
Optimization Strategies for A/B Testing on HADOOP

Andrii Cherniak
University of Pittsburgh

135 N Bellefield ave
Pittsburgh, PA 15260

aic3@pitt.edu

Huma Zaidi
eBay Inc.

2065 Hamilton ave.
San Jose, CA 95125
hzaidi@ebay.com

Vladimir Zadorozhny
University of Pittsburgh

135 N Bellefield ave
Pittsburgh, PA 15260

vladimir@sis.pitt.edu

ABSTRACT
In this work, we present a set of techniques that considerably
improve the performance of executing concurrent MapRe-
duce jobs. Our proposed solution relies on proper resource
allocation for concurrent Hive jobs based on data depen-
dency, inter-query optimization and modeling of Hadoop
cluster load. To the best of our knowledge, this is the
first work towards Hive/MapReduce job optimization which
takes Hadoop cluster load into consideration.

We perform an experimental study that demonstrates 233%
reduction in execution time for concurrent vs sequential ex-
ecution schema. We report up to 40% extra reduction in
execution time for concurrent job execution after resource
usage optimization.

The results reported in this paper were obtained in a pi-
lot project to assess the feasibility of migrating A/B testing
from Teradata + SAS analytics infrastructure to Hadoop.
This work was performed on eBay production Hadoop clus-
ter.

1. INTRODUCTION
Big Data challenges involve various aspects of large-scale

data utilization. Addressing this challenge requires advanced
methods and tools to capture, manage, and process the data
within a tolerable time interval. This challenge is trifold: it
involves data volume increase, accelerated growth rate, and
increase in data diversity [23]. Ability to perform efficient
big data analysis is crucial for successful operations of large
enterprises.

A common way to deal with big data analytics is to set
up a pipeline of a high-performance data warehouse (e.g.,
Teradata [12] or Vertica [13]), an efficient analytics engine
(e.g., SAS [9] or SPSS [7]) and an advanced visualization
tool (e.g., MicroStrategy [8] or Tableau [11]). However, the
cost of such infrastructure may be considerable [14].

Meanwhile, not every data analytics task is time-critical
or requires the full functionality of a high-performance data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

analysis infrastructure. Often for non-time-critical applica-
tions, it makes sense to use other computational architec-
tures, such as Hadoop/MapReduce. One might name Ama-
zon[1], Google[33], Yahoo[15], Netflix[28], Facebook[35], Twit-
ter[24], which use MapReduce computing paradigm for big
data analytics and large-scale machine learning.

A/B testing [22] is a mantra at eBay to verify the perfor-
mance of each new feature introduced on the web site. We
may need to run hundreds of concurrent A/B tests analyzing
billions of records in each test. Since A/B tests are typically
scheduled on a weekly basis and are not required to provide
results in real-time, they are good candidates for migration
from the expensive conventional platform to a more afford-
able architecture, such as Hadoop [4]. This approach avoids
the need for continuous extension of expensive analytics in-
frastructure. While providing less expensive computational
resources, a corporate Hadoop cluster has impressive, but
still finite computational capabilities. The total amount of
the resources in the cluster is fixed once the cluster setup
is complete. Each job submitted to a Hadoop cluster needs
to be optimized to be able to effectively use those limited
resources. One way is to use as many resources as possible
in the expectation to decrease the time for execution of a
job. However, hundreds of A/B tests need to be run con-
currently, and Hadoop resources need to be shared between
those jobs. Even a single A/B test may require as many as
10-20 MapReduce jobs to be executed at once. Each of these
jobs may need to process terabytes of data, and thus even a
single A/B test can introduce substantial cluster load. Some
jobs may be dependent on other jobs. Thus for optimization
purposes, we need to consider all jobs which belong to the
same A/B test as a whole, not as independent processes.
In addition, each job has to co-exist with other jobs on the
cluster and not compete for unnecessary resources.

The results reported in this paper were obtained in a pi-
lot project to assess the feasibility of migrating A/B testing
from Teradata + SAS analytics infrastructure to Hadoop.
Preliminary work was conducted at eBay in the Fall 2011.
A month-long A/B test experiment execution and cluster
resource monitoring was completed in the Fall 2012. All our
experiments were executed on Ares Hadoop cluster at eBay,
which in spring 2012 had 1008 nodes, 4000+ CPU cores,
24000 vCPUs, 18 PB disk storage [25]. The cluster uses ca-
pacity scheduler. All our analytics jobs were implemented
using Apache Hive.

While performing data analytics migration, we tried to
answer two questions:

973

0

1

2

3

4
x 10

4

to
ta

l
m

a
p
 s

lo
ts

1.47 1.48 1.49 1.5 1.51 1.52 1.53 1.54

x 10
5

0

500

1000

1500

2000

2500

3000

time, s

jo
b
 m

a
p
 s

lo
ts

Figure 1: A/B test execution monitoring. Top plot: map
slot usage in the entire cluster. Bottom plot: map slot usage
by the A/B test jobs

• how to minimize the execution time of a typical A/B
test on Hadoop;

• how to optimize resource usage for each job thus our
A/B test can co-exist with other tasks;

Consider an example Hive job, repetitively executed on
Hadoop, as shown in Figure 1. We monitored the amount
of resources (here - the number of map slots) used by the
job together with total map slot usage in the entire Hadoop
cluster. The upper plot shows how many map slots were
in use in the entire Hadoop cluster during the experiment.
The bottom plot shows how many map slots our sample
MapReduce job received during the execution. We observe
that when the cluster is becoming busy, MapReduce jobs
have difficulty accessing desired amount of resources. There
are three major contributions we provided in this paper.

1. we provide empirical evidence that each MapReduce
job execution is impacted with the load on the Hadoop
cluster, and this load has to be taken into consideration
for job optimization purposes

2. based on our observations, we propose a probabilistic
extension for MapReduce cost model

3. we provide an algorithm for optimization of concur-
rent Hive/MapReduce jobs using this probabilistic cost
model

Our paper is organized as follows. We start with providing
some background on performance of Teradata data ware-
house infrastructure and Hadoop in Section 2. We continue
by presenting updated MapReduce cost model in Section 3.
Then finally we apply this cost model to optimize a real A/B
test running on a production Hadoop cluster and report the
results in Section 4.

2. BACKGROUND
Dealing with big data analysis requires an understanding

of the underlying information infrastructure. This is cru-
cial for proper assessment of the performance of analytical
processing. In this section, we start with an overview of
Hadoop, - a general-purpose framework for data-intensive
distributed applications. We also discuss the existing meth-
ods for data analytics optimization on Hadoop.

