SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(9), 995-1012 (SEPTEMBER 1997)

A Tutorial on Reed—Solomon Coding for Fault-Tolerance in
RAID-like Systems

JAMESS. PLANK

University of Tennessee, Department of Computer Science, 107 AyresHall, Knoxville, TN 37996, U.SA.
(email: plank@cs.utk.edu)

SUMMARY

It iswell-known that Reed-Solomon codes may be used to provide error correction for multiple failuresin
RAID-like systems. The coding technique itself, however, is not aswell-known. To the coding theorist, this
techniqueisa straightforward extension to a basic coding paradigm and needsno special mention. However,
to the systems programmer with no training in coding theory, the technique may be a mystery. Currently,
there are no references that describe how to perform this coding that do not assume that the reader is
already well-versed in algebra and coding theory. This paper is intended for the systems programmer. It
presentsa complete specification of the coding algorithm plus details on how it may be implemented. This
specification assumesno prior knowledgeof algebraor codingtheory. The goal of thispaper isfor a systems
programmer to be able to implement Reed-Solomon coding for reliability in RAID-like systems without
needing to consult any external references. 11997 by John Wiley & Sons, Ltd.

KEY WORDS: Reed-Solomon coding; error-correcting codes; RAID systems; checkpoint systems; fault-tolerance

PROBLEM SPECIFICATION

Let there ben storage devices, D1, D>, . .., D,,, each of which holds % bytes. These are called
the Data Devices. Let there be m more storage devices C'1, C5, . . ., (', €ach of which also
holds k bytes. These are called the Checksum Devices. The contents of each checksum device
will be calculated from the contents of the data devices. The god is to define the calculation
of each C; such that if any m of Dy, Do, ..., D,,C1,C, ..., C, fal, then the contents of
the failed devices can be reconstructed from the non-failed devices.

INTRODUCTION

Error-correcting codes have been around for decades.?3 However, the technique of distribut-
ing dataamong multiplestorage devicesto achieve high-bandwidthinput and output, and using
one or more error-correcting devices for failure recovery, is relatively new. It came to the fore
with *Redundant Arrays of Inexpensive Disks' (RAID) where batteries of small, inexpensive
disks combine high storage capacity, bandwidth, and reliability all at a low cost.*>® Since
then, the technique has been used to design multicomputer and network file systemswith high
reliability and bandwidth,”® and to design fast distributed checkpointing systems.®11112 We
call al such systems'‘RAID-like' systems.

CCC 0038-0644/97/090995-18 $17-50 Received 8 April 1996
01997 by John Wiley & Sons, Ltd. Revised 13 November 1996

996 J.S. PLANK

Theabove problemiscentral to all RAID-like systems. When storageisdistributed among »
devices, the chances of one of these devices failing becomes significant. To be specific, if the
mean time before failure of one device is F', then the mean time to failure of a system of
devicesis F'/n. Thusin such systems, fault-tolerance must be taken into account.

For small valuesof n and reasonably reliabledevices, one checksum deviceisoften sufficient
for fault-tolerance. Thisisthe'RAID Level 5 configuration, and thecoding techniqueiscalled
‘n+ 1-parity! 56 With n+1-parity, the :-th byte of the checksum deviceis calculated to be the
bitwise exclusive-or (XOR) of the :-th byte of each data device. If any one of the n+1 devices
fails, it can be reconstructed as the XOR of the remaining » devices. NV +1-parity is attractive
because of its simplicity. It requires one extra storage device, and one extra write operation
per write to any single device. Its main disadvantage is that it cannot recover from more than
one simultaneousfailure.

Asn grows, the ability to tolerate multiplefail ures becomesimportant.™® Several techniques
have been developed for this, 3141516 the concentration being small values of m. The most
genera techniquefor tolerating m simultaneousfailureswith exactly m checksum devicesisa
technique based on Reed-Solomon coding. Thisfact iscited inalmost all paperson RAID-like
systems. However, the techniqueitself is harder to come by.

The technique has an interesting history. It was first presented in terms of secret sharing
by Karnin,!” and then by Rabin'® in terms of information dispersal. Preparata'® then showed
the relationship between Rabin’s method and Reed-Solomon codes, hence the labeling of the
technique as Reed-Solomon coding. The technique has recently been discussed in varying
levels of detail by Gibson,® Schwarz?® and Burkhard,*® with citations of standard texts on
error correcting codes!?32122 for compl eteness.

There is one problem with all the above discussions of this technique — they require the
reader to have a thorough knowledge of algebra and coding theory. Any programmer with a
bachelor’'s degree in computer science has the skills to implement this technique; however,
few such programmers have the background in algebra and coding theory to understand the
presentationsin these papers and books.

The goal of this paper is to provide a presentation that can be understood by any systems
programmer. No background in algebra or coding theory is assumed. We give a complete
specification of the technique plus implementation details. A programmer should need no
other references besides this paper to implement Reed-Solomon coding for reliability from
multiple device failuresin RAID-like systems.

GENERAL STRATEGY

Formally, our failure model is that of an erasure. When adevicefails, it shuts down, and the
system recogni zes this shutting down. Thisisas opposed to an error, in which adevice failure
is manifested by storing and retrieving incorrect values that can only be recognized by sort of
embedded coding.2?3

The calculation of the contents of each checksum device C'; requires afunction F; applied
to all the data devices. Figure 1 shows an example configuration using this technique (which
we henceforth call ‘RS-Raid’) for n = 8 and m = 2. The contents of checksum devices C;
and C are computed by applying functions F; and F> respectively.

