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Abstract—Elastic services comprise multiple virtualized re-
sources that can be added and deleted on demand to match
variability in the workload. Service owner profiles the service to
determine its most appropriate sizing under different workload
conditions. This variable sizing is formalized through service
level agreement (SLA) between the service owner and cloud
provider. Cloud provider obtains maximum benefit when it
succeeds to fully allocate the resource set demanded by the
elastic service subject to its SLA. Failure to do so may result
in SLA breach and financial losses to the provider. We define a
novel combinatorial optimization problem called elastic services
placement problem (ESPP) to maximize the provider’s benefit
from SLA compliant placement. We observe that ESPP extends
the generalized assignment problem (GAP), which is a well
studied combinatorial optimization problem. However, ESPP
turns out to be considerably harder to solve as it does not
admit a constant factor approximation. We show that using
simple transformation, ESPP can be presented as a multi-unit
combinatorial auction. We further present a column generation
method to obtain near optimal solutions for ESPP for large
data centers where exact solutions cannot be obtained in a
reasonable amount of time using a direct integer programming
formulation. We demonstrate the feasibility of our approach
through an extensive simulation study. Our results show that
we are capable of consistently obtaining good solutions in a time
efficient manner. Moreover, if one is willing to trade precision to
gain in computation time, our method allows to explicitly manage
this tradeoff.

I. INTRODUCTION

We consider a popular Infrastructure as a Service (IaaS)
Cloud Computing paradigm where service providers rent VM
instances on-demand from the IaaS provider on a ”pay-as-
you-go” basis to provide functionality (service) using these
resources. In this model, the payment per VM instance com-
prises an initial fixed fee for ordering an instance and a
variable usage based fee where usage is aggregated in each
billing period.

To take an advantage of the ”pay-as-you-go” model, service
providers strive to use just the needed capacity to satisfy
the target end-user QoS at any given time. This is termed
thin provisioning to differentiate it from the traditional over-
provisioning methodology that plans capacity for peak work-
loads. Since workload applied to services varies with time, to
match these variations with minimum capacity, VM instance
sets comprising the services are elastic. The structure of an
elastic service remains fixed, but the number of instances
and/or size of the instances may vary.

The elastic behavior of the services is programmed using
service-specific elasticity policies (also known as elasticity

rules) that match workload variations with on demand capacity
allotments [1], [2]. In response to executing an elasticity
rule, the IaaS provider needs to solve the service placement
optimization problem to accommodate new VMs and already
deployed ones to maximize profit from service provisioning.
In any given billing period, each elastic service contributes to
the total revenue of the IaaS provider via the per VM usage
based payments aggregated over this period.

IaaS provider is not exposed to the end-user QoS directly.
It is the responsibility of the customer that acts as a servce
provider to its end users to dimension capacity of the service
in terms of the number of VM instances and instances size to
match expected workloads and to achieve desirable end-user
QoS [3]–[5].

Currently most IaaS providers offer VM instances from a
diversified catalog suggesting a number of discrete hardware
configurations. For example, Amazon EC2 offers ”small”,
”large”, ”extra large” and a few other VM configurations
where each configuration represents a different VM sizing and
is charged using different instance hour rate1. Usually, VM
types are provided under a single standard availability SLA. In
RESERVOIR project [6] availability SLA is further diversified
and extended as follows. At any given time, the set of VMs
mandated by the active elasticity rules has to be placed in its
entirety to comply with the availability SLA of the service.
We refer to this as set requirements.

Often a service deployment is governed by placement
restrictions imposed by the customer. Although our proposed
approach is general and deals with a variety of placement
restriction types, in this presentation we focus on anti-
collocation constraints that demand all VMs of the service
to be placed on different physical hosts.

While deployment of VMs under placement constraints has
received a significant attention in the literature, this problem
is rarely considered in conjunction with the set requirements.
In other words, the bulk of the art refers to the case of non-
elastic services where the service functionality is provided by
a single VM. The main focus of our study is SLA compliant
placement of multi-VM elastic services.

In this paper we present Elastic Service Placement Problem

1It should be noted that usually the usage fee paid by the customer does
not depend on the actual resource utilization. Under a typical IaaS chargeback
scheme, such as that of EC2 or Rackspace, a VM instance that is utilized up
to, say, 80% would be charged the same as an instance of the same type
utilized, say, up to 1%, as long as both were powered up during the the equal
periods of time.
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(ESPP) that generalizes the model studied by Urgaonkar et
al. in [7]. The input to ESPP includes set of hosts and set
of services, where each service is composed of a set of VMs.
Each VM has size and profit that may depend on its type, SLA
and the provider costs. In general each VM may have different
profit and capacity demands (size) when assigned to different
hosts. The goal of this optimization problem is to maximize
the profit obtained from the placed VMs, while respecting the
set requirements, placement constraints and resource capacity
constraints.