H
D

FS

1 2

1

2

3

4

buffer
memory

input
split

H
D

FS

spills merged
spills

ot
he

r
m

ap
pe

rs

input
split

map 2

input
split

map 1 reduce 1

reduce 2

mergeshuffle

Figure 2: MapReduce execution schema

Apache Hadoop is a general-purpose framework for dis-
tributed processing of large data sets across clusters of com-
puters using a simple programming model. It is designed
to scale up from a single server to thousands of machines,
each offering local computation and storage. Hadoop pro-
vides the tools for distributed data storage (HDFS: Hadoop
distributed file system [29]) and data processing (MapRe-
duce). Each task submitted to a Hadoop cluster is executed
in the form of a MapReduce job [16], as shown in Figure 2.
JobTracker [4] is the service within Hadoop that farms out
MapReduce tasks to specific nodes in the cluster. The Job-
Tracker submits the work to the chosen TaskTracker nodes.
TaskTracker is a node in the cluster that accepts tasks -
Map, Reduce and Shuffle operations - from a JobTracker. A
TaskTracker is configured with a set of slots (map and re-
duce), which indicate the number of tasks that it can accept
[41] at a time. It is up to the scheduler to distribute those
resources between MapReduce jobs.

There are several ways to write MapReduce jobs. The
most straight-forward one is to write a Java program us-
ing MapReduce API. While this method provides the high-
est data manipulation flexibility, it is the most difficult and
error-prone. Other tools, such as functional languages
(Scala [10]), data processing workflow (Cascading [6]),
and data analysis languages (Pig [3], Hive [35]) help to
cover the underlying details of MapReduce programming,
which can speed up development and eliminate typical er-
rors. Apache Hive was chosen as a tool for these experi-
ments because of its similarity with SQL, and to eliminate
the need for low-level programming of MapReduce jobs.

2.1 MapReduce data flow
Every MapReduce job takes a set of files on HDFS as its

input and, by default, generates another set of files as the
output. Hadoop framework divides the input to a MapRe-
duce job into fixed-size pieces called splits. Hadoop creates
one map task for each split [5]. Hadoop takes care of schedul-
ing, monitoring and rescheduling MapReduce jobs. It will
try to execute map processes as close as possible [29] to the
data nodes, which hold the data blocks for the input files.
We cannot explicitly control the number of map tasks [5].
The actual number of map tasks will be proportional to the
number of HDFS blocks of the input files. It is up to the
scheduler to determine how many map and reduce slots are
needed for each job.

2.1.1 Capacity scheduler
Our Hadoop cluster was configured to use capacity sched-

uler [2]. The whole cluster was divided into a set of queues
with their configured map and reduce slots capacities. Hard
capacity limits specify the minimum number of slots each

974

queue will provide to the jobs. Soft limits specify how much
extra capacity this queue can take from the cluster provided
so that the cluster resources are under-utilized. When the
cluster gets fully loaded, those extra resources will be re-
claimed for the appropriate queues. In Figure 1, we ob-
serve the effect of this reclamation: when the total load on
the cluster reached its maximum: MapReduce jobs in our
queue were not able to obtain as many resources as they had
before. A similar effect happens when we submit yet another
job to a queue: each job from that queue will receive less
resources compared to what they had before.

2.2 Current approaches for Hadoop / MapRe-
duce optimization

We can group existing efforts in MapReduce jobs opti-
mization into the following categories: scheduler efficiency,
Hadoop and MapReduce (MR) system parameters opti-
mization, and MR execution modeling.

2.2.1 Hadoop scheduler optimization
The default Hadoop scheduler is FIFO [41]. However,

this may not be the best scheduler for certain tasks. The
existing work in scheduling optimization addresses some of
the most typical issues with execution optimization of MR
jobs. One sample issue is resource sharing between MR jobs
(Capacity scheduler [2], Fair Scheduler [45]), so one job does
not suppress the execution of other jobs or does not occupy
too many of the resources. [27] provides a summary of some
of the existing schedulers for Hadoop. Here we provide a
summary of the existing approaches to improve scheduling
for Hadoop and how their optimization is applicable to our
task of A/B testing.

Resource-aware scheduler [44] suggests using fine-granularity
scheduling through monitoring resources usage (CPU, disk,
or network) by each MR job. Delay scheduling [46] is trying
to address the issue of data locality for MR job execution.
Coupling Scheduler [31] approach is aimed at reducing the
burstiness of MR jobs by gradually launching Reduce tasks
as the data from the map part of a MR job becomes avail-
able. These schedulers treat each MR job as completely
independent of one another, which is not true for our case.
In addition, these schedulers say nothing about how to re-
distribute Hadoop resources between multiple concurrent
MR jobs.

[38] introduced the ”earliest-deadline-first” approach for
scheduling MR jobs. The proposed approach (SLO-based
scheduler) provides sufficient resources to a process, thus, it
can be finished by the specified deadline. The authors re-
port in the paper that when the cluster runs out of resources,
then the scheduler cannot provide any guarantees regardless
of process execution time. This happens because SLO-based
scheduler is backed by FIFO scheduler [47]. Thus, first, we
still need to perform off-line calculations about the opti-
mal timing for each MR task. [38] says nothing about how
to undertake this optimization, when there are many inter-
dependent MR jobs, each of which is big enough to use all
of the cluster resources available. Second, this approach is
based on FIFO scheduler, therefore it provides the capability
to control resources for each process, but this is not avail-
able for capacity scheduler which is running on our Hadoop
cluster. And third, this approach does not consider the back-
ground Hadoop load caused by other processes, which can
be launched at any arbitrary time.

[37] considers optimization of a group of independent con-
current MR jobs, using FIFO scheduler with no background
MR jobs running (from other users) on the cluster. We use
capacity scheduler instead of FIFO scheduler on our cluster,
and we cannot explicitly control resources assignment for
each MR job. Typically A/B testing jobs show strong de-
pendency between each other, and this dependence impacts
the performance.

[42] presented a scheduler which tries to optimize multiple
independent MR jobs with given priorities. It functions by
providing requested amount of resources for jobs with higher
priority, and redistributes the remaining ”slack” resources to
jobs with lower priorities. [42] provides batch optimization
for a set of MR jobs where each job is assigned its priority.
This is not true for our case: other users submit their jobs
whenever they want and can take a significant portion of the
available resources. Thus, the approach has to take on-line
load into consideration.

2.2.2 Hadoop/MapReduce system parameter optimiza-
tion

There were several approaches to model Hadoop perfor-
mance with different levels of granularity. For instance, [40]
considers a detailed simulation of the Hadoop cluster func-
tionality. It requires the definition of a large number of
system parameters; many of them may be not available to
a data analyst. Similarly, [19] is based on quite detailed
knowledge of the cluster set up. [21] and [20] approaches
relax the need for up-front knowledge of your cluster system
parameters and provide a visual approach to investigate bot-
tlenecks in system performance and to tune the parameters.

