm of

7Configuring the filter such that a small number of small
flows pass would have resulted in smaller memory and fewer
memory accesses (because we would need fewer stages), but
it would have complicated the formulae.
8We equate a lookup in the flow memory to a single memory
access. This is true if we use a content associable memo-
ry. Lookups without hardware support require a few more
memory accesses to resolve hash collisions.

the number of flows. Finally, for ordinary sampling one in
x packets get sampled so the average per packet processing
is 1/x.

Table 1 provides a fundamental comparison of our new
algorithms with ordinary sampling as used in Sampled Net-
Flow. The first line shows that the relative error of our
algorithms scales with 1/M which is much better than the

1/
√

M scaling of ordinary sampling. However, the second
line shows that this improvement comes at the cost of requir-
ing at least one memory access per packet for our algorithms.
While this allows us to implement the new algorithms us-
ing SRAM, the smaller number of memory accesses (< 1)
per packet allows Sampled NetFlow to use DRAM. This is
true as long as x is larger than the ratio of a DRAM mem-
ory access to an SRAM memory access. However, even a
DRAM implementation of Sampled NetFlow has some prob-
lems which we turn to in our second comparison.

5.2 Comparing Measurement Devices
Table 1 implies that increasing DRAM memory size M

to infinity can reduce the relative error of Sampled NetFlow
to zero. But this assumes that by increasing memory one
can increase the sampling rate so that x becomes arbitrarily
close to 1. If x = 1, there would be no error since every
packet is logged. But x must at least be as large as the ratio
of DRAM speed (currently around 60 ns) to SRAM speed
(currently around 5 ns); thus Sampled NetFlow will always
have a minimum error corresponding to this value of x even
when given unlimited DRAM.

With this insight, we now compare the performance of
our algorithms and NetFlow in Table 2 without limiting
NetFlow memory. Thus Table 2 takes into account the un-
derlying technologies (i.e., the potential use of DRAM over
SRAM) and one optimization (i.e., preserving entries) for
both our algorithms.

We consider the task of estimating the size of all the flows
above a fraction z of the link capacity over a measurement
interval of t seconds. In order to make the comparison possi-
ble we change somewhat the way NetFlow operates: we as-
sume that it reports the traffic data for each flow after each
measurement interval, like our algorithms do. The four char-
acteristics of the traffic measurement algorithms presented
in the table are: the percentage of large flows known to be
measured exactly, the relative error of the estimate of a large
flow, the upper bound on the memory size and the number
of memory accesses per packet.

Note that the table does not contain the actual memory
used but a bound. For example the number of entries used
by NetFlow is bounded by the number of active flows and
the number of DRAM memory lookups that it can perfor-
m during a measurement interval (which doesn’t change as
the link capacity grows). Our measurements in Section 7
show that for all three algorithms the actual memory usage
is much smaller than the bounds, especially for multistage
filters. Memory is measured in entries, not bytes. We as-
sume that a flow memory entry is equivalent to 10 of the
counters used by the filter because the flow ID is typical-
ly much larger than the counter. Note that the number of
memory accesses required per packet does not necessarily
translate to the time spent on the packet because memory
accesses can be pipelined or performed in parallel.

We make simplifying assumptions about technology evo-
lution. As link speeds increase, so must the electronics.

Therefore we assume that SRAM speeds keep pace with link
capacities. We also assume that the speed of DRAM does
not improve significantly ([18] states that DRAM speeds im-
prove only at 9% per year while clock rates improve at 40%
per year).

We assume the following configurations for the three al-
gorithms. Our algorithms preserve entries. For multistage
filters we introduce a new parameter expressing how many
times larger a flow of interest is than the threshold of the
filter u = zC/T . Since the speed gap between the DRAM
used by sampled NetFlow and the link speeds increases as
link speeds increase, NetFlow has to decrease its sampling
rate proportionally with the increase in capacity9 to provide
the smallest possible error. For the NetFlow error calcula-
tions we also assume that the size of the packets of large
flows is 1500 bytes.