ESPP may be applied to an empty pool of hosts in the
data center or to a pool that already has an existing placement
of services. In the former case each VM has the same profit
for all the hosts. The latter case comprises two subcases that
should be treated differently. In the first subcase migration of
already placed services may be prohibited, e.g., in the case
of a QoS or security sensitive workload. This case may be
reduced to solving the initial placement problem (i.e., ESPP
applied to the empty pool) where only residual capacities of
the hosts are considered. In the second subcase, migrations
(either cold or live) of VMs comprising already placed services
are allowed. Since migrations may incur additional operational
costs on the provider in terms of QoS degradation (to the point
of SLA incompliance) due to downtime and CPU and network
contention. It is therefore important to be able to keep the
impact of migrations under control.

In ESPP migration costs are directly incorporated into the
placement problem by subtracting them from the profit of a
migrated VM. Modeling of migration costs is highly non-
trivial due to second order effects migrations might have on
the migrated service and other running services. To the best of
our knowledge, there is no single model thus far that accounts
for all such effects caused by migrations. It should be noted
that exact modeling of the migration costs in monetary terms
is outside of the scope of this paper. Rather than that we
introduce synthetic migration costs used as a management
lever to control the total number of migrations and potential
profit loss caused by them.

A. Our Contribution and Paper Organization
To summarize, our contributions are as follows.
• We address the problem of maximizing the cloud provider

profit from SLA compliant placement in virtualized data
centers. We formulate a novel combinatorial optimiza-
tion problem called elastic services placement problem
(ESPP).

• We show that ESPP can be reformulated as a multi-unit
combinatorial auction. We further solve this formulation
of ESPP using a column generation method to obtain
good solutions in a reasonable amount of time.

• Our simulations demonstrate that our approach yields
near-optimal solutions for large resource pools efficiently.
Moreover, our method allows to explicitly manage the
tradeoff between solution quality and computation time.

The rest of this paper is organized as follows. Sections II
presents the related work. In Section III we provide back-
ground and motivation for ESPP and in Section IV we define
our problem. We present a combinatorial auction view of ESPP

and give a multi-unit combinatorial auctions formulation for
ESPP in section V. The column generation method is pre-
sented in section VI. Numerical results for ESPP are presented
in Section VII, showing that our method finds near-optimal
solutions for large resource pools efficiently. We conclude our
paper in Section VIII.

II. RELATED WORK

Autonomic and dynamic optimization of virtual machines
placement in a data center backing the cloud service, received
considerable attention recently [7]–[17]

Most of this research focuses on selected aspects of place-
ment optimization considering either management of SLAs
or migrations costs or energy management or placement
restrictions. However, SLA management, migration-related
operational costs and set requirements are rarely considered
together.

The model studied by Urgaonkar et al. in [7] is closest to
our work. The authors consider non-elastic sets of application
components corresponding to mandatory configurations that
should be successfully placed in full on a cluster of physical
hosts in order for the application to function. The objective
is to maximize the number of successfully placed applications
assuming all applications are equally important and generating
the same revenue for the provider irrespective of the QoS and
application sizing.

This problem is a special case of ESPP. We generalize the
model of [7] in the following important aspects.
• We consider variable values of VMs comprising the

service sets due to diversified sizing and pricing and
different SLA compliance histories.

• We consider variable profit from placing VMs on differ-
ent hosts due to operational costs such as those incurred
by migrations (we consider the use case where the
placement optimization problem is solved repeatedly).

• We consider variable capacity requirements of the same
VM when placed on different hosts possessing non-
uniform processing capabilities.

A conceptually close framework is studied by Kelly in [15].
The approach is based on allocating discrete computational
resources according to utility functions reported by potential
recipients in a Utility Data Center. Kelly casts the problem
into a a variation of multi-dimensional knapsack problem and
provides a simple integer program formulation.