While these approaches address very important issues of
MR job and Hadoop cluster parameter tuning, they do not
address a more subtle issue: concurrent job optimization for
a cluster which is shared between many users, executing all
sorts of MapReduce jobs. These approaches do not consider
how to adjust Hadoop/MR parameters so that many MR
jobs can effectively co-exist.

2.2.3 MapReduce cost model
While MR job profiling [20] can help to optimize a single

job, it is much more practical to have a simplified genera-
tive model which would establish the relationship between
the MR job execution time, the size of the input dataset and
the amount of resources which a MR job receives. Thus, we
can calibrate this model once by executing a few sample
MR jobs, measure their execution time, and use the ob-
tained model for a quick approximate prediction of a MR
job completion time.

[37], [36], [39], [43], [19], [40] attempt to derive an an-
alytical cost model to approximate MR execution timing.
Each of these approaches specifies an elementary cost model
for data processing steps in MR and then combine elemen-
tary cost estimates in an overall performance assessment.
It is interesting to mention, that different approaches have
differences even with this simplified model. For instance,
[39] and [37] do not account for sorting-associated costs and
the overhead required to launch map and reduce jobs as in
[36]. These differences are associated with the fact that MR
framework can launch in-memory or external sorting [41].
And thus, cost models obtained for different sizes of the
data set will differ.

975

The Hadoop/MR framework has a substantial number of
tuning parameters. Tuning some of those parameters may
have a dramatic influence on the job performance, while
tuning others may have a less significant effect. Moreover,
some of the tuning may have a non-deterministic impact, if
we optimize the usage of a shared resource. For instance,
assume that after the job profiling from [21] we decided to
increase the sort buffer size for a MR job. Let us do the same
for every MR job. If, after this buffer tuning, we launch too
many MR jobs at once, some nodes may run out of RAM
and will start using the disk space for swapping to provide
the requested buffer size. Thus, from time to time, instead
of speeding up, we will slow down concurrent job execution.
This non-deterministic collective behavior has to be reflected
in the cost model.

We based our cost model on the approaches proposed in
[36] and [43], to reflect the deterministic characteristics of
MR execution. We extend those models by adding the prob-
abilistic component of MR execution. In Section 3, we
elaborate on the MapReduce cost model and describe how
we use it to estimate our Hadoop cluster performance.

2.2.4 Applicability limits of the existing solutions to-
wards large-scale analytics tasks

While the Hadoop community has made great strides to-
wards Hadoop/MR optimization, those results are not ex-
actly plug-and-play for our A/B testing problem. Our pro-
duction cluster has capacity scheduler running and we can-
not change that. Approaches assuming any other scheduler
cannot be directly applied here. We cannot explicitly con-
trol the amount of resources for each MR job, because ca-
pacity scheduler controls resource sharing dynamically. We
can only explicitly set the number of reduce tasks for a MR
job. Our results were obtained for Hive using speculative
execution model[41], thus Hadoop can launch more reduce
tasks than we specified. Production analytics jobs need to
be executed on a real cluster which is shared between many
people who submit their jobs at arbitrary times. Thus, any
optimization strategy disregarding this external random fac-
tor is not directly applicable.

3. UPDATED MAP-REDUCE COST MODEL

3.1 Concurrent MapReduce optimization
Let us assume that we submit MapReduce jobs to a Hadoop

cluster with a queue Q, which has limits: M - max. number
of map slots and R - max. number of reduce slots. At first,
let us have 2 independent MapReduce jobs (colored in red
and blue). We will look at different scenarios for those jobs
to execute. If we submit them sequentially, as shown in Fig-
ure 3a, then the cluster resources will remain idle for much
of the time. When the map part for the red job is over, map
slots will remain idle while Hadoop is processing the reduce
part for the job. From 3a:t11 to 3a:t1 map slots are idle.

The most obvious solution to improve resource utilization
is to monitor the progress of running jobs and launch new
jobs when the cluster is idle. Figure 3b demonstrates this
principle. At time 3b:t11, when the map part of the red
job is complete, the blue job gets launched. Thus, from
3b:t11 to 3b:t1 the Hadoop cluster has its map and reduce
slots utilized. This schedule will reduce the total execution
time: 3b:t2 < 3a:t2, as shown in [48]. In [38], they report a
map slot utilization diagram when running a simulation for

m
a

p
re

d
u

c
e

t1 t2

M

R
t11 t21

(a) Completely sequential
schedule

m
ap

re
d
u
ce

t1 t2

M

R
t11 t21

(b) Interleaving schedule

m
a

p
re

d
u

c
e

t1 t2

M

R
t21t11

(c) Concurrent schedule for
independent jobs

A B C

D

(d) Concurrent schedule for
jobs with dependencies

Figure 3: Examples of execution schedule for MapReduce
jobs

MapReduce job execution. Map task execution may have
long tails where most of the tasks have been completed,
however the whole job is waiting for the last few map tasks.
This situation is a variation of resource starvation problem
[32].

Another possible improvement to the scheduling scenario
shown in Figure 3c, is when we submit all independent
jobs simultaneously. This approach will maximize map and
reduce slot usage. However, if some of the jobs are interde-
pendent, this approach may lead to a very interesting prob-
lem.

Consider an example scenario from Figure 3d. Here, task
D consumes the output from tasks B and C. Task A is com-
pletely independent of tasks B,C, and D. The optimization
in this scenario is difficult because it depends on all 4 tasks
and how many resources provided by Hadoop. In a typical
setup for an A/B test, each of those four tasks is big
enough that, on its own, it can occupy all map and
reduce slots in the queue. If we apply the optimization
logic from Figure 3c, then task A will consume a portion of
the map and reduce slots, thus tasks B and C will take longer
to finish their work and task D will start (and finish) later.
If task A is relatively quick, then we would want to imple-
ment optimization from Figure 3b when task A launches
its map jobs after tasks B and C finished their map part
and then execute the reducer jobs. If task A is relatively
long, then we would like to use a scheduling scenario from
Figure 3c when task A is launched together with B and C,
but receives a lower priority and uses only spare map slots
and does not slow down B and C. There are many possible
scenarios in this 4-task problem, and the solution to those
are often non-trivial. We need to consider that:

1. other users submit their MapReduce jobs to the cluster
and each job which we submit receives less resources
than it is asking for

2. there is no way to explicitly control the amount of re-
sources for each MapReduce job when using Capacity
Scheduler

Launching concurrent MapReduce jobs helps to utilize
Hadoop resources more effectively. Yet each of those jobs

976

0

500

1000

1500

2000

2500

3000

m
ap

 s
lo

ts

1.4 1.6 1.8 2 2.2 2.4 2.6
x 104time,s

Figure 4: Upper plot: Map slots’ usage for MR jobs. Lower
plot: indicates boundaries for each MR job

may influence other jobs running on the cluster. The sce-
nario presented in Figure 3d is a very typical one for an-
alytics jobs. Thus resource optimization needs to consider
influence from other jobs. In the following subsection we
will address this issue.

