Note: Correction to the 1997 Tutorial on Reed-Solomon Coding

James S. Plank Ying Ding University of Tennessee Knoxville, TN 37996 [plank,ying]@cs.utk.edu

Technical Report UT-CS-03-504 Department of Computer Science University of Tennessee April 24, 2003

1 Introduction

In 1997, SPE published a tutorial by Plank [19] on implementing Reed-Solomon codes for erasure correction in redundant data storage systems. The motivation of this tutorial was to present these codes, which are typically described mathematically by coding theorists, in a way accessible to the programmers who need to implement them. The tutorial as published presented an information dispersal matrix A, which does not have the properties claimed – that the deletion of any m rows results in an invertable $n \times n$ matrix. The purpose of this note is to present a correct information dispersal matrix that has the desired properties, and to put the work in current context.

2 The Continued Need For Erasure Correcting Codes

As disk array technology continued to blossom in the 1990's [4, 5], a need arose to tolerate a disk's failure without waiting for the disk to be repaired. Straight replication performs this fault-tolerance, but at a high storage overhead. RAID Level 5 encoding, termed "N+1 Parity" [5], reduces the storage overhead for fault-tolerance, and allows a *parity disk* to store redundancy for n data disks in such a way that the failure of any single disk may be tolerated. However, as the number of disks in a disk array grows, so does the the need to tolerate multiple simultaneous failures. Reed-Solomon coding has the properties necessary to add arbitrary levels of fault-tolerance to disk array systems. One may add m coding disks to n data disks so that the failure of any m disks may be tolerated, and although none of the levels of RAID employs Reed-Solomon codes, the original work on disk arrays make note of the codes' desirable properties [5].

As wide-area network computing has become more popular, the uses of erasure-correcting codes have broadened. Rizzo employs them to avoid retransmission in point-to-point [20] and multicast [21] communication protocols. This work has resulted in standardization efforts for such codes in multicast scenarios from the IETF [15, 16]. Additional uses of Reed-Solomon codes have been in cryptography [8], distributed data structures [10], energy-efficient wireless communication [7] and distributed checkpointing [18].

The advent of wide-area and peer-to-peer storage systems has further motivated the need for erasure-correcting codes. For example, OceanStore employs Reed-Solomon coding for RAID-like fault-tolerance in a wide-area file system [9]. More interestingly, several content dispersal systems have noted that erasure coding can be used for caching rather than for fault-tolerance [2, 3, 22]. Specifically, suppose that n blocks of a file need to be stored in a wide-area storage substrate, so that clients in all parts of the network may access it. With replication, clients must find the closest copies of each of the n blocks in order to retrieve the file. However, with erasure-correcting codes, m extra coding blocks may be distributed with the n blocks of the file so that each client need only retrieve the n closest blocks in order to reconstruct the file. As files grow in size, the power of this application will be immense; hence the need to correct the error of the 1997 Reed-Solomon coding tutorial.

There are other erasure coding techniques in addition to the one which this tutorial addresses. Examples are Tornado codes [13, 14], Cauchy Reed-Solomon codes [1] and other parity-based schemes [6]. Of these, Tornado codes are worth special mention, as they form the backbone of the Digital Fountain content dispersal system [2]. Tornado codes have a randomized structure so that with the addition of m extra parity blocks, a file may be reconstructed from any $n + \epsilon$ blocks. The randomized structure ensures that ϵ should be small. In a performance evaluation conducted by Luby [12], Tornado codes display significantly better encoding and decoding performance than the codes in this paper (termed "Vandermonde-based Reed-Solomon codes") for large data sizes and large values of m. For small values of m, a true comparison has yet to be performed. Currently, there is no implementation guide for Tornado codes akin to [19]. As the knowledge of their performance advantages become more widespread, perhaps this will change.