Besides the differences (Table 1) that stem from the core
algorithms, we see new differences in Table 2. The first big
difference (Row 1 of Table 2) is that unlike NetFlow, our
algorithms provide exact measures for long-lived large flows
by preserving entries. More precisely, by preserving entries
our algorithms will exactly measure traffic for all (or almost
all in the case of sample and hold) of the large flows that
were large in the previous interval. Given that our measure-
ments show that most large flows are long lived, this is a big
advantage.

Of course, one could get the same advantage by using an
SRAM flow memory that preserves large flows across mea-
surement intervals in Sampled NetFlow as well. However,
that would require the router to root through its DRAM
flow memory before the end of the interval to find the large
flows, a large processing load. One can also argue that if
one can afford an SRAM flow memory, it is quite easy to do
Sample and Hold.

The second big difference (Row 2 of Table 2) is that we
can make our algorithms arbitrarily accurate at the cost of
increases in the amount of memory used10 while sampled
NetFlow can do so only by increasing the measurement in-
terval t.

The third row of Table 2 compares the memory used by
the algorithms. The extra factor of 2 for sample and hold
and multistage filters arises from preserving entries. Note
that the number of entries used by Sampled NetFlow is
bounded by both the number n of active flows and the num-
ber of memory accesses that can be made in t seconds. Fi-
nally, the fourth row of Table 2 is identical to the second
row of Table 1.

Table 2 demonstrates that our algorithms have two advan-
tages over NetFlow: i) they provide exact values for long-
lived large flows (row 1) and ii) they provide much better
accuracy even for small measurement intervals (row 2). Be-
sides these advantages, our algorithms also have three more
advantages not shown in Table 2. These are iii) provable
lower bounds on traffic, iv) reduced resource consumption
for collection, and v) faster detection of new large flows. We
now examine advantages iii) through v) in more detail.

9If the capacity of the link is x times OC-3, then one in x
packets gets sampled. We assume based on [16] that Net-
Flow can handle packets no smaller than 40 bytes at OC-3
speeds.

10Of course, technology and cost impose limitations on the
amount of available SRAM but the current limits for on and
off-chip SRAM are high enough for our algorithms.

Measure Sample and hold Multistage filters Sampled NetFlow

Exact measurements / longlived% longlived% 0

Relative error 1.41/O / 1/u 0.0088/
√

zt
Memory bound 2O/z 2/z + 1/z log10(n) min(n,486000 t)

Memory accesses 1 1 + log10(n) 1/x

Table 2: Comparison of traffic measurement devices

iii) Provable Lower Bounds: A possible disadvantage
of Sampled NetFlow is that the NetFlow estimate is not an
actual lower bound on the flow size. Thus a customer may be
charged for more than the customer sends. While one can
make the average overcharged amount arbitrarily low (us-
ing large measurement intervals or other methods from [5]),
there may be philosophical objections to overcharging. Our
algorithms do not have this problem.

iv) Reduced Resource Consumption: Clearly, while
Sampled NetFlow can increase DRAM to improve accuracy,
the router has more entries at the end of the measurement
interval. These records have to be processed, potentially ag-
gregated, and transmitted over the network to the manage-
ment station. If the router extracts the heavy hitters from
the log, then router processing is large; if not, the band-
width consumed and processing at the management station
is large. By using fewer entries, our algorithms avoid these
resource (e.g., memory, transmission bandwidth, and router
CPU cycles) bottlenecks.

v) Faster detection of long-lived flows: In a security
or DoS application, it may be useful to quickly detect a
large increase in traffic to a server. Our algorithms can
use small measurement intervals and detect large flows soon
after they start. By contrast, Sampled NetFlow can be much
slower because with 1 in N sampling it takes longer to gain
statistical confidence that a certain flow is actually large.