3.2 Cost model based on probabilistic resource
allocation

Assume that we have a MR job, which takes M blocks
of data as its input and a user specified R reduce tasks to
be executed. We have m slots available to run map tasks
and r slots to run reduce tasks. Using the notation from
[36], to complete the map phase we need dM

m
e rounds to

process it, since in one cycle Hadoop can execute onlymmap
tasks. Following the same reasoning, it takes dR

r
e cycles to

complete the reduce part and the total MR execution time
becomes Equation 1:

T = dM
m
eFm + dR

r
eFr + Θ(M,R) (1)

where Fm is the time required for one map task to complete,
Fr is the time required for one reduce task to complete, and
Θ(M,R) -is the cost associated with the overhead of launch-
ing map and reduce tasks. We are interested in processing
a significant amount of data, thus M >> m. For practical
purposes, we can replace

dM
m
e ≈ M

m
(2)

Figure 4 shows how many map slots were assigned to the
same MR job over time when it was recursively executed.
During a MR job execution, resource usage is not constant
and depends on how many resources are available. Thus, we
should replace parameter m with its effective value, shown
in Equation 3

dM
m
e ≈ M

1
N

∑
mi∈m+

mi

=
M

Im
; ||m+|| = N (3)

where m+ is a set of measurements during a single MR job
when map slot usage by this MR job was > 0. Similar
reasoning goes for dR

r
e. Consider Figure 5 which shows

a part of the experiment on reduce slots’ usage. In this
experiment, we sequentially executed the same Hive job,
asking for different numbers of reduce tasks to be executed:

1.4 1.6 1.8 2 2.2 2.4 2.6
x 104

0

200

400

600

800

1000

1200

time,s

re
du

ce
 s

lo
ts

observed
expected

Figure 5: Reduce slots’ usage as a function of Hadoop cluster
load and speculative execution

[50, 100, 200, 300, 500, 700, 900]. The red line on
Figure 5 shows the number of reducers we would expect
to be executed for the job. The black line shows the actual
number of reducers which were executed. We see that the
number of reducers is not constant: it changes during the
reduce part. One of the reasons is that the cluster may be
busy during the job execution and some of the reducers will
be reclaimed back to the pool.

We observe examples when we aimed to use 900 reducers
but received only about 100. It also happens that Hadoop
launches more reduce tasks than we asked for. This happens
because Hadoop detects that some of the reducers made
less progress than the majority, and launches copies of slow
running reducers.

Based on this reasoning, we transform dR
r
e into Equation

4. Here the denominator is the area under the reduce slots
usage curve. To eliminate counting of extra reducers (from
speculative execution), we limit the maximum number of
reduce slots to R. For example, if we requested 300 slots but
at some point we got 350 slots, we would count only 300.

dR
r
e ≈ R

1
N

∑
ri∈r+

min(ri, R)
=
R

Ir
; ||r+|| = N (4)

where r+ is a set of measurements during a single MR job
where reduce slot usage by this MR job was > 0. Combining
Equations 1,2, and 4, we obtain Equation 5

T = β0 + β1
M

Im
+

+
R

Ir

(
β2
kM

R
+ β3

kM

R
log(

kM

R
)

)
+ β4M + β5R (5)

In Equation 5 β0 is only a constant; β1Mm is the time re-
quired to read the MR job input; kM is the size of the output
of the map part of the MR job, k ≥ 0; β2

kM
R

is the time

needed to copy the data by each reducer; β3
kM
R
log(kM

R
) is

the time required to merge-sort data in each reducer; β4M+
β5R is the cost associated with the overhead of launching
map and reduce tasks, as suggested in [36]. However, from
the dynamics of map and reduce tasks shown in Figure 4
and Figure 5, it is not clear which number should be put in
the calculation. We will assume that this extra cost is rel-
atively small compared to the timing caused by the actual

977

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

map slots

C
D

F

50
100
200
300
500
700
900

Figure 6: CDF plot for map slots’ allocation to a MR job
as a function of requested reducers

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reduce slots

C
D

F

50
100
200
300
500
700
900

Figure 7: CDF plot for reduce slots’ allocation to a MR job
as a function of requested reducers

data processing, and will omit this overhead part, like, for
instance, in [38]. We obtain Equation 6.

T = β0 + β1
M

Im
+ β2

kM

Ir
+ β3

kM

Ir
log(

kM

R
) (6)

3.3 Probabilistic resource allocation
Job completion time in Equation 6 depends on how

many resources a MR will receive. We conducted 150 it-
erations of the same cycle of MR jobs, each cycle consists
of 7 sequential MR jobs, asking for [50, 100, 200, 300,
500, 700, 900] reducers, totaling in 1050 jobs execution
and 9-day duration.

Resource allocation for MR jobs are shown in: Figure 6
for map slots allocation and Figure 7 for reduce slots al-
location. From Figure 6, we observe that in probability,
each MR job received the same number of map slots. This
happens because we cannot explicitly control map slot as-
signment and must rely on the scheduler to obtain resources.
The situation is completely different with the reduce slots:
we can explicitly ask for a specific amount of the resources.
However, even if we ask for more slots, it does not mean
that we will receive them. If we ask for fewer resources,
most likely the scheduler will be able to provide those to a
MR job. In Figure 7, when we ask for 50 reduce slots, in
90% of cases we will receive those 50 slots. However, when
we ask for 900 reducers, in 90% of cases we will receive less
than 550 reducers. From Equation 6, the volatility of the

100 200 300 400 500 600 700 800 900

400

600

800

1000

1200

1400

1600

1800

requested reducers

tim
e,

 s

avg time
lower boud
upper bound

Figure 8: MapReduce job completion time as a function
of requested reduce slots: (average time, upper and lower
bounds for 95% interval)

MR job completion time will increase when we ask for more
reduce slots.

Figure 8 provides another perspective on the volatility of
the MR execution. We have plotted the average completion
time of a MR job as a function of the number of requested
reduce slots together with 95% interval of the observed mea-
surements. We observe that for jobs requesting 300 reducers
or more, the average completion time remains almost con-
stant. However the 95% upper bound of the execution time
is increasing. This time increase is connected to the dynamic
nature of Hadoop cluster load: some of the nodes which ex-
ecute our MR job reduce tasks may arbitrarily receive extra
load (other users submit their MR jobs). Speculative execu-
tion [41] was introduced to Hadoop to mitigate this problem,
however it does not solve the issue completely. The higher
the number of the reducers requested, the higher the chances
are that at least one reducer will get stuck on a busy node.
To reflect this effect we propose to alter the MapReduce cost
model for Equation 6 into Equation 7.

