
Note: Correction to the 1997 Tutorial on Reed-Solomon Coding

James S. Plank Ying Ding

University of Tennessee

Knoxville, TN 37996

[plank,ying]@cs.utk.edu

Technical Report UT-CS-03-504

Department of Computer Science

University of Tennessee

April 24, 2003

1 Introduction

In 1997, SPE published a tutorial by Plank [19] on implementing Reed-Solomon codes for erasure correction in re-

dundant data storage systems. The motivation of this tutorial was to present these codes, which are typically described

mathematically by coding theorists, in a way accessible to the programmers who need to implement them. The tutorial

as published presented an information dispersal matrix
�

, which does not have the properties claimed – that the dele-

tion of any � rows results in an invertable ����� matrix. The purpose of this note is to present a correct information

dispersal matrix that has the desired properties, and to put the work in current context.

2 The Continued Need For Erasure Correcting Codes

As disk array technology continued to blossom in the 1990’s [4, 5], a need arose to tolerate a disk’s failure without

waiting for the disk to be repaired. Straight replication performs this fault-tolerance, but at a high storage overhead.

RAID Level 5 encoding, termed “N+1 Parity” [5], reduces the storage overhead for fault-tolerance, and allows a parity

disk to store redundancy for � data disks in such a way that the failure of any single disk may be tolerated. However,

as the number of disks in a disk array grows, so does the the need to tolerate multiple simultaneous failures. Reed-

Solomon coding has the properties necessary to add arbitrary levels of fault-tolerance to disk array systems. One may

add � coding disks to � data disks so that the failure of any � disks may be tolerated, and although none of the

levels of RAID employs Reed-Solomon codes, the original work on disk arrays make note of the codes’ desirable

properties [5].

1

As wide-area network computing has become more popular, the uses of erasure-correcting codes have broadened.

Rizzo employs them to avoid retransmission in point-to-point [20] and multicast [21] communication protocols. This

work has resulted in standardization efforts for such codes in multicast scenarios from the IETF [15, 16]. Additional

uses of Reed-Solomon codes have been in cryptography [8], distributed data structures [10], energy-efficient wireless

communication [7] and distributed checkpointing [18].

The advent of wide-area and peer-to-peer storage systems has further motivated the need for erasure-correcting

codes. For example, OceanStore employs Reed-Solomon coding for RAID-like fault-tolerance in a wide-area file

system [9]. More interestingly, several content dispersal systems have noted that erasure coding can be used for

caching rather than for fault-tolerance [2, 3, 22]. Specifically, suppose that � blocks of a file need to be stored in a

wide-area storage substrate, so that clients in all parts of the network may access it. With replication, clients must find

the closest copies of each of the � blocks in order to retrieve the file. However, with erasure-correcting codes, � extra

coding blocks may be distributed with the � blocks of the file so that each client need only retrieve the � closest blocks

in order to reconstruct the file. As files grow in size, the power of this application will be immense; hence the need to

correct the error of the 1997 Reed-Solomon coding tutorial.

There are other erasure coding techniques in addition to the one which this tutorial addresses. Examples are Tornado

codes [13, 14], Cauchy Reed-Solomon codes [1] and other parity-based schemes [6]. Of these, Tornado codes are

worth special mention, as they form the backbone of the Digital Fountain content dispersal system [2]. Tornado codes

have a randomized structure so that with the addition of � extra parity blocks, a file may be reconstructed from

any ����� blocks. The randomized structure ensures that � should be small. In a performance evaluation conducted by

Luby [12], Tornado codes display significantly better encoding and decoding performance than the codes in this paper

(termed “Vandermonde-based Reed-Solomon codes”) for large data sizes and large values of � . For small values

of � , a true comparison has yet to be performed. Currently, there is no implementation guide for Tornado codes akin

to [19]. As the knowledge of their performance advantages become more widespread, perhaps this will change.

3 A Correct Information Dispersal Matrix
�

The desired properties for the information dispersal matrix for Reed-Solomon coding is that:

� It is an � �����	� � � matrix.

� The � � � matrix in the first � rows are the identity matrix.

� Any submatrix formed by deleting � rows of the matrix is invertible.

We denote the correct information matrix
 .
 is derived from an � ��� �	� � � Vandermonde matrix using a sequence

of elementary matrix transformations:

1. Any column �� may be swapped with column ��� .

2

2. Any column �� may be replaced by ������ , where � ���� .
3. Any column � may be replaced by adding a multiple of another column to it: � � � ���	� � � , where
 ����

and � ���� . Since arithmetic is over a Galois field, the addition operation is bitwise exclusive-or.

The ��
 -th element of a Vandermonde matrix is defined to be � � :���������
�

����������� ����������� �! !������� "#"�" ��$�%&�����'�!�� � � � � "#"�" � $�%&�(� (� ("#"�" ($�%&�
...

...
...

...�*),+.-0/1�#� � �*),+.-2/3��� � �*),+.-0/1�#� "#"�"4�*),+.-0/1�#� $�%��

5766666666
8

By definition, this matrix has the property that any submatrix formed by deleting � rows of this matrix is invert-

ible [17]. Moreover, any matrix derived from this matrix by a sequence of elementary matrix transformations maintains

this property (since elementary matrix operations do not change the rank of a matrix [11]). Therefore, constructing

the matrix
 is a simple matter of performing elementary transformations on the Vandermonde matrix until the first �

rows are the identity matrix.