The RS-Raid coding method breaks up each storage device into words. The size of each
word is w bits, w being chosen by the programmer (subject to some constraints). Thus, the

storagedevicescontain/ = (/ bytes) (m) (1W°rd) = 8% wordseach. The coding functions

byte w bits

A TUTORIAL ON REED-SOLOMON CODING 997

ﬁwl(l)l7D27D37D47D57D67D77D8)

FQ(D17D27D37D47D57D67D77 DS)

@ @F

Figure 1. Providing two-site fault tolerance with two checksumdevices

F; operate on a word-by-word basis, as in Figure 2, where z; ; represents the j-th word of
device X;.

To make the notation simpler, we assume that each device holds just one word and drop the
extra subscript. Thus we view our problem as consisting of » datawords dy, .. .,d, and m
checksum words ¢y, . . ., ¢, Which are computed from the data words in such a way that the
loss of any m words can be tolerated.

To compute a checksum word ¢; for the checksum device C;, we apply function F; to the
datawords:

¢ = B(dlv d27 .. 7dn)

If a data word on device D; is updated from d; to d’, then each checksum word c¢; is

recomputed by applying afunction ; ; such that:

=Gy i(dy, de)

JoHgr Tt

When up to m devicesfail, we reconstruct the system as follows. First, for each failed data

Dy D, (1 (>

di1 da1 ci1 = Fi(dia, d21) c21 = Fa(dia,d21)
d12 dao c12 = I1(di2,d22) c22 = I2(d12,d22)
di3 d23 c1,3 = Fi(dy3, d2;3) c23 = Fo(d13, d23)
dig da cr = Fil(dyg, dag) c21 = Fo(dyg,dag)

Figure 2. Breaking the storagedevicesintowords(n = 2, m = 2,1 = %)

998 J.S. PLANK

device D;, we construct afunction to restore thewordsin D ; from thewordsin the non-failed
devices. When that is completed, we recompute any failed checksum devices C; with F;.

For example, suppose m = 1. We can describe n+1-parity in the above terms. Thereisone
checksum device (1, and words consist of one bit (w = 1). To compute each checksum word
c1, we take the parity (XOR) of the datawords:

C]_:Fl(dl,...,dn):dl@dz@...@dn

If aword on data device D; changes from d; to d’;, then ¢4 is recalculated from the parity of
itsold value and the two data words:

Cg_ = G]_J(dj7 d;, Cl) =c1D d]‘ G d;

If adevice D; fails, then each word may be restored as the parity of the corresponding words
on the remaining devices:

d]‘:dl@...@d]‘_l@dj+1@...@dn@cl

In such away, the system isresilient to any single device failure.

To restate, our problem is defined as follows. We are given n datawords dq, do, . . ., d,, al
of size w. We define functions /" and (G which we use to cal cul ate and maintain the checksum
words c1, ¢, . . ., ¢,,,. We then describe how to reconstruct the words of any lost data device
when up to m devices fail. Once the data words are reconstructed, the checksum words can
be recomputed from the datawords and F'. Thus, the entire systemis reconstructed.

OVERVIEW OF THE RS-RAID ALGORITHM

There are three main aspects of the RS-Raid algorithm: using the Vandermonde matrix to
calculate and maintain checksum words; using Gaussian Eliminationto recover from failures,
and using Galois Fields to perform arithmetic. Each is detailed bel ow.

Calculating and maintaining checksum words
We define each function £; to be alinear combination of the data words:

C; = E(dlv d27 .. ,dn) = Zdjfi,j
j=1

In other words, if we represent the data and checksum words as the vectors D and ¢, and the
functions F; as rows of the matrix F’, then the state of the system adheres to the following
equation:
FD=C

We define I to bethe m x n Vandermonde matrix: f; ; = j*~1, and thus the above equation
becomes:

fir fiz .. fin di

for fo2 ... fon do

fm,l fm,Z fm,n dn

A TUTORIAL ON REED-SOLOMON CODING 999

1 1 1 ... 1 dy o1
1 2 3 n do c2
1 2»t gm0 gt dy Crm

When one of the data words d; changes to d’;, then each of the checksum words must be
changed aswell. Thiscan be effected by subtracting out the portion of the checksum word that
corresponds to d;, and adding the required amount for d’.. Thus, G; ; is defined as follows:

C;' = Gi7]‘(d]‘, d;, Ci) =c¢ + f%](d; — d]‘)

Therefore, the cal cul ation and maintenance of checksum words can be done by simple arith-
metic (however, it isaspecial kind of arithmetic, as explained below).

Recovering from failures

To explain recovery from errors, we define the matrix A and the vector F' as follows:
A :{ I } ,and :{ D }.Thenwehavethefollowing equation (AD = E):

1 0 0o ... 0 dy
0o 1 0o ... 0 da
: : : d :
0 0 0 1 d2 | | q,
101 1 ... 1 T e
1 2 3 n dn c2

| 1 27t gmt L ot | cm |

We can view each devicein the system as having a corresponding row of the matrix A and
the vector K. When adevice fails, we reflect the failure by deleting the device's row from A
and from E. What results anew matrix A’ and anew vector F’ that adhere to the equation:

A'D=F

Suppose exactly m devicesfail. Then A’ isan x n matrix. Because matrix F' is defined to
be a Vandermonde matrix, every subset of » rows of matrix A is guaranteed to be linearly
independent. Thus, the matrix A’ isnon-singular, and the values of 1 may be calculated from
A'D = E' using Gaussian eimination. Hence all data devices can be recovered.

