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1 Introduction

In 1997, SPE published a tutorial by Plank [19] on implementing Reed-Solomon codes for erasure correction in re-

dundant data storage systems. The motivation of this tutorial was to present these codes, which are typically described

mathematically by coding theorists, in a way accessible to the programmers who need to implement them. The tutorial

as published presented an information dispersal matrix
�

, which does not have the properties claimed – that the dele-

tion of any � rows results in an invertable ����� matrix. The purpose of this note is to present a correct information

dispersal matrix that has the desired properties, and to put the work in current context.

2 The Continued Need For Erasure Correcting Codes

As disk array technology continued to blossom in the 1990’s [4, 5], a need arose to tolerate a disk’s failure without

waiting for the disk to be repaired. Straight replication performs this fault-tolerance, but at a high storage overhead.

RAID Level 5 encoding, termed “N+1 Parity” [5], reduces the storage overhead for fault-tolerance, and allows a parity

disk to store redundancy for � data disks in such a way that the failure of any single disk may be tolerated. However,

as the number of disks in a disk array grows, so does the the need to tolerate multiple simultaneous failures. Reed-

Solomon coding has the properties necessary to add arbitrary levels of fault-tolerance to disk array systems. One may

add � coding disks to � data disks so that the failure of any � disks may be tolerated, and although none of the

levels of RAID employs Reed-Solomon codes, the original work on disk arrays make note of the codes’ desirable

properties [5].
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As wide-area network computing has become more popular, the uses of erasure-correcting codes have broadened.

Rizzo employs them to avoid retransmission in point-to-point [20] and multicast [21] communication protocols. This

work has resulted in standardization efforts for such codes in multicast scenarios from the IETF [15, 16]. Additional

uses of Reed-Solomon codes have been in cryptography [8], distributed data structures [10], energy-efficient wireless

communication [7] and distributed checkpointing [18].

The advent of wide-area and peer-to-peer storage systems has further motivated the need for erasure-correcting

codes. For example, OceanStore employs Reed-Solomon coding for RAID-like fault-tolerance in a wide-area file

system [9]. More interestingly, several content dispersal systems have noted that erasure coding can be used for

caching rather than for fault-tolerance [2, 3, 22]. Specifically, suppose that � blocks of a file need to be stored in a

wide-area storage substrate, so that clients in all parts of the network may access it. With replication, clients must find

the closest copies of each of the � blocks in order to retrieve the file. However, with erasure-correcting codes, � extra

coding blocks may be distributed with the � blocks of the file so that each client need only retrieve the � closest blocks

in order to reconstruct the file. As files grow in size, the power of this application will be immense; hence the need to

correct the error of the 1997 Reed-Solomon coding tutorial.

There are other erasure coding techniques in addition to the one which this tutorial addresses. Examples are Tornado

codes [13, 14], Cauchy Reed-Solomon codes [1] and other parity-based schemes [6]. Of these, Tornado codes are

worth special mention, as they form the backbone of the Digital Fountain content dispersal system [2]. Tornado codes

have a randomized structure so that with the addition of � extra parity blocks, a file may be reconstructed from

any ����� blocks. The randomized structure ensures that � should be small. In a performance evaluation conducted by

Luby [12], Tornado codes display significantly better encoding and decoding performance than the codes in this paper

(termed “Vandermonde-based Reed-Solomon codes”) for large data sizes and large values of � . For small values

of � , a true comparison has yet to be performed. Currently, there is no implementation guide for Tornado codes akin

to [19]. As the knowledge of their performance advantages become more widespread, perhaps this will change.

3 A Correct Information Dispersal Matrix
�

The desired properties for the information dispersal matrix for Reed-Solomon coding is that:

� It is an � �����	� � � matrix.

� The � � � matrix in the first � rows are the identity matrix.

� Any submatrix formed by deleting � rows of the matrix is invertible.