ESPP extends the generalized assignment problem (GAP),
which is its special case where every service contains exactly
one item. GAP is a well studied optimization problem that
has many practical applications. Chekuri and Khanna [18]
observed that the work of Shmoys and Tardos [19] implies a
2-approximation algorithm for GAP. Subsequently, Fleischer
et al. [20] designed a e/(e−1)-approximation algorithm. This
approximation ratio was improved by Feige and Vondrák [21]
to e/(e − 1) + ε for some constant ε > 0. GAP is known to
be APX-hard

We observe that ESPP problem can be viewed as a multi-
unit combinatorial auction problem. In a combinatorial auction
a number of non-identical goods are sold concurrently and
bidders express preferences about combinations of goods and
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not just about single good. In a multi-unit combinatorial
auction – that extends this problem – there are multiple copies
of each good and the agents are allowed to bid on more than
one unit of each good. The combinatorial auction problem is
computationally hard and cannot be approximated to within
a factor better than m1/2−ε for any constant ε > 0. This
holds even for the special case of single-minded-bidders [22],
which is also a special case of ESPP. Recent work focused
on classes of valuations that can be better approximated, e.g.,
subadditive [23] and submodular [24] valuation functions.
For the case of multi-unit combinatorial auctions, where there
at least B ≥ 1 units of each item and every agent demands
at most 1 unit of each item, the best known approximation
algorithms have approximation ratio of O(m1/B) [25]. This
result also follows from a LP-based randomized rounding
algorithm for packing integer programs (PIPs)2 [26], [27].
For the case where each bundle contains at most d goods,
results for PIPs with columns-sparse constraint matrices [28]
(i.e., no column in the matrix contains more than d nonzero
entries) imply that LP-based randomized rounding yields an
O(d1/(B−1)) approximation.

Rather than looking for approximation algorithms, we ex-
press ESPP as a multi-unit combinatorial auction using a
standard set packing formulation. Since this formulation may
have huge number of variables, we apply a column generation
approach, which is a powerful tool for solving large scale
integer problems. Instead of enumerating columns explicitly,
the column generation method uses only a selected set. This
method was first applied by Gilmore and Gomory [29] for
solving the cutting stock problem. Later on column generation
was successfully applied for several applications, such as
vehicle routing, crew scheduling and resource allocation with
spatial TDMA in ad hoc radio networks [30]–[32]. Previously,
this method was applied for combinatorial auctions by Dietrich
and Forrest [33].

III. BACKGROUND AND MOTIVATION

To put our discussion into a specific context, we abstract a
generic management framework of an IaaS cloud as follows:
• Service Manager: receives service provisioning requests

and presents Placement Optimizer with the VM sets that
should be placed on the physical infrastructure at any
point in time.

• Placement Optimizer: calculates an optimal placement to
maximize the provider’s profit from service placement
(over all services).

• Placement Planner: calculates an optimal schedule of
management actions required to move from the current
placement to the new placement calculated by the Place-
ment Optimizer.

• Placement Actuator: implements the placement schedule
provided by the Placement Planner.

Current practices in cloud computing set customer ex-
pectations high, implying that service provisioning requests
should be served very fast, usually on the scale of minutes.

2A PIP, cf. [26], is an integer linear program of a form max{c · x : Ax ≤
b, x ∈ {0, 1}q}; where p, q ∈ N, c ∈ Rq

≥0. A ∈ [0, 1]pxq , b ∈ [1,∞)p.

In this work we focus on the Placement Optimizer compo-
nent developing efficient and scalable algorithms for a core
optimization problem of maximizing profit while maximally
satisfying availability SLAs and minimizing network overhead
due to migrations.

Each service provisioning request contains the structure of
the service including the number of VMs of each type, de-
ployment constraints such as collocation and anti-collocation,
elasticity rules that prescribe specific configurations under
different environmental conditions, minimum and maximum
number of instances of VMs of each type and availability
Service Level Objectives (SLO) of the service. It is the
responsibility of Service Manager to monitor performance
of the service and change resource allotments in accordance
with the elasticity rules. These rules may require scaling-up
or scaling-down of the service by adding or removing VM
instances subject to the maximal and minimum limits defined
for the service.

Availability SLO specifies availability percentile that should
be achieved for the VMs comprising the service irrespectively
of what elasticity rules are executed and when, as long as
resource demands are between the minimum and maximum
limits contracted for the service. It should be stressed that
committing to availability SLO of an elastic service is espe-
cially challenging because the intervals over which availability
of VMs are calculated may not even overlap for different VMs
comprising an elastic service. To cope with this challenge,
we propose a different approach to availability guarantees
management. Namely, at any given moment we consider a VM
set comprising the service (as mandated by the elasticity policy
effective at this moment in time) as an indivisible whole that
should be mapped on physical machines subject to capacity
constraints and deployment constraints. In other words, elastic
service concept implies a placement model where all VMs
of the current service configuration should be placed for the
service to be considered available3.

Non-placing a service does not imply an immediate SLO
violation as long as availability percentile of the service is not
violated in this billing period.