Once the values of D are obtained, the values of any failed C'; may be recomputed from
D. 1t should be obvious that if fewer than m devices fail, the system may be recovered in
the same manner, choosing any » rows of A’ to perform the Gaussian elimination. Thus, the
system can tolerate any number of device failuresup to m.

Arithmetic over GaloisFields

A magjor concern of theRS-Raid algorithmisthat the domain and range of the computation
are binary words of a fixed length w. Although the above algebrais guaranteed to be correct

1000 J.S. PLANK

when all the elements are infinite precision real numbers, we must make surethat it is correct
for these fixed-size words. A common error in dealing with these codes is to perform all
arithmetic over the integers modulo 2. This does not work, as division is not defined for
al pairs of elements (for example, (3 + 2) is undefined modulo 4), rendering the Gaussian
elimination unsolvable in many cases. Instead, we must perform addition and multiplication
over afield with more than n + m elements.?

Fieldswith 2 elementsare called Galois Fields (denoted GG F'(2")), and are afundamental
topicin a gebra.*22* This section defines how to perform addition, subtraction, multiplication;
and division efficiently over a Galois Field. We give such a description without explaining
GaloisFieldsin general. Appendix A contains a more detailed description of Galois Fields,
and providesjustification for the arithmetic a gorithmsin this section.

The elements of GG '(2") are theintegers from zero to 2% — 1. Addition and subtraction of
elements of G I7(2) are simple. They are the XOR operation. For example, in G F(24):

11+ 7=1011 0111 = 1100 = 12

11 -7=1011 0111 = 1100 = 12

Multiplication and division are more complex. When w is small (16 or less), we use two
logarithm tables, each of length 2 — 1, to facilitate multiplication. These tables are gf | og
andgfil og:

(& int gflog[]: thistableisdefined for theindices1to 2¥ — 1, and mapsthe index toits
logarithm in the Galois Field.

(b) int gfilog[]: thistableis defined for the indices O to 2* — 2, and maps the index
to itsinverse logarithm in the Galois Field. Obviously, gf og[gf i l og[¢{]] = ¢, and

gfilog[gflog[:]] =:.

With these two tables, we can multiply two elements of G /'(2*) by adding their logsand then
taking the inverse log, which yields the product. To divide two numbers, we instead subtract
the logs. Figure 3 shows an implementation in C: Thisimplementation makes use of the fact
that the inverselog of an integer ¢ isequal to theinverselog of (: mod (2¥ — 1)). Thisfactis
explained in Appendix A. Aswith regular logarithms, we must treat zero as a special case, as
the logarithm of zero is —cc.

Unlike regular logarithms, the log of any non-zero element of a Galois Field is an integer,
allowing for exact multiplication and division of Galois Field elements using these logarithm
tables.

An important step, therefore, once w is chosen, is generating the logarithm tables for
G'I'(2"). The agorithm to generate the logarithm and inverse logarithm tables for any w can
be found in Appendix A; however the realization of this algorithm in C for w = 4, w = 8
or w = 16 isincluded here in Figure 4. We include the tables for GI'(2%) as generated by
setup_t abl es(4) inTablel.

For example, using the valuesin Table | the followingis arithmeticin G F(24):

3«7 = gfilog[gflog[3]+gflog[7]] = ofilog[4+10] = gfilog[14] =
13x10 = gfilog[gflog[13] +gflog[10]] = dofilog[13+9] = gfilog[7] =
13+10 = gfilog[gflog[13]-90flog[10]] = gfilog[13-9] = gfilog[4] =

3=7 = ofilog[gflog[3]-gflog[7]] = ogofilog[4-10] = gfilog[9] =

Therefore, a multiplication or division requires one conditional, three table lookups (two

A TUTORIAL ON REED-SOLOMON CODING 1001

#define NW (1l << w) /* In other words, NWequals 2 to the wth power */

int nult(int a, int b)

{

int suml og;

if (a==0]] b==20) return 0;
sum|log = gflog[a] + gflog[b];

if (sumlog >= NW1) sumlog -= NW1;
return gfilog[sum.log];

}
int div(int a, int b)
int diff_log;

if (a ==0) return O;

if (b ==20) return -1; /* Can’t divide by 0 */
diff _log = gflog[a] - goflog[b];

if (diff_log < 0) diff_log += NW1;

return gfilog[diff_|og];

Figure 3. C codefor multiplication and division over G F'(2*) (Note: NW= 2*)

logarithmtablelookupsand oneinversetablelookup), an addition or subtraction, and amodulo
operation. For efficiency in Figure 3, we implement the modul o operation as a conditional and
asubtraction or addition.

THE ALGORITHM SUMMARIZED

Given n data devices and m checksum devices, the RS-Raid algorithm for making them
fault-tolerant to up to m failuresis as follows.