3 A Correct Information Dispersal Matrix B

The desired properties for the information dispersal matrix for Reed-Solomon coding is that:

- It is an $(n+m) \times n$ matrix.
- The $n \times n$ matrix in the first n rows are the identity matrix.
- Any submatrix formed by deleting *m* rows of the matrix is invertible.

We denote the correct information matrix B. B is derived from an $(n + m) \times n$ Vandermonde matrix using a sequence of elementary matrix transformations:

1. Any column C_i may be swapped with column C_j .

- 2. Any column C_i may be replaced by $C_i * c$, where $c \neq 0$.
- 3. Any column C_i may be replaced by adding a multiple of another column to it: $C_i = C_i + c * C_j$, where $j \neq i$ and $c \neq 0$. Since arithmetic is over a Galois field, the addition operation is bitwise exclusive-or.

The *i*, *j*-th element of a Vandermonde matrix is defined to be i^{j} :

$$\begin{bmatrix} 0^{0}(=1) & 0^{1}(=0) & 0^{2}(=0) & \dots & 0^{n-1}(=0) \\ 1^{0} & 1^{1} & 1^{2} & \dots & 1^{n-1} \\ 2^{0} & 2^{1} & 2^{2} & \dots & 2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ (n+m-1)^{0} & (n+m-1)^{1} & (n+m-1)^{2} & \dots & (n+m-1)^{n-1} \end{bmatrix}$$

By definition, this matrix has the property that any submatrix formed by deleting m rows of this matrix is invertible [17]. Moreover, any matrix derived from this matrix by a sequence of elementary matrix transformations maintains this property (since elementary matrix operations do not change the rank of a matrix [11]). Therefore, constructing the matrix B is a simple matter of performing elementary transformations on the Vandermonde matrix until the first nrows are the identity matrix.

The algorithm for doing constructing B is as follows:

- Suppose the first i 1 rows of the matrix are identity rows, and i < n. At each step, we will turn row i into an identity row, without altering the other identity rows. If the *i*-th element of row i is equal to zero, find a column j such that j > i and the j-th element of row i is non-zero, and swap columns i and j. Such a column is guaranteed to exist; otherwise the first n rows of the matrix would not compose an invertible matrix. Moreover, since j > i, swapping columns i and j will not alter the first i 1 rows of the matrix.
- Let $f_{i,i}$ be the value of the *i*-th element of row *i*. Let $f_{i,i}^{-1}$ be the multiplicative inverse $f_{i,i}$. In other words, $f_{i,i} * f_{i,i}^{-1} = 1$. Since $f_{i,i} \neq 0$, $f_{i,i}^{-1}$ is guaranteed to exist. if $f_{i,i} \neq 1$, replace column C_i with $f^{-1}i$, $i * C_i$.
- Now $f_{i,i} = 1$. For all columns $j \neq i$ and $f_{i,j} \neq 0$, replace column C_j with $C_j f_{i,j}C_i$, where $f_{i,j}$ is the *j*-th element in row *i*. At the end of this step, rows 0 through *i* are identity rows, and the matrix still has the property that the deletion of any *m* rows yields an invertible matrix.
- Repeat this process until the first n rows are identity rows, and the construction of B is complete.

Example

As an example, we construct B for n = 3, m = 3, over GF(2⁴). As detailed in [19], in GF(2⁴), addition is performed by exclusive-or, and multiplication/division may be performed using logarithm tables, reproduced in Table 1.

The 6×3 Vandermonde matrix over $GF(2^4)$ is:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
gflog[i]	_	0	1	4	2	8	5	10	3	14	9	7	6	13	11	12
gfilog[i]	1	2	4	8	3	6	12	11	5	10	7	14	15	13	9	

Table 1: Logarithm tables for $GF(2^4)$

00	0^1	0^{2}		1	0	0
10	1^1	1^2		1	1	1
2^{0}	2^1	2^2	_	1	2	4
3^0	3^1	3^2	_	1	3	5
4^{0}	4^1	4^2		1	4	3
5^{0}	5^1	5^{2}		1	5	2