T = β0+β1
M

Im
+

(
β2
kM

Ir
+ β3

kM

Ir
log(

kM

R
)

)
∗(1 +DR(R))

(7)
where DR(R) is probabilistic extra delay, associated with

the chance that a reducer gets stuck on a busy node. For
each R, DR(R) is a set, containing pairs (delay, p) - shows
possible extra delay together with the probability to observe
this extra delay. At first, we assume that DR(R) = 0 and
obtain the coefficients β for Equation 7. Then we add
[70..95] interval of all measurements and learn that DR(R).

3.4 Functional dependencies for resource al-
location

Figure 9 shows how map resources were assigned to a
local queue as a function of the total cluster map slot usage.
We observe that the distribution of the measurements does
not change significantly until the total cluster load reaches
approximately 3∗104 map slots. Below that threshold, queue
load and total cluster load seem to be uncorrelated, e.g.:
p(Q|HC) = p(Q), where p(Q) is the probability to observe
certain queue load, and p(HC) is the probability to observe
certain total Hadoop cluster load. When the cluster load
becomes higher than 3 ∗ 104 in Figure 9, we can clearly
see that the total cluster load influences the number of slots
which a queue will get: Q← HC, and p(Q|HC) 6= p(Q).

Obviously, the amount of the resources which a MR job
obtains depends on how many resources in a queue are used

978

to
ta

l c
lu

st
er

 lo
ad

0.5

1

1.5

2

2.5

3

3.5

x 104

queue load
500 1000 1500 2000 2500 3000 3500

Figure 9: Map slot usage in a queue as a function of total
cluster load

to
ta

l c
lu

st
er

 lo
ad

1000

2000

3000

4000

5000

6000

7000

8000

9000

queue load
100 200 300 400 500 600 700 800 900

(a) here 50 reducers were re-
quested

to
ta

l c
lu

st
er

 lo
ad

2000

4000

6000

8000

10000

12000

queue load
200 400 600 800 1000

(b) here 900 reducers were re-
quested

Figure 10: Reduce slot usage in a queue as a function of
total cluster load and number of requested reducers

by other jobs, and whether map slots can be borrowed from
the rest of the cluster. If we denote rJ to be the amount of
resources for a job J, then rj ← HC,Q. For given values
of hci - particular Hadoop load, and qi - particular queue
resource usage, p(rJ) = p(rJ |qi, hci).

Figure 9 is intrinsically 3D, where the 3rd dimension -
the number of map slots which a MR job obtained, is col-
lapsed. Hadoop load analysis provides us with (Hadoop
load, queue load, MR resources) tuples, which allow
us to build a probabilistic model to describe how many re-
sources we would receive given what we know about the
total cluster load and other jobs in the queue, as shown in
Equation 8.

p(rJ) =
∑

hci∈HC

∑
qi∈Q

p(rJ |qi, hci) ∗ p(qi|hci) ∗ p(hci) (8)

Figure 10a and Figure 10b show how reduce resources
are being distributed in a queue as a function of the total re-
duce usage in a cluster. What we conclude is that the nature
of the distribution changes depending how many reducers
we are seeking. We can derive Equation 9 for probabilistic
reduce resource allocation, similar to Equation 8:

p(rJ , R) =
∑

hci∈HC

∑
qi∈Q

p(rJ |qi, hci, R) ∗ p(qi|hci, R) ∗ p(hci)

(9)
where parameter R - specifies how many reducers we actu-
ally asked for.

C	

D	
E	

ΔtD	

ΔtE	

ΔtC	

T=0	

T=t	

T=t+Δt	

Figure 11: Resources sensitivity explained

3.5 Applying stochastic optimization for con-
current MapReduce jobs

Before we proceed to the algorithm description, we need
to introduce the notion of resource sensitivity for a MR job.
Assume that our task consists of a few MR jobs with certain
data dependencies between them, e.g. Figure 11. Resource
sensitivity shows how the task execution time changes if we
reduce the amount of resources for a particular job J. From
the example in Figure 11: the task starts at T = 0 and
finishes at T = t. Now lets assume that we decrease the
number of map or reduce slots for a particular job J on
∆R, which may lead to the increase of the task execution
time from T = t to T = t + ∆t. We use Equation 7 to
predict a job completion time. Task resource sensitivity for
a particular job J is shown in Equation 10.

RS(J) =
∆t

∆R
(10)

In the example shown in Figure 11, RS(D) = RS(E) = 0
because the increase in the execution time for jobs D and
E does not influence the total timing: job C finishes its
execution later than jobs D and E (even after we reduce the
amount of resources for jobs D and E). However RS(C) > 0,
because job C finishes its execution last, and any resource
reduction to job C increases the task total execution time.

The central idea for our stochastic optimization is to find
those MR jobs, in which results are needed much later during
the A/B test execution and which require fewer resources
or can be assigned a lower execution priority. In capacity
scheduler we cannot explicitly control map slot assignment
to a job. However, when we set a lower priority to a MR
job, we force this job to use map and reduce slots only when
they are not used by other processes in the same queue from
the same user. When there are many users submitting their
jobs to a queue, capacity scheduler provides a share of a
queue resources to each user. Thus, even the lowest priority
Hive job will obtain a portion of the resources. All these
considerations help us to derive Algorithm 1 for MR job
optimization strategies.

4. CASE STUDY: MIGRATING A/B TEST
FROM TERADATA TO HADOOP

In this paper, we focus on one particular example of Big
Data analytics: large-scale A/B testing. We performed an
A/B test for eBay Shopping Cart dataset. An outline of the
test is shown in Table 1. Originally this test was executed
using both Teradata and SAS. Teradata would pre-process
data and send the result to a SAS server, which would final-
ize the computations. We start with an overview of Teradata
- a high-performance data warehousing infrastructure, and
then move to the discussion of the A/B test schema.