1. Choose avalue of w such that 2 > n 4+ m. It iseasiest to choose w = 8 or w = 16,
aswordsthen fall directly on byte boundaries. Note that with w = 16, n + m can be as

large as 65, 535.
Tablel. Logarithm tablesfor G F(2%)
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gflog[i] — O 1 4 2 8 5 10 3 14 9 7 6 13 11 12
ofilog[li] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 —

1002 J.S. PLANK

unsigned int primpoly_4 = 023;
unsigned int primpoly 8 = 0435;
unsi gned int primpoly_ 16 = 0210013;
unsi gned short *gflog, *gfil og;
int setup_tables(int w)
{
unsigned int b, log, x _to_w, primpoly;
switch(w) {
case 4: primpoly = primpoly_4; break;
case 8: primpoly = primpoly_8; break;
case 16: primpoly = primpoly_16; break;
default: return -1;
}
Xx_tow=1<<w,
gflog = (unsigned short *) nmalloc (sizeof(unsigned short) * x_to_w;
gfilog = (unsigned short *) malloc (sizeof(unsigned short) * x_to_w);
b = 1;
for (log = 0; log < x_to_w1; |og++) {
gf log[b] = (unsigned short) | og;
gfilog[log] = (unsigned short) b;
b =0>b<<1,
if (b &x_tow b=Db" primpoly;
}
return O;
}

Figure4. C codefor generating the logarithmtables of GF(2*%), G F(28) and GF(2)

2. Setupthetablesgf | og and gf i | og asdescribed in Appendix A and implemented in
Figure 4.

3. Set up the matrix F' to be the m x n Vandermonde matrix: f; ; = j*=1 (for 1 < i <
m, 1< j < n)where multiplicationis performed over G'I'(2").

4. Use the matrix F’ to calculate and maintain each word of the checksum devices from
the words of the data devices. Again, al addition and multiplication is performed over
GF(2v).

5. If any number of devices up to m fail, then they can be restored in the following manner.
Choose any n of the remaining devices, and construct the matrix A’ and vector £’ as
defined previously. Then solve for D in A’D = FE’. This enables the data devices to
be restored. Once the data devices are restored, the failed checksum devices may be
recalculated using the matrix F.

A TUTORIAL ON REED-SOLOMON CODING 1003

AN EXAMPLE

Asan example, supposewe have three data devices and three checksum devices, each of which
holds one megabyte. Then n = 3 and m = 3. We choose w to be four, since 2V > n + m,
and since we can use the logarithm tablesin Table | to illustrate multiplication.
Next, we set up gf | og and gf i | og to be asin Table |. We construct F' to bea 3 x 3
Vandermonde matrix, defined over G F(24):
10 20 30 111
F=|1 2t 3t |=|1 2 3
12 22 32 45

Now, we can calculate each word of each checksum device using F'D = C'. For example,
supposethefirst word of D4 is3, thefirst word of D, is13, and thefirst word of D3is9. Then
we use F' to calculate the first words of C, C, and C's:

C1 = (HE @ DA (1)(9)
311319
0011 1101 1001 = 0111 = 7

C2 = (HE) @ (2)(13) @ (3)(9)

= 3¢948

= 0011 1001 1000 = 0010 = 2
C3 = (HE) @ (4)(13) @ (5)(9)

3d1p1l
0011 0001 1011 = 1001 =9

Suppose we change D, to be 1. Then D, sendsthe value (1 — 13) = (0001 ¢ 1101) = 12
to each checksum device, which uses this value to recompute its checksum:

¢y = 7 (1)(12) = 01116 1100 = 11
C, = 26 (2)(12)=2511=00104 1011 =9
Cs = 9@ (4)(12) = 94 5= 1001 0101 = 12

Suppose now that devices D», D3, and ('3 are lost. Then we delete the rows of A and F
correspondingto D1, Do, and C3toget A’D = E':
3
11
9

100
By apPIying Gaussian elimination, we can invert A’ to yield the following equation: D =

111|D=
(A"~ E', or:
100 3
2 31 11
-

123

D=

1004 J.S. PLANK

©-09-© ©-99-¢

[CPU| - [CPU| [CPU] - [CPU]
*
network
RAID controller Checkpointing system

Figure5. RAID-like configurations

From this, we get:
D;=(2)(3)&(3)(11) 3 (1)(99=641449=1

Ds=(3)(3) @ (2)(11) & (1)(9Y =56569=09

And then:
C3=1)3)& 4)(1)® (59 =3¢4511=12

Thus, the system is recovered.

IMPLEMENTATION AND PERFORMANCE DETAILS

We examine some implementation and performance details of RS-Raid coding on two ap-
plications: a RAID controller, and a distributed checkpointing system. Both are pictured in
Figure 5. In a RAID controller, there is one central processing location that controls the
multiple devices. A distributed checkpointing system is more decentralized. Each device is
controlled by a distinct processing unit, and the processing units communicate by sending
messages over a communication network.