The value generated by VM sets for the provider depends on
the number of VMs in the set and VM types of the instances
comprising the set. The direct consequence of the availability
SLO protection model described above is that VM sets that
are structurally the same (in terms of VM types and number
of instances) may have different values at different points in
time depending on their availability SLO compliance history.
Namely, there are three options that should be considered by
the Placement Optimizer w.r.t. every VM set:
• VM set is included in the next placement: provider

obtains revenue from the set calculated as a sum of per-
VM revenues on the instance-hour basis;

• VM set is excluded from the next placement, but this does
not violate availability SLA of the service yet: provider

3An alternative approach to this ”all-or-nothing” scale-up placement model
is to define the levels of compliance as, e.g., as percentage of the VM superset
that contains the initially requested configuration. The initially requested
configuration still has to be placed in an all-or-nothing manner. We defer
discussion of the partial placement model to future work.
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loses revenue from the service;
• VM set is excluded from the next placement, violating

availability SLA of the service: provider loses revenue
from the service and also compensates the customer with
the service credit for the next billing period, which is a
function of the service usage fee accumulated thus far in
this billing period.

The tasks performed sequentially by Placement Optimizer,
Placement Planner and Placement Actuator form a manage-
ment cycle. At the beginning of each management cycle,
Placement Optimizer receives input from the Service Manager
in terms of VM of the newly arrived and already provisioned
VM sets and their values at this point in time. The Placement
Optimizer computes a placement to maximize profit from
the service placement. As a part of this objective, Placement
Optimizer minimizes the costs associated with availability
SLO incompliance and VM migrations.

In case provisioning is being performed on an initially
empty host pool or on a partially loaded pool where VMs
are not allowed to move from their current hosts due to
workload sensitivity or other management concerns, there are
no operational costs associated with migrations and the value
of each VM is the same irrespective of the physical placement.

In many other practical scenarios, provisioning is being
performed on the pre-loaded host pools where VMs can move
within the pool or across different pools. Current virtualiza-
tion technologies allow live migrating VMs across disparate
physical hosts. The live migration of VMs may stress the data
center network, which is a scarce shared resource, and incurs
an overhead on both source and destination hosts in terms of
CPU and memory. This overhead can be modeled as cost of
migration between the source host of a VM and its feasible
host destinations. While many factors affect the migration
costs, the dominant factor is the cost of communication that
depends on the available network bandwidth and network
topology. While in this work we are not dealing with modeling
the cost of VM migration, our problem formulation explicitly
accounts for these costs to maintain policy-based control over
them.

It is important to stress that the quality of the placement pro-
duced by the Placement Optimizer directly influences duration
and operational costs of the subsequent phases implemented
by the Placement Planner and Placement Actuator. Obviously,
the more migrations are implied by the new placement, the
longer will be the scheduling and provisioning phases and
higher will be the network overhead.

IV. ELASTIC SERVICE PLACEMENT PROBLEM

We consider the following elastic service placement prob-
lem. We are given a set B of m bins and a set A of k services.
Each bin i has capacity c(i) and each service j contains nj

items, where each item l of service j has size pj
il and value

vj
il to the provider when item l is assigned to bin i. The total

value of each service equals the sum of the values of all its
items if the whole service is packed and otherwise it equals
zero.

The packing may be subject to deployment constraints. One
especially challenging type of deployment constraints is given

by the anti-collocation requirements where all items of a given
service should be assigned to different bins. Our approach is
general, but to focus our presentation on the more demanding
use case, we assume the anti-collocation constraints to be part
of the placement requirements4. The goal is to find a feasible
assignment of the items’ sets to bins to maximize the total
value.

It is easy to see that ESPP generalizes the Generalized
Assignment Problem (GAP), which is defined as follows.
Given a set of bins and a set of items, where the items may
have different size and value for each bin. The goal is to find a
feasible assignment of the items to bins to maximize the total
value.

We now provide a direct integer programming formulation
for ESPP. Let yj be an indicator variable assuming 1 if service
j is included into the placement and 0 otherwise. For each item
l of service j and bin i, we have a decision variable xj

il, which
indicates whether item l is assigned to bin i.

max
k∑

j=1

nj∑

l=1

m∑

i=1

xj
il · vj

il

s.t.

m∑

i=1

xj
il = yj ∀j ∈ A, ∀l ∈ {1, . . . , nj}

k∑

j=1

nj∑

l=1

xj
il · pj

il ≤ c(i) ∀i ∈ {1, . . . , m}
nj∑

l=1

xj
il ≤ 1 ∀j ∈ A, ∀i ∈ B

xj
il ∈ {0, 1} ∀j ∈ A, ∀i ∈ B

yj ∈ {0, 1} ∀j ∈ A.

