
C
lo

ud
 C

om
pu

ti
ng

SEPTEMBER/OCTOBER 2009 1089-7801/09/$26.00 © 2009 IEEE Published by the IEEE Computer Society 43

Katarzyna Keahey
University of Chicago

Maurício Tsugawa,
Andréa Matsunaga,
and José A.B. Fortes
University of Florida

Sky Computing

Infrastructure-as-a-service (IaaS) cloud computing is revolutionizing how we

approach computing. Compute resource consumers can eliminate the expense

inherent in acquiring, managing, and operating IT infrastructure and instead

lease resources on a pay-as-you-go basis. IT infrastructure providers can exploit

economies of scale to mitigate the cost of buying and operating resources

and avoid the complexity required to manage multiple customer-specific

environments and applications. The authors describe the context in which

cloud computing arose, discuss its current strengths and shortcomings, and

point to an emerging computing pattern it enables that they call sky computing.

T he idea of using remote resources
for regular computing work and on
a large scale was first manifested

with grid computing, which is based on
the assumption that control over how
resources are used stays with the site,
reflecting local software and policy
choices. However, these choices aren’t
always useful to remote users who
might need a different operating sys-
tem or login access instead of a batch
scheduler interface to a site. Reconcil-
ing those choices between multiple user
groups proved to be complex, time-
consuming, and expensive. In retro-
spect, leaving control to individual sites
was a pragmatic choice that enabled
very fast adoption of a radically trans-

formative technology, but also led to a
“local maximum” beyond which grid
computing found it hard to scale.

Infrastructure-as-a-service (IaaS)
cloud computing represents a funda-
mental change from the grid comput-
ing assumption: when a remote user
“leases” a resource, the service provider
turns control of that resource over to
the user. This change was enabled
when a free and efficient virtualization
solution, the Xen hypervisor (www.
xen.org), became available. Before vir-
tualization, turning over control to
users was fraught with danger because
users could easily subvert a site. But
virtualization isolates the leased
resource from the site in a secure way,

Cloud Computing

44 www.computer.org/internet/ IEEE INTERNET COMPUTING

mitigating this danger. In turn, this ability to
give users control over a remote resource lets
us develop tools — such as those the Amazon
Elastic Compute Cloud (EC2; http://aws.amazon.
com/ec2/) uses — or academic projects — such
as Nimbus, an EC2-compatible open source IaaS
implementation (http://workspace.globus.org) —
that let users carve out their own custom “sites.”

Here, we consider another change, brought
about by cloud computing’s emergence as a
mainstream platform. Previously, site owners
couldn’t trust a remote resource because they
had no control over its configuration. Now that
clouds let users control remote resources, how-
ever, this concern is no longer an issue. Com-
bining the ability to trust remote sites with a
trusted networking environment, we can now
lay a virtual site over distributed resources.
Because such dynamically provisioned distrib-
uted domains are built over several clouds, we
call this kind of computing sky computing. In
grids, the interaction among different sites con-
sisted of interaction among different isolated
domains, but the trust relationships within sky
computing are the same as those within a tra-
ditional nondistributed site, simplifying how
remote resources interact.

Applications that can leverage a sky com-
puting platform range from multitier, seasonal
e-commerce or Web-server-like systems in which
different components are on different clouds,
to CAD systems with different tools and data
hosted in different clouds when design activities
are under way, to distributed, event-based alert
systems that discover and integrate information
or data patterns across databases hosted in dif-
ferent clouds. Here, we discuss the challenges in
building sky computing platforms, present the
ingredients for a working system, and discuss a
potential sky computing application.

Interoperability and Service Levels
IaaS exposes an API that lets a client program-
matically provision and securely take owner-
ship of customized computer infrastructure for
an agreed-upon time period. To create a reliable
sky computing platform, we need such capa-
bility to be uniformly available across pro-
viders. Users must be able to easily compare
offerings from different providers — choosing
between qualities of service (for example, avail-
ability, reliability, or performance at different
price points) — and move from one provider

to another. Let’s look at where standards are
needed to make IaaS cloud computing a fun-
gible resource.