RAID controllers

In RAID systems, a basic file system operation is when aprocess writes an entire stripe's
worth of datato afile. The file system must break up thisdatainto » blocks, onefor each data
device, caculate m blocks worth of encoding information, and then write one block to each
of the n+m devices. The overhead of calculating ¢1 is

SBlock(n — 1) (L)

Bxor

where Sp,..; 1S the size of a block and Rxcr is the rate of performing XOR. Thisis because
the first row of F’ isal ones, and therefore there are no Galois Field multiplicationsin the
calculation of ¢;. The overhead of calculating ¢; where: > 1is

1 1
Sptock(n — 1) (RXOR + Rar lt)

where R 1Sthe rate of performing Galois Field multiplications. Thisis because n-1 of

A TUTORIAL ON REED-SOLOMON CODING 1005

the » data blocks must be multiplied by some f; ; # 1 before being XOR d together. Thus the
overhead of calculating the m checksum blocksis

m m—1
Spiock(n — 1) (RXOR +](%GF l)t)

The cost of writing an entire parity stripe is therefore the above figure plus the time to write
one block to each of the n + m disks.*

A second basic file system operation is overwriting a small number of bytes of afile. This
updates the information stored on one disk, and necessitates a recal culation of the encoding
on each checksum disk. To be specific, for each word of disk D; that is changed from d; to
d’;, the appropriate word of each checksum disk C; is changed from ¢; to ¢; + f; ;(d; — d;),
where arithmetic is performed over the Galois Field.

The cost of computing (d’; — d;) is one XOR operation. This needs to be performed just one
time. The cost of multiplying (d — d;) by f; ; iszeroif i = 1or j = 1, and one Galois Field
multiplicationif ¢ > 1 and j > 1. Finaly, the cost of adding f; ; (d; — d}) to ¢; is one XOR
operation for each value of i. Thus, the total cost of changing aword from d; to d’ is:

" .) ifj =1
The cost of writing one word to m + 1 disks+ NSOR _
(Tﬁjm) + (R(?F;m) otherwise

The dominant portion of this cost isthe cost of writing to the disks. For this reason, Gibson
defines the update penalty of an encoding strategy to be the number of disks that must be
updated per word update.’* For RS-Raid coding, the update penalty ism disks, which is the
minimum value for tolerating m failures. Asin all RAID systems, the encoding information
may be distributed among the » + m disks to avoid having the checksum disks become hot
spots.>2

The final operation of concern is recovery. Here, we assume that y < m failures have
occurred and the system must recover the contents of the y disks. In the RS-Raid algorithm,
recovery consists of performing Gaussian Elimination of an equation A’D = E’ so that
(A")~! isdetermined. Then, the contents of all the failed disks may be calculated as alinear
combination of the disksin £’. Thus, recovery has two parts: the Gaussian Elimination and
the recalculation.

Since at least n — y rows of A’ are identity rows, the Gaussian Elimination takes O (y?n)
steps. Asy is likely to be small this should be very fast (i.e. milliseconds). The subsequent
recalculation of the failed disks can be broken into parity stripes. For each parity stripe, one
block isread from each of the » non-failed disks. One block is then calculated for each of the
fal r?d g; sks, and then written to the proper replacement disk. The cost of recovering one block
istherefore:

(The cost of reading one)+ ((y)SBlock(n — 1)) N ((y)SBlock(n))+< The costs of writing one)

block from each of n disks Rxwr RG Frmult block to each of y disks

Note that the (W) term accounts for the fact that all the elements of (A’)~1 may

mult

be greater than one. For more detailed information on other parameters that influence the

* We do not include any equations for the time to perform disk reads/writes because the complexity of disk operation precludes
asimple encapsulation.25

1006 J.S. PLANK

®
©-®®

Sep 2
Figure6. The broadcast algorithm

@

ep N

performance of recovery in RAID systems, see Reference 26.

Checkpointing systems

In distributed checkpointing systems, the usage of RS-Raid encoding is slightly different
from itsusagein the RAID controller. Here, there are two main operations, checkpointing and
recovery. With checkpointing, weassumethat thedatadevices hold data, but that the checksum
devices are uninitiaized. There are two basic approaches that can be taken to initializing the
checksum devices:

1. The Broadcast Algorithm (Figure 6): each checksum device C; initializes its data to
zero. Then each data device D; broadcasts its contents to every checksum device C;.
Uponreceiving D;’sdata, C; multipliesit by f; ; and XOR's it into its data space. When
thisisdone, al the checksum devices areinitialized. Thetime complexity of thismethod

is
S (! + = + L)
NS device
! Rbroadcast RGqult RX(P
Where Sg..i.. iSthesizeof thedeviceand Ry, .40t 1Stherate of message broadcasting.
Thisassumesthat message-sending bandwidth dominates|atency, and that the checksum
devices do not overlap computation and communication significantly.

2. TheFan-in Algorithm (Figure 7): thisalgorithm proceedsin m steps—onefor each C;.
In step ¢+, each data device D; multiplies its data by f; ;, and then the data devices
perform afan-in XCOR of their data, sending the final result to C';. The time complexity
of thismethod is

S (Iogn L logn + 1) L ((m — 1)Sdmce)

RX(P Rnetwork RGqult

where R,,.1..o-k 1Sthe network bandwidth. Thistakesinto account thefact that no Galois
Field multiplicationsare necessary to compute C';. Moreover, thisequation assumesthat
there is no contention for the network during the fan-in. On a broadcast network like an
Ethernet, where two sets of processors cannot exchange messages simultaneously, the
logn termsbecome n — 1.

A TUTORIAL ON REED-SOLOMON CODING 1007

Sep 2
Figure 7. The Fan-in algorithm

Obviously, the choice of agorithm is dictated by the characteristics of the network.