6. DIMENSIONING TRAFFIC MEASURE-
MENT DEVICES

We describe how to dimension our algorithms. For appli-
cations that face adversarial behavior (e.g., detecting DoS
attacks), one should use the conservative bounds from Sec-
tions 4.1 and 4.2. Other applications such as accounting can
obtain greater accuracy from more aggressive dimensioning
as described below. Section 7 shows that the gains can be
substantial. For example the number of false positives for
a multistage filter can be four orders of magnitude below
what the conservative analysis predicts. To avoid a priori
knowledge of flow distributions, we adapt algorithm param-
eters to actual traffic. The main idea is to keep decreasing
the threshold below the conservative estimate until the flow
memory is nearly full (totally filling memory can result in
new large flows not being tracked).

Figure 5 presents our threshold adaptation algorithm. There
are two important constants that adapt the threshold to
the traffic: the “target usage” (variable target in Figure 5)
that tells it how full the memory can be without risking fill-
ing it up completely and the “adjustment ratio” (variables
adjustup and adjustdown in Figure 5) that the algorithm
uses to decide how much to adjust the threshold to achieve
a desired increase or decrease in flow memory usage. To give
stability to the traffic measurement device, the entriesused

ADAPTTHRESHOLD
usage = entriesused/flowmemsize
if (usage > target)

threshold = threshold ∗ (usage/target)adjustup

else
if (threshold did not increase for 3 intervals)

threshold = threshold ∗ (usage/target)adjustdown

endif
endif

Figure 5: Dynamic threshold adaptation to achieve
target memory usage

variable does not contain the number of entries used over
the last measurement interval, but an average of the last 3
intervals.

Based on the measurements presented in [6], we use a
value of 3 for adjustup, 1 for adjustdown in the case of
sample and hold and 0.5 for multistage filters and 90% for
target. [6] has a more detailed discussion of the threshold
adaptation algorithm and the heuristics used to decide the
number and size of filter stages. Normally the number of
stages will be limited by the number of memory accesses
one can perform and thus the main problem is dividing the
available memory between the flow memory and the filter
stages.

Our measurements confirm that dynamically adapting the
threshold is an effective way to control memory usage. Net-
Flow uses a fixed sampling rate that is either so low that a
small percentage of the memory is used all or most of the
time, or so high that the memory is filled and NetFlow is
forced to expire entries which might lead to inaccurate re-
sults exactly when they are most important: when the traffic
is large.

7. MEASUREMENTS
In Section 4 and Section 5 we used theoretical analysis

to understand the effectiveness of our algorithms. In this
section, we turn to experimental analysis to show that our
algorithms behave much better on real traces than the (rea-
sonably good) bounds provided by the earlier theoretical
analysis and compare them with Sampled NetFlow.

We start by describing the traces we use and some of the
configuration details common to all our experiments. In
Section 7.1.1we compare the measured performance of the
sample and hold algorithm with the predictions of the ana-
lytical evaluation, and also evaluate how much the various
improvements to the basic algorithm help. In Section 7.1.2
we evaluate the multistage filter and the improvements that
apply to it. We conclude with Section 7.2 where we com-

Trace Number of flows (min/avg/max) Mbytes/interval
5-tuple destination IP AS pair (min/avg/max)

MAG+ 93,437/98,424/105,814 40,796/42,915/45,299 7,177/7,401/7,775 201.0/256.0/284.2
MAG 99,264/100,105/101,038 43,172/43,575/43,987 7,353/7,408/7,477 255.8/264.7/273.5
IND 13,746/14,349/14,936 8,723/8,933/9,081 - 91.37/96.04/99.70
COS 5,157/5,497/5,784 1,124/1,146/1,169 - 14.28/16.63/18.70

Table 3: The traces used for our measurements

pare complete traffic measurement devices using our two
algorithms with Cisco’s Sampled NetFlow.