To easily choose between providers, a
client needs to move from one to another
without significantly altering its mode of
usage. The first obstacle to such movement
is image compatibility. Not only do vari-
ous virtual machine (VM) implementations,
such as VMware (www.vmware.com), Xen, or
Kernel-based Virtual Machine (KVM; www.
linux-kvm.org), use different disk formats,
but moving images between different deploy-
ments of one implementation can also be a
challenge. For example, Xen images used with
paravirtualization often rely on a specific,
externally provided kernel — if different pro-
viders supply different kernels, an image that
works with one might fail with another due to
integration issues. One way to deal with this
issue is to simply publish the relevant infor-
mation and work only with image-compatible
providers. Although this solves the problem, it
also restricts end users’ choices.

Another reason why images — even compli-
ant ones — might work with one provider but
not another is contextualization compatibil-
ity. VM instances deployed based on a shared
image must be customized with information
(typically at startup) that lets end users employ
each instance in a specific context — for exam-
ple, to allow login to certain parties. However,
contextualization can be provided in a variety
of ways (Amazon EC2, for example, provides it
via the EC2 metadata structure accessed over
an internal network, whereas the Open Vir-
tualization Format [OVF] specification1 advo-
cates providing it by mounting a file system),
and no agreement on standard methods exists,
so each provider might do it differently. Even
slight differences, especially if not clearly doc-
umented, contribute to the difficulty of moving
from one provider to another.

The best way to deal with these incompat-
ibilities so far has been to define environments
not in terms of their implementation but via an
abstraction — a virtual appliance2 — from which
service providers can derive any implementa-
tion. This approach, which commercial provid-
ers support via existing tools, could resolve
both image incompatibilities (images are gener-
ated) and provider incompatibilities (images are
generated and customized for each provider).

SEPTEMBER/OCTOBER 2009 45

Sky Computing

Standards in both areas, as well as more struc-
tured user data management, would lower the
barrier to interoperability.

Finally, standards are needed at an API-level
compliance among different cloud providers. So
far, emergent APIs tend toward compatibility —
semantically, at least — because they all imple-
ment a roughly similar set of functions: deploy
and terminate environments. Where differences
are emerging, and where it’s useful for them to
emerge, is with service-level agreements (SLAs),
which describe such wide-ranging qualities as
differentiated service security levels, allocated
resources, availability, and price. The more pro-
viders can explicitly define these qualities (as
opposed to implicitly, as with an obscure option
embedded into a deployment command), the
easier comparing SLAs among different IaaS
providers will be.

An inherent difficulty exists, however, in
explicitly describing virtualized environ-
ments, especially in terms of the perfor-
mance and resource quota offered. Today,
commercial providers define SLA qualities as
“instances” — for example, a VM deployed on
specific hardware with certain performance
specifications, which might include nebulous
terms such as “high bandwidth I/O.” These
definitions hide the fact that a virtualization’s
implementation version and configuration,
and how it interacts with specific hardware,
might significantly affect how much of an
instance is in fact available to the VM and
with what trade-offs.3 One possibility for cre-
ating a comparison base is to define a usefully
comprehensive set of benchmarks that provid-
ers can publish to give users an idea of which
performance factors are relevant (much as
car manufacturers publish such benchmarks
today). Differences in network services make
it difficult for VMs deployed in distinct pro-
viders to establish communication (for exam-
ple, network and security policies, or private
networks). A promising solution to enable
intercloud communication is to use user-level
overlay networks.

At present, there isn’t much to guide and
structure such SLA development. Although exist-
ing specifications, such as OVF1 and the Web Ser-
vices Agreement Specification (WS- Agreement),4
can provide some guidance, in practice, emerging
de facto standards (such as Amazon EC2) guide
and influence that development.

Creating a Sky Computing Domain
Several building blocks underpin the creation
of a sky environment. While leveraging cloud
computing, we can in principle trust the con-
figuration of remote resources, which will
typically be connected via untrusted WANs.
Furthermore, they won’t be configured to rec-
ognize and trust each other. So, we need to con-
nect them to a trusted networking domain and
configure explicit trust and configuration rela-
tionships between them. In short, we must pro-
vide an end-user environment that represents a
uniform abstraction — such as a virtual cluster
or a virtual site — independent of any particu-
lar cloud provider and that can be instantiated
dynamically. We next examine the mechanisms
that can accomplish this.