Recovery from failure is straightforward. Since the Gaussian Elimination is fast, it should
be performed redundantly in the CPUs of each device (as opposed to performing the Gaussian
Elimination with some sort of distributed agorithm).

The recalculation of the failed devices can then be performed using either the broadcast or
fan-in a gorithm as described above. The cost of recovery should thus be dlightly greater than
the cost of computing the checksum devices.

OTHER CODING METHODS

There are other coding methods that can be used for fault-tolerance in RAID-like systems.
Most are based on parity encodings (Figure 8), where each checksum device is computed to

°0 @ @
Lo 0bh 0BG

Hamming code, n = 11, m = 4

O, © (e
(2 (N O,
(2 (22) (2 (29 (25 (2) (2) T2 (2] (229) (o) T
One-dimensional parity, n = 12, m =3 Two-dimensional parity, n =9, m =6

Figure 8. Parity-based encodings

1008 J.S. PLANK
be the bitwise exclusive-or of some subset of the data devices:
C; = ai71d1 G ai72d2 E...8 awgin7 where ai; € {07 1}

Although these methods can tolerate up to m failures (for example, all the checksum
devices can fail), they do not tolerate all combinations of m failures. For example, the
well-known Hamming code can be adapted for RAID-like systems.> With Hamming codes,
m = [log(m + n — 1)] checksum devices are employed, and all two-device failures may be
tolerated. One-dimensiona parity’* is another parity-based method that can tolerate certain
classes of multiple-device failures. With one-dimensiona parity, the data devices are parti-
tioned into m groups, g1 . . . 9., and each checksum device ¢; is computed to be the parity
of the datadevicesin g;. With one-dimensional parity, the system can tolerate one failure per
group. Note that when m = 1, thisis simply n+1-parity, and when m = n, thisis equivalent
to device mirroring.

Two-dimensional parity'* is an extension of one-dimensional parity that tolerates any two
device failures. With two-dimensional parity, m must be greater than or equal to 2,/n, which
canresultintoo much cost if devicesare expensive. Other strategiesfor parity-based encodings
that tolerate two and three device failures are discussed in Reference 14. Since al of these
schemes are based on parity, they show better performance than RS-Raid coding for equival ent
values of m. However, unlike RS-Raid coding, these schemes do not have minimal device
overhead. In other words, there are some combinations of 4 < m device failures that the
system cannot tolerate.

Animportant coding technique for two devicefailuresisevENoDD coding.’® Thistechnique
tolerates al two device failures with just two checksum devices, and all coding operations
are XORs. Thus, it too is faster than RS-Raid coding. To the author’s knowledge, there is no
parity-based schemethat tol eratesthree or more devicefailureswith minimal device overhead.

CONCLUSION

This paper has presented a complete specification for implementing Reed-Solomon coding
for RAID-like systems. With this coding, one can add m checksum devices to » datadevices,
and tolerate the failure of any m devices. This has application in disk arrays, network file
systems and distributed checkpointing systems.

This paper doesnot claim that RS-Raid coding isthe best method for &l applicationsin this
domain. For example, in the case where m = 2, EVENODD coding™ solves the problem with
better performance, and one-dimensional parity!* solves a similar problem with even better
performance. However, RS-Raid coding isthe only general solutionfor all values of » and m.

Thetable-driven approach for multiplicationand division over aGaloisField isjust one way
of performing these actions. For values where n + m < 65, 536, thisis an efficient software
solution that is easy to implement and does not consume much physical memory. For larger
values of n + m, other approaches (hardware or software) may be necessary. See References
2, 27 and 28 for examples of other approaches.

ACKNOWLEDGEMENTS

The author thanks Joel Friedman, Kai Li, Michagl Puening, Norman Ramsey, Brad Vander
Zanden and Michael Vose for their valuable comments and discussion concerning this paper.

A TUTORIAL ON REED-SOLOMON CODING 1009

APPENDIX: GALOISFIELDS, ASAPPLIED TO THISALGORITHM

Galois Fields are a fundamental topic of algebra, and are given a full trestment in a number
of texts.?#32! This appendix does not attempt to define and prove al the properties of Galois
Fields necessary for this agorithm. Instead, our goa is to give enough information about
Galois Fields that anyone desiring to implement this algorithm will have a good intuition
concerning the underlying theory.

A field GF(n) isaset of n elements closed under addition and multiplication, for which
every element has an additive and multiplicative inverse (except for the O element which
has no multiplicative inverse). For example, the field GG '(2) can be represented as the set
{0, 1}, where addition and multiplication are both performed modulo 2 (i.e. addition is XOR,
and multiplication is the bit operator AND). Similarly, if » is a prime number, then we can
represent the field G /'(n) to bethe set {0, 1, ..., »n — 1} where addition and multiplication
are both performed modulo n.

However, supposen > 1isnot aprime. Thentheset {0, 1, ..., » — 1} where addition and
multiplication are both performed modulo » is not a field. For example, let » be four. Then
the set {0, 1, 2, 3} isindeed closed under addition and multiplication modulo 4, however, the
element 2 has no multiplicativeinverse (thereisnoa € {0, 1, 2, 3} suchthat 2« = 1 (mod 4)).
Thus, we cannot perform our coding with binary words of size w > 1 using addition and
multiplication modulo 2. Instead, we need to use Galois Fields.