We use 3 unidirectional traces of Internet traffic: a 4515
second “clear” one (MAG+) from CAIDA (captured in Au-
gust 2001 on an OC-48 backbone link between two ISPs) and
two 90 second anonymized traces from the MOAT project of
NLANR (captured in September 2001 at the access points
to the Internet of two large universities on an OC-12 (IND)
and an OC-3 (COS)). For some of the experiments use only
the first 90 seconds of trace MAG+ as trace MAG.

In our experiments we use 3 different definitions for flows.
The first definition is at the granularity of TCP connections:
flows are defined by the 5-tuple of source and destination IP
address and port and the protocol number. This definition
is close to that of Cisco NetFlow. The second definition us-
es the destination IP address as a flow identifier. This is a
definition one could use to identify at a router ongoing (dis-
tributed) denial of service attacks. The third definition uses
the source and destination autonomous system as the flow
identifier. This is close to what one would use to determine
traffic patterns in the network. We cannot use this defini-
tion with the anonymized traces (IND and COS) because
we cannot perform route lookups on them.

Table 3 describes the traces we used. The number of ac-
tive flows is given for all applicable flow definitions. The
reported values are the smallest, largest and average value
over the measurement intervals of the respective traces. The
number of megabytes per interval is also given as the small-
est, average and largest value. Our traces use only between
13% and 27% of their respective link capacities.

The best value for the size of the measurement interval
depends both on the application and the traffic mix. We
chose to use a measurement interval of 5 seconds in all our
experiments. [6] gives the measurements we base this deci-
sion on. Here we only note that in all cases 99% or more of
the packets (weighted by packet size) arrive within 5 seconds
of the previous packet belonging to the same flow.

Since our algorithms are based on the assumption that a
few heavy flows dominate the traffic mix, we find it useful
to see to what extent this is true for our traces. Figure 6
presents the cumulative distributions of flow sizes for the
traces MAG, IND and COS for flows defined by 5-tuples.
For the trace MAG we also plot the distribution for the case
where flows are defined based on destination IP address, and
for the case where flows are defined based on the source and
destination ASes. As we can see, the top 10% of the flows
represent between 85.1% and 93.5% of the total traffic vali-
dating our original assumption that a few flows dominate.

7.1 Comparing Theory and Practice
We present detailed measurements on the performance on

sample and hold, multistage filters and their respective op-

// //

0 5 10 15 20 25 30

Percentage of flows

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 tr

af
fic

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS

Figure 6: Cumulative distribution of flow sizes for
various traces and flow definitions

timizations in [6]. Here we summarize our most important
results that compare the theoretical bounds with the results
on actual traces, and quantify the benefits of various opti-
mizations.

7.1.1 Summary of findings about sample and hold
Table 4 summarizes our results for a single configuration:

a threshold of 0.025% of the link with an oversampling of
4. We ran 50 experiments (with different random hash func-
tions) on each of the reported traces with the respective flow
definitions. The table gives the maximum memory usage
over the 900 measurement intervals and the ratio between
average error for large flows and the threshold.

The first row presents the theoretical bounds that hold
without making any assumption about the distribution of
flow sizes and the number of flows. These are not the bounds
on the expected number of entries used (which would be
16,000 in this case), but high probability bounds.

The second row presents theoretical bounds assuming that
we know the number of flows and know that their sizes have
a Zipf distribution with a parameter of α = 1. Note that the
relative errors predicted by theory may appear large (25%)
but these are computed for a very low threshold of 0.025%
and only apply to flows exactly at the threshold.11

The third row shows the actual values we measured for

11We defined the relative error by dividing the average error
by the size of the threshold. We could have defined it by
taking the average of the ratio of a flow’s error to its size
but this makes it difficult to compare results from different
traces.