979

Algorithm 1: Stochastic optimization for A/B test

input : MR job dependence list; MR job data size;
MR performance model Equation 7; Hadoop
load model Equation 8, 9

output: reducer allocation per MR job in the task,
priorities for each MR job

begin
1: obtain pairs (Resourcesi; pi) - amount of the
resources for the task with the probability to obtain
those resources, using Equation 8, 9
2: using Resourcesi, instantiate each MR job with
map and reduce resources, proportionally to the job
input data size
repeat

repeat
1: compute reducer resources sensitivity
using Equation 10
2: add ∆R of reducers to those jobs, which
can help to decrease the task execution time
if total timing does not increase then

1: decrease the # of reducers on ∆R for
those jobs with the lowest reducer
resources sensitivity
2: use Equation 7 to compute task
total timing

end

until no improvement ;
foreach job in the test do

1: using Equation 10, compute map
resources sensitivity, as if the job was
assigned lower priority

end
1: choose the job J with the lowest map
resources sensitivity
2: assume that job J to be set lower priority;
recalculate map and reduce slot assignment to
other MR jobs and total timing using Equation
7
if total timing did not increase then

1: assign lower priority to job J
2: recalculate map and reduce slot
assignment to other MR jobs

end

until no improvement ;
1: repeat for each pair (Resourcesi, pi)
2: report resources assignment for each job as the
expectation of the resources assignment

end

4.1 Teradata
Teradata [12] is an example of a shared-nothing [30] mas-

sive parallel processing (MPP) relational database manage-
ment system (RDBMS) [34], [26]. A simplified view of its
architecture is shown in Figure 12. The key architecture
components of Teradata are: PE - parsing engine; AMP
- Access Module Processor; BYNET - communication be-
tween VPROCs.

AMP and PE are VPROCs - virtual processors, self-contained
instances of the processor software. They are the basic units
of parallelism [18]. VROCs run as multi-threaded processes
to enable Teradata’s parallel execution of tasks without us-

procedure equivalent SQL query engine

extraction A = t1 1 · · · 1 t5
Tera-
data

pruning A1 = select A.c1, . . . where . . .
aggregation A2 = select stddev(A1.c1), . . .

group by . . .
capping Update A1 set A1.c1 =

SAS
= min(A1.c1, k ∗A2.stdc1), . . .

aggregation A3 = select stddev(A1.c1), . . .
group by . . .

lifs, CIs computed using SAS

Table 1: A/B test schema

table Original number Number of tuples
of tuples after pruning

t1 9,125 48
t2 429,926 215,000
t3 2,152,362,400 533,812,569
t4 4,580,836,258 263,214,093
t5 6,934,101,343 3,250,605,119

Table 2: Data set size

ing specialized physical processors. They are labeled as
”Virtual Processors” because they perform the similar pro-
cessing functions as physical processors (CPU). In Teradata
architecture, each parallel unit (AMP) owns and manages
its own portion of the database [26], [17]. Tuples are hash-
partitioned and evenly distributed between AMPs. And the
workload for joining, aggregates calculation and sorting can
be achieved in a way that the load redistributes equally be-
tween AMPs. As with any RDBMS, Teradata uses indexing
[34] on tables, which allows speeding up data access.

4.2 Test schema
While select, join and aggregate computations are the rou-

tine RDBMS operations, the real challenge is the size of data
in tables t1, . . . t5, which is shown in Table 2 as the original
number of tuples. In our sample A/B test, all the heavy data
processing was executed on Teradata, and a much smaller
data set would be sent to SAS. Thus, it is more important to
compare the Teradata part of the A/B test with its Hadoop
equivalent.

The Teradata part of the A/B test from Table 1 can
be translated 1-to-1 into Hive queries. The SAS part of the

A
M

P
1

A
M

P
2

A
M

P
3

P
E

AMP1
AMP2
AMP3

A
M

P
4

A
M

P
5

A
M

P
6

P
E

AMP4
AMP5
AMP6

VPROCS VPROCS

BYNET

Figure 12: Teradata

980

B	 A	 C	

G	

F	

D	 E	

I	

J	

H	

K	

(a) scenario 1

B	 A	 C	

G	

F	

D	 E	 L	

(b) scenario 2

Figure 13: A/B test scenarios:

A = t4 1 σ(t1) B = σ(t5) C = σ(t2) D = σt3.c=v3(t3)
E = σt3.c 6=v3(t3)

F = A 1 B, G = F 1 C, H = G 1 D, I = G 1 E
J = sum(. . .), count(. . .) from H,
K = sum(. . .), count(. . .) from I

Table 3: A/B test data loading: extraction, pruning, and
aggregation

A/B test cannot be translated completely into Hive. We use
PHP scripting language to finalize the computations which
cannot be translated in Hive. However, PHP scripts would
perform only a very small portion of final data assembly.

The schema in Table 1 possesses strong dependencies
between different execution steps. For instance, we cannot
proceed with capping unless we computed the aggregates of
the dataset. Or, we cannot compute lifts and confidence
intervals unless we capped the data.

After data dependency analysis, we transform the Tera-
data part from Table 1 into the diagram, shown in Figure
13a. Letters A through K denote the data processing oper-
ations, as shown in Table 3. So now we can proceed with
the comparison.

4.3 A/B test without explicit resource control
We run sequential and parallel versions of data loading

routines from Table 3 on Hadoop and compare the obtained
results with Teradata timing. In these experiments, we do
not control the amount of resources (number of re-
duce tasks per Hive job). We let Hive to infer this
based on the data size for each job. However, all of the
experiments were performed during the weekends, when the
queue to which we were submitting MR jobs, was completely
free. Each result was averaged over 10 executions.

1 39 1 22 1 39 1320
50 80 50 29 50 80 1740

100 105 100 29 100 105 1740

1 1.591065 3.120574
14 70 50 1.90309 3.240549

100 2.021189 3.240549

14 3.623249

0

20

40

60

80

100

120

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 s

% of data in table t3

0

20

40

60

80

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 m

% of data in table t3

optimized

sequential

Figure 14: Timing for data extraction, pruning, and aggre-
gation on Teradata

In the first experiment, we execute data loading routines
completely sequentially. In the second experiment, we sched-
ule those routines concurrently, preserving the data depen-
dencies between them, as shown in Figure 13a. We launch
jobs A, B, C, D, and E simultaneously, and proceed with
other jobs as the data becomes available.

We conducted experiments with different sizes of table t3
for data loading on both Hadoop and Teradata. Data load
timing for Hadoop is shown in Figure 15, and for Tera-
data is revealed in Figure 14. At first, we observe that
sequential data loading on Hadoop takes approximately 70
minutes (Figure 15) when table t3 contains 14 % of data.
For concurrent Hadoop loading routines, it takes approxi-
mately 20 minutes to execute the routines having 100% of
data in table t3.

For Teradata, it takes only 2 minutes to load the data
having 100% of the size of table t3. However, the slope of
the plot for Teradata in Figure 14 is much steeper than
for Hadoop in Figure 14. When the amount of the data
in table t3 increases, execution time for Teradata increases
almost linearly. The reason is that data selection from the
table happens in the background of running other processes.
Processes D and E in Figure 13a select data from the ta-
ble and their results are required only in later stages of job
execution.

In Figure 16, we compare the total timing to compute an
A/B test using Hadoop only with a combination of Teradata
+ SAS. While Teradata is about 10 times faster than
Hadoop to load the data, Teradata + SAS appears
to be about 5 times slower to compute the whole
A/B test, than to do it on Hadoop.