To explain Galois Fields, we work with polynomials of = whose coefficientsarein G '(2).
Thismeans, for example, that if »(z) = 2 4+ 1, and s(z) = =, then r(z) 4+ s(z) = 1. Thisis
because

t+2=(1412=0:=0

Moreover, we take such polynomials modul o other polynomials, using the following identity:
If »(2) mod ¢(z) = s(z), then s(z) isapolynomia with adegree lessthan ¢(z), and r(z) =
q(z)t(z) + s(z), wheret(z) isany polynomial of z. Thus, for example, if r(z) = 22+ z, and
q(z) = 22+ 1, thenr(z) mod ¢(z) = = + 1.

Let ¢(z) be a primitive polynomial of degree w whose coefficients are in GF'(2). This
means that ¢(z) cannot be factored, and that the polynomial = can be considered a generator
of GF(2"). Toseehow = generates G I'(2"), we start with the elements 0, 1, and =, and then
continue to enumerate the elements by multiplying the last element by = and taking the result
modulo ¢(z) if it hasadegree > w. Thisenumeration ends at 2" elements — the last element
multiplied by = mod ¢(z) equals 1.

For example, suppose w = 2, and ¢(z) = 22 + = + 1. To enumerate G'I'(4) we start with
the three lements 0, 1, and z, then then continue with 22 mod ¢(z) = z + 1. Thus we have
four lements: {0, 1, z, = + 1}. If we continue, we seethat (= + 1)z mod ¢(z) = 22+ = mod
¢(z) = 1, thus ending the enumeration.

Thefield G F'(2") is constructed by finding a primitive polynomial ¢(z) of degree w over
G'I'(2), and then enumerating the elements (which are polynomials) with the generator z.
Additioninthisfield is performed using polynomial addition, and multiplicationis performed
using polynomia multiplication and taking the result modulo ¢(z). Such afield is typically
written G F(2¥) = GF(2)[z]/q(x).

Now, to use G F'(2") in the RS-Raid algorithm, we need to map the elements of G'F'(2")
to binary words of size w. Let r(z) be apolynomial in GF'(2"). Then we can map r(z) toa
binary word b of size w by setting the ith bit of 4 to the coefficient of 2* inr(z). For example,
iNGF(4) = GF(2)[z]/2? + = + 1, weget Table|l.

1010 J.S. PLANK

Tablell.
Generated Polynomial Binary Decimal
Element Element Elementb Representation

of GF(4) of GF(4) of GF(4) of b

0 0 00 0

0 1 01 1

ot z 10 2

z? r+1 11 3

Addition of binary elements of G'F'(2") can be performed by bitwise exclusive-or. Multi-
plication is a little more difficult. One must convert the binary numbers to their polynomial
elements, multiply the polynomialsmodulo ¢(z), and then convert the answer back to binary.
This can be implemented, in a simple fashion, by using the two logarithm tables described
earlier: one that maps from a binary element b to power j such that 27 isequivalent to b (this
isthegf | og table, and isreferred to in the literature as a ‘ discrete logarithm’), and one that
mapsfrom apower ; toitshinary element b. Each table has 2 — 1 elements(thereisno ;5 such
that 7 = 0). Multiplication then consists of converting each binary element to its discrete
logarithm, then adding the logarithms modulo 2 — 1 (thisis equivalent to multiplying the
polynomialsmodulo ¢(x)) and converting the result back to a binary element. Divisionis per-
formed in the same manner, except the logarithms are subtracted instead of added. Obviously,
elementswhere b = 0 must be treated as special cases. Therefore, multiplication and division

Tablelll. Enumeration of the elements of G F'(16)

Generatedelement Polynomial element Binary element Decimal element

0 0 0000 0
z° 1 0001 1
zt T 0010 2
z? z? 0100 4
z3 z3 1000 8
z? rz+1 0011 3
z° 224z 0110 6
z® 23+ 22 1100 12
z’ 24+l 1011 11
z8 2241 0101 5
z° 224z 1010 10
210 22+z+1 0111 7
2 2+ P+ 1110 14
2 242l +r+1 1111 15
3 224?41 1101 13
¥ 2241 1001 9
P 1 0001 1

A TUTORIAL ON REED-SOLOMON CODING 1011

of two binary elements takes three table |lookups and a modul ar addition.

Thus, to implement multiplicationover G'I'(2"), wemust first set up thetablesgf | og and
gf i I og. To do this, we first need a primitive polynomial ¢(z) of degree w over G F'(2").
Such polynomials can be found in texts on error correcting codes.™? We list examples for
powers of two up to 64 below:

4 x4—|—x—|—1

8: 28ttt
w=16: wls—l—xlz—l—x?’—l—x—l—l
w =232 w?’z—l—xzz—l—xz—l—x—l—l
w=064: x64—|—$4—|—$3—|—$—|—1

w
w

We then start with the dlement z° = 1, and enumerate all non-zero polynomiasover G 1'(2)
by multiplying the last element by =, and taking the result modulo ¢(z). This is done in
Table 11l for GF(2%), where ¢(z) = 2% + 2 + 1.

It should be clear now how the C codein Figure 4 generatesthegf | og andgf i | og arrays
for GF (2%, GF(28) and G F'(29).