Algorithm Maximum memory usage (entries)/ Average error
MAG 5-tuple MAG destination IP MAG AS pair IND 5-tuple COS 5-tuple

General bound 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25%
Zipf bound 8,148 / 25% 7,441 / 25% 5,489 / 25% 6,303 / 25% 5,081 / 25%

Sample and hold 2,303 / 24.33% 1,964 / 24.07% 714 / 24.40% 1,313 / 23.83% 710 / 22.17%
+ preserve entries 3,832 / 4.67% 3,213 / 3.28% 1,038 / 1.32% 1,894 / 3.04% 1,017 / 6.61%
+ early removal 2,659 / 3.89% 2,294 / 3.16% 803 / 1.18% 1,525 / 2.92% 859 / 5.46%

Table 4: Summary of sample and hold measurements for a threshold of 0.025% and an oversampling of 4

the basic sample and hold algorithm. The actual memory
usage is much below the bounds. The first reason is that
the links are lightly loaded and the second reason (partially
captured by the analysis that assumes a Zipf distribution of
flows sizes) is that large flows have many of their packets
sampled. The average error is very close to its expected
value.

The fourth row presents the effects of preserving entries.
While this increases memory usage (especially where large
flows do not have a big share of the traffic) it significantly
reduces the error for the estimates of the large flows, because
there is no error for large flows identified in previous inter-
vals. This improvement is most noticeable when we have
many long lived flows.

The last row of the table reports the results when pre-
serving entries as well as using an early removal threshold
of 15% of the threshold (our measurements indicate that
this is a good value). We compensated for the increase in
the probability of false negatives early removal causes by
increasing the oversampling to 4.7. The average error de-
creases slightly. The memory usage decreases, especially in
the cases where preserving entries caused it to increase most.

We performed measurements on many more configura-
tions, but for brevity we report them only in [6]. The results
are in general similar to the ones from Table 4, so we on-
ly emphasize some noteworthy differences. First, when the
expected error approaches the size of a packet, we see signif-
icant decreases in the average error. Our analysis assumes
that we sample at the byte level. In practice, if a certain
packet gets sampled all its bytes are counted, including the
ones before the byte that was sampled.

Second, preserving entries reduces the average error by
70% - 95% and increases memory usage by 40% - 70%. These
figures do not vary much as we change the threshold or the
oversampling. Third, an early removal threshold of 15%
reduces the memory usage by 20% - 30%. The size of the
improvement depends on the trace and flow definition and
it increases slightly with the oversampling.

7.1.2 Summary of findings about multistage filters
Figure 7 summarizes our findings about configurations with

a stage strength of k = 3 for our most challenging trace:
MAG with flows defined at the granularity of TCP connec-
tions. It represents the percentage of small flows (log scale)
that passed the filter for depths from 1 to 4 stages. We
used a threshold of a 4096th of the maximum traffic. The
first (i.e., topmost and solid) line represents the bound of
Theorem 3. The second line below represents the improve-
ment in the theoretical bound when we assume a Zipf distri-
bution of flow sizes. Unlike in the case of sample and hold
we used the maximum traffic, not the link capacity for com-

// //

1 2 3 4

Depth of filter

0.001

0.01

0.1

1

10

100

P
er

ce
nt

ag
e

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

General bound
Zipf bound
Serial filter
Parallel filter
Conservative update

Figure 7: Filter performance for a stage strength of
k=3

puting the theoretical bounds. This results in much tighter
theoretical bounds.

The third line represents the measured average percentage
of false positives of a serial filter, while the fourth line rep-
resents a parallel filter. We can see that both are at least 10
times better than the stronger of the theoretical bounds. As
the number of stages goes up, the parallel filter gets better
than the serial filter by up to a factor of 4. The last line rep-
resents a parallel filter with conservative update which gets
progressively better than the parallel filter by up to a factor
of 20 as the number of stages increases. We can see that all
lines are roughly straight; this indicates that the percentage
of false positives decreases exponentially with the number
of stages.