We denote the correct information matrix 
 . 
 is derived from an � ��� �	� � � Vandermonde matrix using a sequence

of elementary matrix transformations:

1. Any column �� may be swapped with column ��� .
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2. Any column �� may be replaced by ������ , where � ���� .
3. Any column �  may be replaced by adding a multiple of another column to it: �  � �  ���	� � � , where 
 ����

and � ���� . Since arithmetic is over a Galois field, the addition operation is bitwise exclusive-or.

The �� 
 -th element of a Vandermonde matrix is defined to be � � :���������
�

����������� ����������� �! !������� "#"�" ��$�%&�����'�!�� � � � �  "#"�" � $�%&�( � ( � (  "#"�" ( $�%&�
...

...
...

...�*),+.-0/1�#� � �*),+.-2/3��� � �*),+.-0/1�#�  "#"�"4�*),+.-0/1�#� $�%��

5766666666
8

By definition, this matrix has the property that any submatrix formed by deleting � rows of this matrix is invert-

ible [17]. Moreover, any matrix derived from this matrix by a sequence of elementary matrix transformations maintains

this property (since elementary matrix operations do not change the rank of a matrix [11]). Therefore, constructing

the matrix 
 is a simple matter of performing elementary transformations on the Vandermonde matrix until the first �

rows are the identity matrix.

The algorithm for doing constructing 
 is as follows:

� Suppose the first �:9<; rows of the matrix are identity rows, and �,= � . At each step, we will turn row � into

an identity row, without altering the other identity rows. If the � -th element of row � is equal to zero, find a

column 
 such that 
?> � and the 
 -th element of row � is non-zero, and swap columns � and 
 . Such a column is

guaranteed to exist; otherwise the first � rows of the matrix would not compose an invertible matrix. Moreover,

since 
@> � , swapping columns � and 
 will not alter the first �A9�; rows of the matrix.

� Let B �C  be the value of the � -th element of row � . Let BEDGFHC  be the multiplicative inverse B HC  . In other words,

B HC  �IB DJFHC  �K; . Since B �C  ���� , B DGF�C  is guaranteed to exist. if B �C  ��K; , replace column �  with B DJF ��L� ���  .
� Now B �C  = 1. For all columns 
 ��0� and B �C � ��M� , replace column � � with � � 9 B �C � �  , where B HC � is the 
 -th

element in row � . At the end of this step, rows 0 through � are identity rows, and the matrix still has the property

that the deletion of any � rows yields an invertible matrix.

� Repeat this process until the first � rows are identity rows, and the construction of 
 is complete.

Example

As an example, we construct 
 for � �ONP � �ON , over GF( QSR ). As detailed in [19], in GF( Q�R ), addition is performed

by exclusive-or, and multiplication/division may be performed using logarithm tables, reproduced in Table 1.

The T � N Vandermonde matrix over U,V �WQ�R � is:
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 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

gflog[i] — 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12

gfilog[i] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 —

Table 1: Logarithm tables for U,V � Q�R �
�������������
�

� � � F ���
; � ; F ; �
Q � Q F Q �N � N F N��
� � � F � �

� � � F � �

57666666666666
8

�

�������������
�

; � �
; ; ;
; Q �

; N �

; � N; � Q

57666666666666
8

Row 0 is already an identity row. To convert row 1, we note that B F C � � B F C F � B F C � � ; , so we need to replace � �
with � � � 9 � F � and � � with � � � 9 � F ��� The resulting matrix is:�������������

�

; � �
� ; �N Q T
Q N T
� � �

� � �

5 666666666666
8

All that is left is to convert row 2. First, since B � C � ��K; , we need to replace � � with T DGF � � =
� � � :�������������

�

; � �
� ; �
N Q ;
Q N ;
� � T
� � T

5 666666666666
8

Then we replace � � with � � � 9'N � � � and � F with � � F 9 Q � � � to yield our desired 
 :�������������
�

; � �� ; �
� � ;
; ; ;
; �
	 T; ��� T

5 666666666666
8
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