The algorithm for doing constructing
 is as follows:

� Suppose the first �:9<; rows of the matrix are identity rows, and �,= � . At each step, we will turn row � into

an identity row, without altering the other identity rows. If the � -th element of row � is equal to zero, find a

column
 such that
?> � and the
 -th element of row � is non-zero, and swap columns � and
 . Such a column is

guaranteed to exist; otherwise the first � rows of the matrix would not compose an invertible matrix. Moreover,

since
@> � , swapping columns � and
 will not alter the first �A9�; rows of the matrix.

� Let B �C be the value of the � -th element of row � . Let BEDGFHC be the multiplicative inverse B HC . In other words,

B HC �IB DJFHC �K; . Since B �C ���� , B DGF�C is guaranteed to exist. if B �C ��K; , replace column � with B DJF ��L� ��� .
� Now B �C = 1. For all columns
 ��0� and B �C � ��M� , replace column � � with � � 9 B �C � � , where B HC � is the
 -th

element in row � . At the end of this step, rows 0 through � are identity rows, and the matrix still has the property

that the deletion of any � rows yields an invertible matrix.

� Repeat this process until the first � rows are identity rows, and the construction of
 is complete.

Example

As an example, we construct
 for � �ONP � �ON , over GF(QSR). As detailed in [19], in GF(Q�R), addition is performed

by exclusive-or, and multiplication/division may be performed using logarithm tables, reproduced in Table 1.

The T � N Vandermonde matrix over U,V �WQ�R � is:

3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

gflog[i] — 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12

gfilog[i] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 —

Table 1: Logarithm tables for U,V � Q�R �
�������������
�

� � � F ���
; � ; F ; �
Q � Q F Q �N � N F N��
� � � F � �

� � � F � �

57666666666666
8

�

�������������
�

; � �
; ; ;
; Q �

; N �

; � N; � Q

57666666666666
8

Row 0 is already an identity row. To convert row 1, we note that B F C � � B F C F � B F C � � ; , so we need to replace � �
with � � � 9 � F � and � � with � � � 9 � F ��� The resulting matrix is:�������������

�

; � �
� ; �N Q T
Q N T
� � �

� � �

5 666666666666
8

All that is left is to convert row 2. First, since B � C � ��K; , we need to replace � � with T DGF � � =
� � � :�������������

�

; � �
� ; �
N Q ;
Q N ;
� � T
� � T

5 666666666666
8

Then we replace � � with � � � 9'N � � � and � F with � � F 9 Q � � � to yield our desired
 :�������������
�

; � �� ; �
� � ;
; ; ;
; �
	 T; ��� T

5 666666666666
8

4

References

[1] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An XOR-based erasure-resilient

coding scheme. Technical Report TR-95-048, International Computer Science Institute, August 1995.

[2] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of bulk

data. In ACM SIGCOMM ’98, pages 56–67, Vancouver, August 1998.

[3] J. W. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel: Using tornado codes to

speed up downloads. In IEEE INFOCOM, pages 275–283, New York, NY, March 1999.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-performance, reliable

secondary storage. ACM Computing Surveys, 26(2):145–185, June 1994.

[5] G. A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. The MIT Press, Cambridge,

Massachusetts, 1992.

[6] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson. Failure correction techniques for

large disk arrays. In Third International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 123–132, Boston, MA, April 1989.

[7] P. J. M. Havinga. Energy efficiency of error correction on wireless systems, 1999.

[8] C. S. Jutla. Encryption modes with almost free message integrity. Lecture Notes in Computer Science, 2045,

2001.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,

C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage. In Proceedings of ACM

ASPLOS. ACM, November 2000.

[10] W. Litwin and T. Schwarz. Lh*rs: a high-availability scalable distributed data structure using Reed Solomon

codes. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pages

237–248. ACM Press, 2000.

[11] F. Lowenthal. Linear Algebra with Linear Differential Equations. John Wiley & Sons, Inc, New York, 1975.

[12] M. Luby. Benchmark comparisons of erasure codes. http://www.icsi.berkeley.edu/˜luby/

erasure.html, 2002.

[13] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis of random processes via and-or tree evaluation. In 9th

Annual ACM-SIAM Symposium on Discrete Algorithms, January 1998.

[14] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In 29th

Annual ACM Symposium on Theory of Computing,, pages 150–159, 1997.

5

[15] M. Luby, L. Vicisano, J. Gemmell, L. Rizo, M. Handley, and J. Crowcroft. Forward error correction (FEC)

building block. IETF RFC 3452 (http://www.ietf.org/rfc/rfc3452.txt), December 2002.

[16] M. Luby, L. Vicisano, J. Gemmell, L. Rizo, M. Handley, and J. Crowcroft. The use of forward error correc-

tion(FEC) in reliable multicast. IETF RFC 3453 (http://www.ietf.org/rfc/rfc3453.txt), Decem-

ber 2002.

[17] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes, Part I. North-Holland Publishing

Company, Amsterdam, New York, Oxford, 1977.

[18] J. S. Plank. Improving the performance of coordinated checkpointers on networks of workstations using RAID

techniques. In 15th Symposium on Reliable Distributed Systems, pages 76–85, October 1996.

[19] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software – Practice

& Experience, 27(9):995–1012, September 1997.

[20] L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM SIGCOMM Computer

Communication Review, 27(2):24–36, 1997.

[21] L. Rizzo and L. Vicisano. RMDP: an FEC-based reliable multicast protocol for wireless environments. Mobile

Computer and Communication Review, 2(2), April 1998.

[22] A. I. T. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-to-

peer storage utility. In Symposium on Operating Systems Principles, pages 188–201, 2001.

6