Measurements on other traces show similar results. The
difference between the bounds and measured performance
is even larger for the traces where the largest flows are re-
sponsible for a large share of the traffic. Preserving entries
reduces the average error in the estimates by 70% to 85%.
Its effect depends on the traffic mix. Preserving entries in-
creases the number of flow memory entries used by up to
30%. By effectively increasing stage strength k, shielding
considerably strengthens weak filters. This can lead to re-
ducing the number of entries by as much as 70%.

7.2 Evaluation of complete traffic measure-
ment devices

We now present our final comparison between sample and
hold, multistage filters and sampled NetFlow. We perform
the evaluation on our long OC-48 trace, MAG+. We assume

that our devices can use 1 Mbit of memory (4096 entries12)
which is well within the possibilities of today’s chips. Sam-
pled NetFlow is given unlimited memory and uses a sam-
pling of 1 in 16 packets. We run each algorithms 16 times
on the trace with different sampling or hash functions.

Both our algorithms use the adaptive threshold approach.
To avoid the effect of initial misconfiguration, we ignore the
first 10 intervals to give the devices time to reach a rela-
tively stable value for the threshold. We impose a limit of
4 stages for the multistage filters. Based on heuristics p-
resented in [6], we use 3114 counters13 for each stage and
2539 entries of flow memory when using a flow definition at
the granularity of TCP connections, 2646 counters and 2773
entries when using the destination IP as flow identifier and
1502 counters and 3345 entries when using the source and
destination AS. Multistage filters use shielding and conser-
vative update. Sample and hold uses an oversampling of 4
and an early removal threshold of 15%.

Our purpose is to see how accurately the algorithms mea-
sure the largest flows, but there is no implicit definition of
what large flows are. We look separately at how well the
devices perform for three reference groups: very large flows
(above one thousandth of the link capacity), large flows (be-
tween one thousandth and a tenth of a thousandth) and
medium flows (between a tenth of a thousandth and a hun-
dredth of a thousandth – 15,552 bytes).

For each of these groups we look at two measures of accu-
racy that we average over all runs and measurement inter-
vals: the percentage of flows not identified and the relative
average error. We compute the relative average error by
dividing the sum of the moduli of all errors by the sum of
the sizes of all flows. We use the modulus so that posi-
tive and negative errors don’t cancel out for NetFlow. For
the unidentified flows, we consider that the error is equal to
their total traffic. Tables 5 to 7 present the results for the 3
different flow definitions.

When using the source and destination AS as flow identifi-
er, the situation is different from the other two cases because
the average number of active flows (7,401) is not much larger
than the number of memory locations that we can accom-
modate in our SRAM (4,096), so we will discuss this case
separately. In the first two cases, we can see that both our
algorithms are much more accurate than sampled NetFlow
for large and very large flows. For medium flows the average
error is roughly the same, but our algorithms miss more of
them than sampled NetFlow. Since sample and hold sta-
bilized at thresholds slightly above 0.01% and multistage
filters around 0.002% it is normal that so many of the flows
from the third group are not detected.

We believe these results (and similar results not presented
here) confirm that our algorithms are better than sampled
NetFlow at measuring large flows. Multistage filters are al-
ways slightly better than sample and hold despite the fact
that we have to sacrifice part of the memory for stage coun-
ters. However, tighter algorithms for threshold adaptation
can possibly improve both algorithms.

In the third case since the average number of very large,
large and medium flows (1,107) was much below the number

12Cisco NetFlow uses 64 bytes per entry in cheap DRAM. We
conservatively assume that the size of a flow memory entry
will be 32 bytes (even though 16 or 24 are also plausible).

13We conservatively assume that we use 4 bytes for a counter
even though 3 bytes would be enough.