Creating a Trusted Networking Environment
Network connectivity is particularly challeng-
ing for both users and providers. It’s difficult to
offer APIs that reconfigure the network infra-
structure to adjust to users’ needs without giving
them privileged access to core network equip-
ment — something providers wouldn’t do owing
to obvious security risks. Without network APIs,
establishing communication among resources in
distinct providers is difficult for users.

Deploying a “virtual cluster” spanning
resources in different providers faces challenges
in terms of network connectivity, performance,
and management:

•	 Connectivity. Resources in independently
administered clouds are subject to differ-
ent connectivity constraints due to packet
filtering and network address translations;
techniques to overcome such limitations are
necessary. Due to sky computing’s dynamic,
distributed nature, reconfiguring core net-
work equipment isn’t practical because it
requires human intervention in each pro-
vider. Network researchers have developed
many overlay networks to address the con-
nectivity problem involving resources in
multiple sites, including NAT-aware network
libraries and APIs, virtual networks (VNs),
and peer-to-peer (P2P) systems.

•	 Performance. Overlay network processing
negatively affects performance. To minimize
performance degradation, compute resources
should avoid overlay network processing
when it’s not necessary. For example, requir-

Cloud Computing

46 www.computer.org/internet/ IEEE INTERNET COMPUTING

ing overlay network processing in every
node (as with P2P systems) slows down com-
munication among nodes on the same LAN
segment. In addition, overlay network pro-
cessing is CPU intensive and can take valu-
able compute cycles from applications. A
detailed study of overlay network processing
performance is available elsewhere.5

•	 Service levels. Sky computing requires
on-demand creation of mutually isolated
networks over heterogeneous resources
(compute nodes and network equipment)
distributed across distant geographical loca-
tions and under different administrative
domains. In terms of SLAs, this has secu-
rity as well as performance implications.
Core network routers and other devices are
designed for a single administrative domain,
and management coordination is very diffi-
cult in multisite scenarios. Overlay networks
must be easily deployable and agnostic with
respect to network equipment vendors.

To address these issues and provide connec-
tivity across different providers at low perfor-
mance cost, we developed the Virtual Networks
(ViNe) networking overlay.6 ViNe offers end-to-
end connectivity among nodes on the overlay,
even if they’re in private networks or guarded
by firewalls. We architected ViNe to support
multiple, mutually isolated VNs, which pro-
viders can dynamically configure and man-
age, thus offering users a well-defined security
level. In performance terms, ViNe can offer
throughputs greater than 800 Mbps with sub-
millisecond latency, and can handle most traf-
fic crossing LAN boundaries as well as Gigabit
Ethernet traffic with low overhead.

ViNe is a user-level network routing soft-
ware, which creates overlay networks using
the Internet infrastructure. A machine running
ViNe software becomes a ViNe router (VR),
working as a gateway to overlay networks for
machines connected to the same LAN segment.
We recommend delegating overlay network pro-
cessing to a specific machine when deploying
ViNe so that the additional network process-
ing doesn’t steal compute cycles from compute
nodes, a scenario that can occur if all nodes
become VRs.

ViNe offers flexibility in deployment as
exemplified in the following scenarios.

ViNe-enabled providers. Providers deploy a VR
in each LAN segment. The ability to dynamically
and programmatically configure ViNe overlays
lets providers offer APIs for virtual network-
ing without compromising the physical network
infrastructure configuration. The cost for a pro-
vider is one dedicated machine (which could be a
VM) per LAN segment and can be a small frac-
tion of the network cost charged to users. IaaS
providers offer VN services in this case.

End-user clusters. In the absence of ViNe ser-
vices from providers, users can enable ViNe as
an additional VM that they start and configure
to connect different cloud providers. This user-
deployed VR would handle the traffic crossing
the cluster nodes’ LAN boundaries. ViNe’s cost
in this case is an additional VM per user.

Isolated VMs. A VR can’t be used as a gate-
way by machines that don’t belong to the same
LAN segment. In this case, every isolated VM
(or a physical machine, such as the user’s cli-
ent machine) must become a VR. ViNe’s cost is
the additional network processing that compute
nodes perform, which can take compute cycles
from applications.