4.4 Applying stochastic optimization for A/B
test

For this evaluation, we will modify the data loading schema
for the A/B test from Figure 13a into the one shown in
Figure 13b. In this scenario, we added an extra job L
which processes a substantial amount of data, but the re-
sults of which are needed only at the later stages of the A/B
test. We would like to investigate how this extra job impacts
the performance. To be able to use stochastic optimization,
we need the corresponding data sizes for each of these jobs.
Those numbers are shown in Table 4.

When we apply Algorithm 1 to our modified A/B test
as shown in Figure 13b, we note that jobs D, E, and L
receive lower priority of execution. Also job L receives 150
reducer slots instead of 800 slots, originally determined by

1 39 1 22 1 39 1320
50 80 50 29 50 80 1740

100 105 100 29 100 105 1740

1 1.591065 3.120574
14 70 50 1.90309 3.240549

100 2.021189 3.240549

14 3.623249

0

20

40

60

80

100

120

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 s

% of data in table t3

0

20

40

60

80

0 20 40 60 80 100

ex
ec

ut
io

n
ti

m
e,

 m

% of data in table t3

optimized

sequential

Figure 15: Timing for data extraction, pruning, and aggre-
gation on Hadoop

981

Data	 loading	 rou-nes	 	

Total	 A/B	 test	 -ming	 	

0	 50	 100	 150	 200	 250	

hadoop	

teradata+SAS	

!me,	 minutes	

0	 5	 10	 15	 20	 25	

hadoop	

teradata	

!me,	 minutes	

Figure 16: Timing for cart A/B test. top: time comparison
of data loading routines, executed on Hadoop and Teradata;
bottom: time comparison for execution of the whole A/B
test on Hadoop vs Teradata+SAS

Job name Input size (TB) Output size (TB)

A 1.909100 0.002200
B 1.194800 0.201700
C 0.000014 0.000008
D 0.810000 0.004000
E 0.810000 0.006000
F 0.204000 0.002600
G 0.002600 0.002600
L 0.814800 0.002300

Table 4: MapReduce job size

Hive based on the size of the data input

4.5 Stochastic optimization results
Here we use the modified A/B test scenario from Figure

13b. In the first schema, we let Hive determine on its own
about how many resources to provide for each job. In the
second schema, we apply Algorithm 1 to optimize the exe-
cution. The result of this stochastic optimization is shown in
Figure 17a. The un-optimized A/B test was executed 100
times; the optimized version of A/B test was executed 120
times. The first 50 iterations of both the un-optimized and
optimized tests were executed from Saturday night through
Sunday. The remaining iterations were executed from Mon-
day through Tuesday. In this way, we tried to measure the
effect of stochastic optimization for an A/B test on variation
in Hadoop cluster load.

1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

time,s

C
D

F

un−optimized
optimized

(a) Modified A/B test comple-
tion time

400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

C
D

F

time,s

un−optimized
optimized

(b) Job F start time for the
modified A/B test schema

Figure 17: CDF plots for:

0 0.5 1 1.5 2 2.5
x 104

0

10

20

30

40

hadoop map slots usage

op
tim

iz
at

io
n

ef
fe

ct
, %

Figure 18: Optimization effect for a modified A/B test
schema as a function of total Hadoop map slots usage

We observe that the optimized version of data loading
may take take approximately 16% less time to complete the
task execution. Here, we count the optimization effect as
the biggest difference between two cumulative distribution
functions CDF for both optimized and un-optimized re-
sults. We divide this difference on the corresponding timing
for un-optimized schedule. This optimization effect happens
because jobs D, E, and L from Figure 13b do not interfere
with the main execution line. And therefore jobs A, B, F,
and G receive as many resources as available or they pos-
sibly can utilize and speed up the execution. Consider the
result from Figure 17b, which shows how the start time
for job F changes for optimized and un-optimized scenarios.
When jobs D, E, and L do not compete for resources with
jobs A and B, then A and B finish earlier and job F can start
earlier. Meanwhile, jobs D, E, and L obtain their resources
when these are not in use by the higher-priority jobs.

Figure 17a displays a cumulative optimization effect. We
would like to know the effect of this optimization, depend-
ing on the load on a Hadoop cluster, for both map and
reduce slots usage. Figure 18 shows the effect of optimiza-
tion strategies as a function of map slot usage on the entire
Hadoop cluster. Here Hadoop map slot usage was calcu-
lated only during times when the A/B test jobs were us-
ing map slots. The experimental results show the biggest
optimization effect for higher levels of cluster load,
which is a very valuable contribution of this optimization.
The reported value of 2.5∗104 was the highest integral map
slot usage on the cluster during our experiments.

A different optimization effect is observed regarding re-
duce slot usage on the cluster. The improvement is at least
15% for higher reduce loads, but does not have a particu-
lar pattern. The map part of the A/B test is doing most
of the heavy data pre-processing for each MR job, and the
reduce part of a MR job receives a much smaller portion of
the data. Thus, it is more difficult to spot the exact opti-
mization pattern.

5. LESSONS LEARNED
In this paper, we report on optimization strategies which

can be applied to a broad class of analytical tasks on Hadoop.
We developed those strategies based on our experience of mi-
grating large-scale analytical tasks (e.g. A/B testing) from a
traditional data-warehousing infrastructure, like Teradata +
SAS to an open-source Hadoop. Our optimization strategies
benefit from exploring data dependencies within the analyt-
ical jobs, together with the probabilistic model of Hadoop

982

0 1000 2000 3000 4000
5

10

15

20

25

30

hadoop reduce slots usage

op
tim

iz
at

io
n

ef
fe

ct
, %

Figure 19: Optimization effect for a modified A/B test
schema as a function of total Hadoop reduce slots usage

cluster load. The effectiveness of our methods for a group
of independent MapReduce tasks requires further investiga-
tion.

In our experiments, we implemented MapReduce jobs us-
ing Apache Hive. However, the obtained results are portable
to any other implementation language.

In order to apply our strategies, a user must have enough
privileges to perform Hadoop load monitoring to calculate
performance coefficients for Equation 7 and the probabilis-
tic Hadoop cluster load. As an option, those results can be
optioned by the system administrator, and provided upon
request. However, Hadoop load time series are crucial to
derive the optimization strategies.

Our results are obtained for a Hadoop cluster using capac-
ity scheduler. Optimization results provided in this paper
may not be 1-to-1 applicable to those clusters running differ-
ent scheduling mechanisms. While the performance Equa-
tion 7 would remain valid, the validity of the Algorithm
1 is yet to be confirmed for other schedulers.

6. ACKNOWLEDGMENTS
We thank Kiran Patlolla and Jesse Bridgewater from eBay

Inc, Christos Faloutsos from Carnegie Mellon University,
and Martijn de Jongh from the University of Pittsburgh
for valuable feedback on this work. We thank Tony Thrall,
manager of the EDA team at eBay Inc. for permission to
publish the results of this study.