Group Unidentified flows / Average error
(flow size) Sample Multistage Sampled

and hold filters NetFlow

> 0.1% 0%/0.075% 0%/0.037% 0%/9.02%
0.1 . . . 0.01% 1.8%/7.09% 0%/1.090% 0.02%/22%

0.01 . . . 0.001% 77%/61.2% 55%/43.9% 18%/50.3%

Table 5: Comparison of traffic measurement devices
with flow IDs defined by 5-tuple

Group Unidentified flows / Average error
(flow size) Sample Multistage Sampled

and hold filters NetFlow

> 0.1% 0%/0.025% 0%/0.014% 0%/5.72%
0.1 . . . 0.01% 0.43%/3.2% 0%/0.949% 0.01%/21%

0.01 . . . 0.001% 66%/51.2% 50%/39.9% 11.5%/47%

Table 6: Comparison of traffic measurement devices
with flow IDs defined by destination IP

Group Unidentified flows / Average error
(flow size) Sample Multistage Sampled

and hold filters NetFlow

> 0.1% 0%/0.0% 0%/0.0% 0%/4.88%
0.1 . . . 0.01% 0%/0.002% 0%/0.001% 0.0%/15.3%

0.01 . . . 0.001% 0%/0.165% 0%/0.144% 5.7%/39.9%

Table 7: Comparison of traffic measurement devices
with flow IDs defined by the source and destination
AS

of available memory locations and these flows were mostly
long lived, both of our algorithms measured all these flows
very accurately. Thus, even when the number of flows is
only a few times larger than the number of active flows,
our algorithms ensure that the available memory is used
to accurately measure the largest of the flows and provide
graceful degradation in case that the traffic deviates very
much from the expected (e.g. more flows).

8. IMPLEMENTATION ISSUES
We briefly describe implementation issues. Sample and

Hold is easy to implement even in a network processor be-
cause it adds only one memory reference to packet process-
ing, assuming sufficient SRAM for flow memory and assum-
ing an associative memory. For small flow memory sizes,
adding a CAM is quite feasible. Alternatively, one can im-
plement an associative memory using a hash table and stor-
ing all flow IDs that collide in a much smaller CAM.

Multistage filters are harder to implement using a network
processor because they need multiple stage memory refer-
ences. However, multistage filters are easy to implement in
an ASIC as the following feasibility study shows. [12] de-
scribes a chip designed to implement a parallel multistage
filter with 4 stages of 4K counters each and a flow memory
of 3584 entries. The chip runs at OC-192 line speeds. The
core logic consists of roughly 450,000 transistors that fit on
2mm x 2mm on a .18 micron process. Including memories
and overhead, the total size of the chip would be 5.5mm

x 5.5mm and would use a total power of less than 1 watt,
which put the chip at the low end of today’s IC designs.

9. CONCLUSIONS
Motivated by measurements that show that traffic is dom-

inated by a few heavy hitters, our paper tackles the prob-
lem of directly identifying the heavy hitters without keeping
track of potentially millions of small flows. Fundamental-
ly, Table 1 shows that our algorithms have a much better
scaling of estimate error (inversely proportional to memory
size) than provided by the state of the art Sampled Net-
Flow solution (inversely proportional to the square root of
the memory size). On actual measurements, our algorithms
with optimizations do several orders of magnitude better
than predicted by theory.

However, comparing Sampled NetFlow with our algorithms
is more difficult than indicated by Table 1. This is be-
cause Sampled NetFlow does not process every packet and
hence can afford to use large DRAM. Despite this, results
in Table 2 and in Section 7.2 show that our algorithms are
much more accurate for small intervals than NetFlow. In ad-
dition, unlike NetFlow, our algorithms provide exact values
for long-lived large flows, provide provable lower bounds on
traffic that can be reliably used for billing, avoid resource-
intensive collection of large NetFlow logs, and identify large
flows very fast.

The above comparison only indicates that the algorithms
in this paper may be better than using Sampled NetFlow
when the only problem is that of identifying heavy hitters,
and when the manager has a precise idea of which flow de-
finitions are interesting. But NetFlow records allow mana-
gers to a posteriori mine patterns in data they did not an-
ticipate, while our algorithms rely on efficiently identifying
stylized patterns that are defined a priori. To see why this
may be insufficient, imagine that CNN suddenly gets flood-
ed with web traffic. How could a manager realize before the
event that the interesting flow definition to watch for is a
multipoint-to-point flow, defined by destination address and
port numbers?