Row 0 is already an identity row. To convert row 1, we note that $f_{1,0} = f_{1,1} = f_{1,2} = 1$, so we need to replace C_0 with $(C_0 - C_1)$ and C_2 with $(C_2 - C_1)$. The resulting matrix is:

All that is left is to convert row 2. First, since $f_{2,2} \neq 1$, we need to replace C_2 with $6^{-1}C_2 = 7C_2$:

Then we replace C_0 with $(C_0 - 3C_2)$ and C_1 with $(C_1 - 2C_2)$ to yield our desired B:

1	0	0
0	1	0
0	0	1
1	1	1
15	8	6
14	9	6

References

- J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An XOR-based erasure-resilient coding scheme. Technical Report TR-95-048, International Computer Science Institute, August 1995.
- [2] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of bulk data. In ACM SIGCOMM '98, pages 56–67, Vancouver, August 1998.
- [3] J. W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel: Using tornado codes to speed up downloads. In *IEEE INFOCOM*, pages 275–283, New York, NY, March 1999.
- [4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-performance, reliable secondary storage. ACM Computing Surveys, 26(2):145–185, June 1994.
- [5] G. A. Gibson. *Redundant Disk Arrays: Reliable, Parallel Secondary Storage*. The MIT Press, Cambridge, Massachusetts, 1992.
- [6] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson. Failure correction techniques for large disk arrays. In *Third International Conference on Architectural Support for Programming Languages and Operating Systems*, pages 123–132, Boston, MA, April 1989.
- [7] P. J. M. Havinga. Energy efficiency of error correction on wireless systems, 1999.
- [8] C. S. Jutla. Encryption modes with almost free message integrity. *Lecture Notes in Computer Science*, 2045, 2001.
- [9] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage. In *Proceedings of ACM ASPLOS*. ACM, November 2000.
- [10] W. Litwin and T. Schwarz. Lh*rs: a high-availability scalable distributed data structure using Reed Solomon codes. In *Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data*, pages 237–248. ACM Press, 2000.
- [11] F. Lowenthal. Linear Algebra with Linear Differential Equations. John Wiley & Sons, Inc, New York, 1975.
- [12] M. Luby. Benchmark comparisons of erasure codes. http://www.icsi.berkeley.edu/~luby/ erasure.html, 2002.
- [13] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis of random processes via and-or tree evaluation. In 9th Annual ACM-SIAM Symposium on Discrete Algorithms, January 1998.
- [14] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In 29th Annual ACM Symposium on Theory of Computing,, pages 150–159, 1997.

- [15] M. Luby, L. Vicisano, J. Gemmell, L. Rizo, M. Handley, and J. Crowcroft. Forward error correction (FEC) building block. IETF RFC 3452 (http://www.ietf.org/rfc/rfc3452.txt), December 2002.
- [16] M. Luby, L. Vicisano, J. Gemmell, L. Rizo, M. Handley, and J. Crowcroft. The use of forward error correction(FEC) in reliable multicast. IETF RFC 3453 (http://www.ietf.org/rfc/rfc3453.txt), December 2002.
- [17] F.J. MacWilliams and N.J.A. Sloane. *The Theory of Error-Correcting Codes, Part I.* North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977.
- [18] J. S. Plank. Improving the performance of coordinated checkpointers on networks of workstations using RAID techniques. In 15th Symposium on Reliable Distributed Systems, pages 76–85, October 1996.
- [19] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. *Software Practice & Experience*, 27(9):995–1012, September 1997.
- [20] L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM SIGCOMM Computer Communication Review, 27(2):24–36, 1997.
- [21] L. Rizzo and L. Vicisano. RMDP: an FEC-based reliable multicast protocol for wireless environments. *Mobile Computer and Communication Review*, 2(2), April 1998.
- [22] A. I. T. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-topeer storage utility. In *Symposium on Operating Systems Principles*, pages 188–201, 2001.