Dynamic Configuration and Trust
When we deploy a single appliance with a spe-
cific provider, we rely on basic security and
contextualization measures this provider has
implemented to integrate the appliance into a
provider-specific networking and security con-
text (for example, to let the appliance owner
log in). However, when we deal with a group
of appliances, potentially deployed across dif-
ferent providers, configuration and security
relationships are more complex and require
provider-independent methods to establish a
security and configuration context.

In earlier work,7 we describe a context broker
service that dynamically establishes a security
and configuration context exchange between
several distributed appliances. Orchestrating
this exchange relies on the collaboration of
three parties:

•	 IaaS providers, who provide generic contex-
tualization methods that securely deliver to
deployed appliances the means of contacting
a context broker and authenticating them-
selves to it as members of a specific context

SEPTEMBER/OCTOBER 2009 47

Sky Computing

(and possibly also as individual appliances).
End users provide context information via
a simple generic schema and method that’s
the same for every appliance used with this
provider. Adopting this simple schema lets
every provider deliver basic context infor-
mation to every appliance.

•	 Appliance providers, who provide methods
that let an appliance supply information to
and receive it from a context broker and
integrate information conveyed by templates
describing application-specific roles. Appli-
ances can integrate the information using
any configuration method from any appli-
ance provider. This information in the tem-
plates is application-specific and potentially
different from appliance to appliance, but
the templates themselves are uniform, and
any context broker can process them.

•	 Deployment orchestrators (context brokers),
who provide generic methods of security
 context establishment and information
exchange based on information the appli-
ance templates provide.

A typical contextualization process works
as follows. Before a user deploys appliances, he
or she registers a context object with a context
broker. This object is identified by an identifier
and a secret. The IaaS provider securely conveys
the identifier and secret (along with ways to
contact the context broker) on deployment. This
gives the appliance a way to authenticate itself
to the context broker, which can then orches-
trate security context establishment as well as
information exchange between all appliances in
the context (external sources can provide addi-
tional security and configuration information
to the security broker).

Defining this exchange in terms of such

roles lets any appliance contextualize with any
provider (or across providers). For example,
using the Nimbus toolkit (http://workspace.
globus.org) implementation of a context broker,
we could dynamically deploy clusters of appli-
ances on Nimbus’s Science Clouds (including
multiple Science Cloud providers) as well as
Amazon EC2.7

Building Metaclouds
Next, let’s look at how we can exploit resource
availability across different Science Clouds (http://
workspace.globus.org/clouds/), offering dif ferent
SLAs, to construct a sky environment: a vir-
tual cluster large enough to support an applica-
tion execution. Rather than simply selecting the
provider with the largest available resources,
we select IaaS allocations from a few different
providers and build a sky environment on top of
those allocations using the ViNe network overlay
and the Nimbus context exchange tools.

The Science Clouds testbed comprises mul-
tiple IaaS providers configured in the academic
space and providing different SLAs to users; Sci-
ence Cloud providers grant access to resources
to scientific projects, free of charge and upon
request. Apart from providing a platform on
which scientific applications explore cloud com-
puting, the Science Clouds testbed creates a
laboratory in which different IaaS providers use
compatible technologies to provide offerings,
letting us experiment with sky computing.

Our sky computing study uses resources on
three sites: University of Chicago (UC), Univer-
sity of Florida (UF), and Purdue University (PU).
All sites use the same virtualization implementa-
tion (Xen), and although the versions and kernels
differ slightly, VM images are portable across
sites. All sites use Nimbus so that VM images are
contextualization-compliant across those sites.

Table 1. Service-level agreement and instances at each cloud provider.

University of Chicago (UC) University of Florida (UF) Purdue University (PU)

Xen version 3.1.0 3.1.0 3.0.3

Guest kernel 2.6.18-x86_64 2.6.18-i686 2.6.16-i686

Nimbus version 2.2 2.1 2.1

CPU architecture AMD Opteron 248 Intel Xeon Prestonia Intel Xeon Irwindale

CPU clock 2.2 GHz 2.4 GHz 2.8 GHz

CPU cache 1 Mbyte 512 Kbytes 2 Mbytes

Virtual CPUs per node 2 2 2

Memory 3.5 Gbytes 3.5 Gbytes 1.5 Gbytes

Networking Public Private Public

Cloud Computing

48 www.computer.org/internet/ IEEE INTERNET COMPUTING

Consequently, the sites are also API-compliant,
but, as Table 1 shows, they offer different SLAs.
Although all sites offer an “immediate lease,”
the provided instances (defined in terms of CPU,
memory, and so on) are different. More signifi-
cantly from a usability viewpoint, the UC and PU
clouds provide public IP leases to the deployed
VMs, whereas UF doesn’t.