The last example motivates an interesting open question.
Is it possible to generalize the algorithms in this paper to
automatically extract flow definitions corresponding to large
flows? A second open question is to deepen our theoretical
analysis to account for the large discrepancies between the-
ory and experiment.

We end by noting that measurement problems (data vol-
ume, high speeds) in networking are similar to the mea-
surement problems faced by other areas such as data min-
ing, architecture, and even compilers. For example, [19]
recently proposed using a Sampled NetFlow-like strategy to
obtain dynamic instruction profiles in a processor for later
optimization. We have preliminary results that show that
multistage filters with conservative update can improve the
results of [19]. Thus the techniques in this paper may be
of utility to other areas, and the techniques in these other
areas may of utility to us.

10. ACKNOWLEDGEMENTS
We thank K. Claffy, D. Moore, F. Baboescu and the anony-

mous reviewers for valuable comments. This work was made
possible by a grant from NIST for the Sensilla Project, and
by NSF Grant ANI 0074004.

11. REFERENCES
[1] J. Altman and K. Chu. A proposal for a flexible

service plan that is attractive to users and internet
service providers. In IEEE INFOCOM, April 2001.

[2] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. In Comm. ACM, volume 13, July
1970.

[3] N. Brownlee, C. Mills, and G. Ruth. Traffic flow
measurement: Architecture. RFC 2722, Oct. 1999.

[4] N. Duffield and M. Grossglauser. Trajectory sampling
for direct traffic observation. In ACM SIGCOMM,
Aug. 2000.

[5] N. Duffield, C. Lund, and M. Thorup. Charging from
sampled network usage. In SIGCOMM Internet
Measurement Workshop, Nov. 2001.

[6] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. Tech. Report 699,
UCSD CSE, Feb. 2002.

[7] M. Fang et al. Computing iceberg queries efficiently.
In VLDB, Aug. 1998.

[8] W. Fang and L. Peterson. Inter-as traffic patterns and
their implications. In IEEE GLOBECOM, Dec. 1999.

[9] A. Feldmann et al. Deriving traffic demands for
operational IP networks: Methodology and
experience. In ACM SIGCOMM, Aug. 2000.

[10] W. Feng et al. Stochastic fair blue: A queue
management algorithm for enforcing fairness. In IEEE
INFOCOM, April 2001.

[11] P. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In ACM SIGMOD, June 1998.

[12] J. Huber. Design of an OC-192 flow monitoring chip.
UCSD Class Project, March 2001.

[13] J. Mackie-Masson and H. Varian. Public Access to the
Internet, chapter on “Pricing the Internet.” MIT
Press, 1995.

[14] R, Mahajan et al. Controlling high bandwidth
aggregates in the network.
http://www.aciri.org/pushback/, July 2001.

[15] D. Moore. http://www.caida.org/ analysis/ security/

code-red/.

[16] Cisco NetFlow http://www.cisco.com /warp /public

/732 /Tech /netflow.

[17] R. Pan et al. Approximate fairness through differential
dropping. Tech. report, ACIRI, 2001.

[18] D. Patterson and J. Hennessy. Computer Organization
and Design, page 619. Morgan Kaufmann, second
edition, 1998.

[19] S. Sastry et al Rapid profiling via stratified sampling.
In 28th ISCA, June 2001.

[20] S. Shenker et al. Pricing in computer networks:
Reshaping the research agenda. In ACM CCR,
volume 26, April 1996.

[21] Smitha, I. Kim, and A. Reddy. Identifying long term
high rate flows at a router. In High Performance
Computing, Dec. 2001.

[22] K. Thomson, G. Miller, and R. Wilder. Wide-area
traffic patterns and characteristics. In IEEE Network,
December 1997.