REFERENCES

E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, New York, 1968.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, Second Edition. MIT Press, Cambridge, MA,

1972.

3. F J MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Part I. North-Holland,
Amsterdam, 1977.

4. D.A. Patterson, G. Gibson and R. H. Katz, ‘A casefor redundant arrays of inexpensive disks (RAID), ACM
Conference on Management of Data, June 1988, pp. 109-116.

5. G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage. MIT Press, Cambridge, MA,
1992.

6. P. M. Chen, E. K. Leg, G. A. Gibson, R. H. Katz and D. A. Patterson, ‘RAID: High-performance, reliable
secondary storage, ACM Computing Surveys, 26, (2), 145-185 (1994).

7. J. H. Hartman and J. K. Ousterhout, ‘The zebra striped network file system, Operating Systems Review —
14th ACM Symposium on Operating System Principles, 27(5);29-43 (December 1993).

8. P Cao, S. B. Lim, S. Venkataraman and J. Wilkes, ‘The TickerTAIP parallel RAID architecture;, ACM
Transactionson Computer Systems, 12(3) (1994).

9. J. S Plank and K. Li, ‘Faster checkpointing with N + 1 parity, 24th International Symposium on Fault-
Tolerant Computing, Austin, TX, June 1994, pp. 288-297.

10. J. S. Plank, Y. Kim and J. Dongarra, ‘Algorithm-based diskless checkpointing for fault tolerant matrix
operations, 25th International Symposium on Fault-Tolerant Computing, Pasadena, CA, June 1995, pp.
351-360.

11. T.ChiuehandP. Deng, ‘Efficient checkpoint mechanismsfor massively parallel machines, 26th International
Symposiumon Fault-Tolerant Computing, Sendai, June 1996.

12. J. S. Plank, ‘Improving the performance of coordinated checkpointers on networks of workstations using
RAID techniques, 15th Symposiumon Reliable Distributed Systems, October 1996, pp. 76-85.

13. W. A. Burkhard and J. Menon, ‘Disk array storage system reliability, 23rd International Symposium on

Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 432—441.

N

1012 J.S. PLANK

14.

15.

16.

17.

18.

19.

G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz and D. A. Patterson, ‘Failure correction techniquesfor
largedisk arrays, Third International Conferenceon Architectural Support for Programming Languagesand
Operating Systems, Boston, MA, April 1989, PP. 123-132.

M. Blaum, J. Brady, J. Bruck and J. Menon, ‘EVENODD: An optimal scheme for tolerating double disk
failuresin RAID architectures, 21st Annual International Symposiumon Computer Architecture, Chicago,
IL, April 1994, pp. 245-254.

C-l. Park, ‘Efficient placement of parity and data to tolerate two disk failuresin disk array systems, |EEE
Transactionson Parallel and Distributed Systems, 6(11); 1177—1184 (November 1995).

E.D.Karnin, J. W. Greeneand M. E. Hellman, * On secret sharing systems, | EEE Transactionson Information
Theory, 1 T-29(1); 3541 (January 1983).

M. O. Rabin, ‘Efficient dispersal of information for security, load balancing, and fault tolerance, Journal of
the Association for Computing Machinery, 36(2); 335-348 (April 1989).

F. P. Preparata, ‘Holographic dispersal and recovery of information, IEEE Transactions on Information
Theory, 35(5); 1123-1124, (September 1989).

T. J. E. Schwarz and W. A. Burkhard, ‘RAID organization and performance, Proceedings of the 12th
International Conferenceon Distributed Computing Systems, Yokohama, June 1992, pp. 318-325.

. J. H.van Lint, Introduction to Coding Theory, Springer-Verlag, New York, 1982.

S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and their Applications, IEEE Press, New York, 1994.
D. Wiggert, Codesfor Error Control and Synchronization. Artech House, Norwood, MA, 1988.

I. N. Herstein, Topisin Algebra, Second Edition, Xerox College Publishing, Lexington, MA, 1975.

C. Ruemmler and J. Wilkes, ‘An introduction to disk drive modeling, |EEE Computer, 27(3); 17—29 (March
1994).

M. Holland, G. A. Gibsonand D. P. Siewiorek, ‘Fast, on-line failure recovery in redundant disk arrays, 23rd
International Symposium on Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 442—423.

. A. Z. Broder, ‘Some applications of Rabin’s fingerprinting method, in R. Capocedlli, A. De Santis and

U. Vaccaro, (eds.), Sequencesl|, Springer-Verlag, New York, 1991.
D. W. Clark and L-J. Weng, ‘Maximal and near-maximal shift register sequences: Efficient event counters
and easy discrete logarithms, |EEE Transactionson Computers, 43(5); 560-568 (1994).

	PROBLEM SPECIFICATION
	INTRODUCTION
	GENERAL STRATEGY
	OVERVIEW OF THE RS-RAID ALGORITHM
	Calculating and maintaining checksum words
	Recovering from failures
	Arithmetic over Galois Fields

	THE ALGORITHM SUMMARIZED
	AN EXAMPLE
	IMPLEMENTATION AND PERFORMANCE DETAILS
	RAID controllers
	Checkpointing systems

	OTHER CODING METHODS
	CONCLUSION
	acknowledgements
	GALOIS FIELDS, AS APPLIED TO THIS ALGORITHM
	REFERENCES