To construct a sky virtual cluster over the
testbed we just described, a user with access to
the Science Clouds testbed takes the following
steps (see Figure 1):

•	 Preparation. Obtain a Xen VM image config-
ured to support an environment the applica-
tion requires as well as the ViNe VM image
(the ViNe image is available from the Sci-
ence Clouds Marketplace). Make sure both
images are contextualized (that is, capable
of providing and integrating context infor-
mation). The user must upload both images
to each provider site.

•	 Deployment. Start a ViNe VM in each site
(the ViNe VMs provide virtual routers for
the network overlay). In addition, start the
desired number of compute VMs at each pro-
vider site. The contextualized images are
configured to automatically (securely) con-

tact the context broker to provide appropri-
ate networking and security information and
adjust network routes to use VRs to reach
nodes crossing site boundaries. The configu-
ration exchange includes VMs on different
provider sites so that all VMs can behave as
a single virtual cluster.

•	 Usage. Upload inputs and start the desired
application (typically, by simply logging into
the virtual cluster and using a command-
line interface).

To experiment with the scalability of virtual
clusters deployed in different settings, we con-
figured two clusters: a Hadoop cluster, using the
Hadoop MapReduce framework, version 0.16.2
(http://hadoop.apache.org), and a message pass-
ing interface (MPI) cluster using MPICH2 ver-
sion 1.0.7 (www.mcs.anl.gov/research/projects/
mpich2/). We used each virtual cluster to run
parallel versions of the Basic Local Alignment
Search Tool (Blast), a popular bioinformatics
application that searches for, aligns, and ranks
nucleotide or protein sequences that are simi-
lar to those in an existing database of known
sequences. We configured the Hadoop cluster
with Blast version 2.2.18 (http://blast.ncbi.nlm.
nih.gov) and the MPI cluster with the publicly

Firewall
UC

PU

UF
NAT

(1)

(2)
(3)

Physical
resource providers

Virtual cluster1

End user

NimbusInternet

Firewall

Virtual
network

VM

VM

VR

VR VR

Nimbus

Nimbus

B LA S T

B LA S TB LA S T

B LA S T

B LA S TB LA S T

B LA S T

B LA S TB LA S T

Figure 1. A virtual cluster interconnected with ViNe. An end user employs the Nimbus client, contextualization service,
and images available in the marketplace. We can see (1) preparation, (2) deployment, and (3) usage.

SEPTEMBER/OCTOBER 2009 49

Sky Computing

available mpiBlast version 1.5.0beta1 (www.
mpiblast.org). Both versions have master-slave
structures with low communication-to-compu-
tation ratios. The master coordinates sequence
distribution among workers, monitoring their
health and combining the output. The runs
used in the evaluation consisted of executing
blastx of 960 sequences averaging 1,116.82
nucleotides per sequence against a 2007 non-
redundant (NR) protein sequence database
from the US National Center for Biotechnology
Information (NCBI) in 1 fragment (3.5 Gbytes
of total data.)

We deployed the two virtual clusters in two
settings: on the UF cloud only (one-site experi-
ment) and on all three sites using the same
number of processors (three-site experiment).
For three-site experiments, we balanced the
number of hosts in each site executing Blast
— that is, one host in each site, two hosts in
each site, and so on, up to five hosts in each
site. (Choosing random numbers of nodes from
different sites would, in effect, weigh the
three-site experiment’s performance toward
comparing the UF site and the site with the
most processors).

The SLAs expressed as instances from each
metacloud provider (as described in Table 1)
are different (PU instances outperform UC
instances, which outperform UF instances),
which makes it difficult to compare providers.
To establish a comparison base between the
SLAs each provider offers, we used the perfor-
mance of the sequential execution on a UF pro-
cessor of the Blast job described earlier to define
a normalized performance benchmark (see Table
2): 1 UC processor is equivalent to 1.184 UF pro-
cessors, whereas 1 PU processor is equivalent to
1.24 UF processors. For example, an experiment
with 10 UF processors, 10 UC processors, and 10
PU processors should provide the performance
of a cluster with 34.24 UF processors. We used
these factors to normalize the number of pro-
cessors, as Figure 2 shows.