7. REFERENCES
[1] http://aws.amazon.com/elasticmapreduce/.

[2] http://developer.yahoo.com/ blogs/hadoop/posts/
2011/02/capacity-scheduler/.

[3] http://pig.apache.org.

[4] http://wiki.apache.org/hadoop/.

[5] http://wiki.apache.org/hadoop/
HowManyMapsAndReduces.

[6] http://www.cascading.org.

[7] http://www.ibm.com/software/analytics/spss.

[8] http://www.microstrategy.com.

[9] http://www.sas.com.

[10] http://www.scala-lang.org.

[11] http://www.tableausoftware.com.

[12] http://www.teradata.com.

[13] http://www.vertica.com.
[14] Teradata purpose-built platform pricing,

http://www.teradata.com/brochures/teradata-
purpose-built-platform-pricing-eb5496/.

[15] E. Baldeschwieler. Hadoop @ yahoo! - internet scale
data processing. In Cloud Computing Expo, Santa
Clara, CA, USA, Nov 2009.

[16] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[17] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Commun. ACM, 35(6):85–98, June 1992.

[18] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In Proceedings of the 18th International Conference on
Very Large Data Bases, VLDB ’92, pages 27–40, San
Francisco, CA, USA, 1992. Morgan Kaufmann
Publishers Inc.

[19] H. Herodotou. Hadoop performance models. Technical
Report CS-2011-05, Computer Science Department,
Duke University, June 2011.

[20] H. Herodotou and S. Babu. Profiling, what-if analysis,
and cost-based optimization of mapreduce programs.
PVLDB, 4(11):1111–1122, 2011.

[21] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A self-tuning
system for big data analytics. In CIDR, pages
261–272, 2011.

[22] R. Kohavi, R. Longbotham, D. Sommerfield, and
R. M. Henne. Controlled experiments on the web:
survey and practical guide. Data Min. Knowl. Discov.,
18(1):140–181, Feb 2009.

[23] D. Laney. 3d data management: Controlling data
volume, velocity, and variety. Technical report, Meta
Group, 2001.

[24] J. Lin and A. Kolcz. Large-scale machine learning at
twitter. In SIGMOD ’12 Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 793–804, New York, NY, USA, 2012.
ACM.

[25] N. Parikh. Mining large-scale temporal dynamics with
hadoop. In Hadoop Summit, San Jose, CA, Jun 20
2012.

[26] R. Pfeffer. Teradata RDBMS. NCR, Teradata
Division.

[27] B. T. Rao and L. S. S. Reddy. Survey on improved
scheduling in hadoop mapreduce in cloud
environments. CoRR, abs/1207.0780, 2012.

[28] M. Sabah. Hadoop and cloud and netflix: Taming the
social data. In Hadoop Summit, San Jose, CA, June
13-14 2012.

[29] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[30] M. Stonebraker. The case for shared nothing. IEEE
Database Eng. Bull., 9(1):4–9, 1986.

[31] J. Tan, X. Meng, and L. Zhang. Delay tails in
mapreduce scheduling. In SIGMETRICS ’12
Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of
Computer Systems, pages 5–16.

983

[32] J. Tan, X. Meng, and L. Zhang. Delay tails in
mapreduce scheduling delay tails in mapreduce
scheduling. In SIGMETRICS ’12 Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and
Modeling of Computer Systems, pages 5–16. ACM,
2012.

[33] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer.
Overlapping experiment infrastructure: Overlapping
experiment infrastructure: More, better, faster
experimentation. In Proceedings 16th Conference on
Knowledge Discovery and Data Mining,, pages 17–26,
Washington, DC, USA, 2010. ACM.

[34] Teradata. Introduction to Teradata R© RDBMS.
B035-1091-122A. NCR Corporation, Dec 2002.

[35] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive -
a petabyte scale data warehouse using hadoop. In
ICDE, pages 996–1005, 2010.

[36] F. Tian and K. Chen. Towards optimal resource
provisioning for running mapreduce programs in
public clouds. In Proceedings of the 2011 IEEE 4th
International Conference on Cloud Computing,
CLOUD ’11, pages 155–162, Washington, DC, USA,
2011. IEEE Computer Society.

[37] A. Verma, L. Cherkasova, and R. Campbell. Two sides
of a coin: Optimizing the schedule of mapreduce jobs
to minimize their makespan and improve cluster
performance. In Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS), 2012 IEEE 20th International
Symposium on, pages 11–18, 2012.

[38] A. Verma, L. Cherkasova, and R. H. Campbell. Aria:
automatic resource inference and allocation for
mapreduce environments. In ICAC ’11 Proceedings of
the 8th ACM international conference on Autonomic
computing, pages 235–244, New York, NY, USA, 2011.
ACM.

[39] A. Verma, L. Cherkasova, and R. H. Campbell.
Slo-driven right-sizing and resource provisioning of
mapreduce jobs. In Workshop on Large Scale
Distributed Systems and Middleware (LADIS) in
conjunction with VLDB, Seattle, Washington, 09/2011

2011.

[40] G. Wang, A. Butt, P. Pandey, and K. Gupta. A
simulation approach to evaluating design decisions in
mapreduce setups. In MASCOTS, pages 1–11, 2009.

[41] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, 2nd edition, Sep 2010.

[42] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar,
V. Kumar, S. Parekh, K.-L. Wu, and A. Balmin. Flex:
A slot allocation scheduling optimizer for mapreduce
workloads. In I. Gupta and C. Mascolo, editors,
Middleware 2010, LNCS 6452, pages 1–20, 2010.

[43] X. Yang and J. Sun. An analytical performance model
of mapreduce. In Cloud Computing and Intelligence
Systems (CCIS), 2011 IEEE International Conference
on, pages 306–310, 2011.

[44] M. Yong, N. Garegrat, and M. Shiwali. Towards a
resource aware scheduler in hadoop. In ICWS, 2009.

[45] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Job
scheduling for multi-user mapreduce clusters.
Technical Report UCBEECS200955, EECS
Department University of California Berkeley, 2009.

[46] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In EuroSys ’10
Proceedings of the 5th European conference on
Computer systems, pages 265–278, New York, NY,
USA, 2010. ACM.

[47] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Automated profiling and resource management of pig
programs for meeting service level objectives. In
Proceedings of the 9th international conference on
Autonomic computing, pages 53–62, New York, NY,
USA, Sept. 14-18 2012. ACM.

[48] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Optimizing completion time and resource provisioning
of pig programs. In CCGRID ’12 Proceedings of the
2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012),
pages 811–816, Washington, DC, USA, 2012. IEEE
Computer Society.

984