Figure 2 shows the speedup Blast execu-
tion on various numbers of testbed processors
in different deployment settings versus the

execution on one processor at UF. A sequen-
tial execution on one UF processor resource
that took 43 hours and 6 minutes was reduced
to 1 hour and 42 minutes using Hadoop on 15
instances (30 processors) of the UF cloud, a
25.4-fold speedup. It was reduced to 1 hour and
29 minutes using Hadoop on five instances in
each of the three sites (30 processors), a 29-fold
speedup. Overall, the performance difference
between a virtual cluster deployed in a single
cloud provider and a virtual cluster deployed
in three distinct cloud providers intercon-
nected across a WAN through a VN is mini-
mal for Blast executed with either Hadoop or
MPI. Also, comparison with “ideal” perfor-
mance (assuming perfect parallelization — that
is, where N CPU clusters would provide N-fold
speedup relative to sequential execution) shows
that the application parallelizes well.

In the data presented, we refer only to the
VMs used to create the application platform and
not to those additional ones used to run VRs.
Running those routers (one per site) constitutes
an additional cost in resource usage. This cost is
relatively small and depends on network traffic,
as detailed elsewhere.5 We can further amortize
this cost by sharing the router with other cloud
users (the provider could offer it as another ser-
vice) or running it in one of the compute nodes.

Our experiments aimed to study the feasi-
bility of executing a parallel application across
multiple cloud providers. In this context, our
two main objectives were to demonstrate that
end users can deploy a sky computing envi-
ronment with full control, and that the envi-
ronment performs well enough to execute a
real-world application. We’ve successfully com-
bined open source and readily available cloud
(Nimbus toolkit) and VN (ViNe) technologies to
let users launch virtual clusters with nodes that
are automatically configured and connected
through overlays. The observed impact of net-
work virtualization overheads was low, and we
could sustain the performance of a single-site
cluster using a cluster across three sites. This
illustrates sky computing’s potential in that
even when the necessary resources are unavail-

Table 2. Normalized single processor performance at each site.*

University of Chicago (UC) University of Florida (UF) Purdue University (PU)

Sequential execution time 36 hours and 23 minutes 43 hours and 06 minutes 34 hours and 49 minutes

Normalization factor 1.184 1 1.24

*Measured as the Blast sequential time at the University of Florida divided by the Blast sequential time at each site

Cloud Computing

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

able in a single cloud, we can use multiple
clouds to get the required computation power.

O ur work brought forward several interesting
features. First, leveraging VMs’ isolation

property let us create a distributed environment
that we couldn’t have created otherwise: ViNe
deployment requires root privileges on remote
resources, which would have made its dynamic
deployment on those sites hard if not impossi-
ble. The combination of contextualization tech-
nology and network overlays further lets users
dynamically create a sky environment, which
is easy to use. The complexity moves to lower
infrastructure layers that provide middleware
and prepare images. However, these actions can
occur once, be amortized over many different
uses, and, most importantly, don’t affect the
end user’s work.

Our work also exposed some shortcomings
of current cloud computing systems — namely,
the difficulty of comparing offerings com-
ing from different providers. For our example,
we used an application-specific benchmark to
establish a comparison base. However, for more
general usage, a standardized set of bench-
marks would be more appropriate, letting users
weigh various resources and design scheduling
algorithms to leverage them best. Furthermore,

sky environments would be greatly enhanced
by the ability to negotiate specific latency and
bandwidth between various resources provi-
sioned in the clouds. These capabilities are cur-
rently unavailable, so we don’t explore them in
this article.

Finally, the example shown here demon-
strates how, using the abstractions we pro-
pose, we can layer the platform-as-a-service
cloud computing paradigm — in our case, the
MapReduce framework — on top of IaaS cloud
computing to provision clusters of arbitrary
size spanning different providers. It also illus-
trates the relationship between these two con-
cepts. Our future work will address evolving
such clusters dynamically, driven by need as
well as availability, and combining the SLA
information from various providers to provide
differentiated service levels on different infra-
structure layers.

Acknowledgments
The US National Science Foundation partially supports this

work under grant numbers CNS-0821622, CSR-527448, and

OCI-0721867. We also acknowledge the support of the Bell-

South Foundation and Shared University Research grants

from IBM. We are grateful to the Purdue Rosen Center

for Advanced Computing for making its Science Clouds

resource available for this research.

References
1. Open Virtual Machine Format Specification (OVF),

Distributed Management Task Force, DSP0243, 2009;

http://xml.coverpages.org/ni2009-03-23-a.html.

2. C. Sapuntzakis et al., “Virtual Appliances for Deploy-

ing and Maintaining Software,” Proc. 17th Large

Installation Systems Administration Conf., Usenix

Assoc., 2003, pp. 181–194.

3. T. Freeman et al., “Division of Labor: Tools for

Growth and Scalability of the Grids,” Proc. 4th Int’l

Conf. Service-Oriented Computing, Springer, 2006,

pp. 40–51.

4. A. Andrieux et al., Web Services Agreement Specifica-

tion (WS-Agreement), Open Grid Forum, 2007; www.

ogf.org/documents/GFD.107.pdf.

5. M. Tsugawa and J. Fortes, “Characterizing User-Level

Network Virtualization: Performance, Overheads and

Limits,” Proc. 4th IEEE Int’l Conf. eScience, IEEE CS

Press, 2008, pp. 206–213.

6. M. Tsugawa and J. Fortes, “A Virtual Network (ViNe)

Architecture for Grid Computing,” Proc. 20th Int’l

Parallel and Distributed Processing Symp., IEEE CS

Press, 2006.

0 5 10 15 20 25

Number of processors (normalized to UF single processor performance)

Sp
ee

du
p

30 35

35

30

25

20

15

10

5

3-site hadoop 1f

3-site mpi 1f

1-site hadoop 1f

1-site mpi 1f

Ideal

Figure 2. Speedup curves. These curves compare the performance
of virtual clusters running Hadoop and message passing interface
(MPI) versions of Blast in a single site (University of Florida [UF])
and in three different sites (UF, University of Chicago, and Purdue
University) for different (normalized) numbers of processors. Both
versions show good speedup, with the three-site performance being
comparable to that obtained using a single site.

SEPTEMBER/OCTOBER 2009 51

Sky Computing

7. K. Keahey and T. Freeman, “Contextualization: Provid-

ing One-Click Virtual Clusters,” Proc. 4th IEEE Int’l

Conf. eScience, 2008, IEEE CS Press, 2008, pp. 301–308.

Katarzyna Keahey is a scientist in the Distributed Sys-

tems Lab at Argonne National Laboratory and a fel-

low at the Computation Institute at the University of

Chicago. Her research interests focus on virtualization,

policy-driven resource management, and the design

and development of cloud computing infrastructure

and tools. Keahey created and leads the open source

Nimbus project, which provides an infrastructure-as-

a-service cloud computing platform as well as other

virtualization tools supporting a science-driven cloud

ecosystem. Contact her at keahey@mcs.anl.gov.

Maurício Tsugawa is a PhD candidate at the University of

 Florida. His research interests include computer net-

works, distributed computing, computer architec-

ture, and virtualization technologies. Contact him at

 tsugawa@ufl.edu.

Andréa Matsunaga is a PhD candidate at the University

of Florida. Her research interests are in the areas of

distributed computing, information management, vir-

tualization, and resource management. Contact her at

ammatsun@ufl.edu.

José A.B. Fortes is a professor and BellSouth Eminent

Scholar at the University of Florida. His research

interests are in the areas of distributed computing,

autonomic computing, computer architecture, par-

allel processing, and fault-tolerant computing. He’s

the director of the US National Science Foundation

Industry- University Cooperative Research Center for

Autonomic Computing. Contact him at fortes@ufl.edu.

www.computer.org/annals/computing-lives
COMPUTING LIVES

The “Computing Lives” Podcast series of selected articles from the IEEE Annals of the History
of Computing cover the breadth of computer history. This series features scholarly accounts
by leading computer scientists and historians, as well as � rsthand stories by computer pioneers.