In the integer program, the objective is maximizing the
sum of values. The first set of constraints requires that for
each service either the whole service is packed or none of its
items is packed. The second set of constraints requires that
the load of each bin does not exceed its capacity. The third
set of constraints requires that the items of each service are
assigned to distinct bins.

It is prohibitively expensive (in terms of running time and
computation resources) to solve this IP formulation directly for
large problem instances. Therefore, we turn to an alternative
integer programming formulation that can be used to find near
optimal solutions efficiently using column generation method.
In the next section we show the relationship between ESPP
and multi-unit combinatorial auctions (also see Section II) and
provide an alternative integer program formulation of ESPP
using set packing formulation for multi-unit combinatorial
auctions. This formulation is naturally amenable to column
generation.

4The motivation for this type of constraints arises from the typical manage-
ment scenarios such maintaining a specific level of fault tolerance mandated
by regulations and SLAs.
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V. A COMBINATORIAL AUCTIONS APPROACH TO ESPP

A. Combinatorial Auctions Problem Description

In combinatorial auctions a number of non-identical goods
are sold concurrently and bidders express preferences about
combinations of goods and not just about the singletons. This
problem can be viewed as a high level abstraction of complex
resource allocation, and is the paradigmatic problem on the
interface of economics and computer science [34], [35].

Formally, in combinatorial auctions there is a set of m non-
identical goods that are concurrently auctioned to n bidders; in
a multi-unit combinatorial auctions each good i ∈ {1, . . . , m}
is available in c(i) ∈ N units. The combinatorial character of
the auction comes from the fact that bidders have preferences
regarding bundles of goods. A bundle of goods is a vector
(d1, . . . , dm), where 0 ≤ di ≤ c(i) is the number of units
of good i in the bundle. Each bidder j has a valuation
function vj that describes its preferences in monetary terms
and assigns non-negative value for each bundle of goods,
vj : {0, . . . , c(1)} × . . . × {0, . . . , c(m)} → R+. The goal of
the auction is to find an allocation that maximizes the social
welfare

∑
j vj(Sj) where Sj is the bundle of goods allocated

to bidder j. Let us now turn to our problem. ESPP can be
viewed as a multi-unit combinatorial auction as follows. The
set of bins B is the set of non-identical goods and the capacity
c(i) of each bin i is the number of units of each good i. The
set of services A is the set of bidders that bid on bundles of
bin capacities. The goal is to maximize the sum of values of
the bundles allocated to the bidders.

We define the load of a bin as the total size used by items
(i.e., VMs) assigned to it. Each bundle S of service j is a load
vector of the bins that corresponds to a feasible assignment of
service j to the bins. We will abuse notation somewhat and
also use S to refer to the corresponding assignment of service
j to the bins. We denote by Sj the set of bundles of service
j. Each service j has a profit function vj , where vj(S) is the
maximum profit of a feasible packing of service j with vector
of loads that equals S ∈ Sj . We denote by p(S, i) the total
size of items that are packed in bin i according to bundle S.

B. Integer Programming Formulation of Combinatorial Auc-
tions for ESPP

We now model the ESPP problem using the integer pro-
gramming formulation for multi unit combinatorial auctions.
For a feasible assignment S ∈ Sj , let xj,S be the indicator
variable that indicates whether assignment S is chosen for
service j. We relax the xj,S variables to be in [0, 1] and obtain
the following linear programming relaxation (LP2):

max
∑

j∈A

∑

S∈Sj

xj,S · vj(S) (1)

s.t.
∑

S∈Sj

xj,S ≤ 1 ∀j ∈ A (2)

∑

j∈A,S∈Sj

xj,S · p(S, i) ≤ c(i) ∀i ∈ B (3)

xj,S ≥ 0 ∀j ∈ A, S ∈ Sj . (4)

In the linear program, the objective function is maximizing
the sum of profits. Constraint (2) ensures that each service
gets at most one assignment and constraint (3) ensures that
the load of a bin does not exceed its capacity.

The corresponding dual linear program (DLP) is then:

min
∑

i∈B

c(i) · yi +
∑

j∈A

zj (5)

s.t.
∑

i∈B

yip(S, i) + zj ≥ vj(S) ∀j ∈ A, ∀S ∈ Sj (6)

zj ≥ 0 ∀j ∈ A (7)
yi ≥ 0 ∀i ∈ B. (8)

The main reason for reformulating ESPP as a multi-unit
combinatorial auction using set packing approach is that it
naturally renders itself to column generation approach that can
be used for solving the integer problem more efficiently.

VI. COLUMN GENERATION

Column generation is a powerful technique for solving IP
problems with huge number of variables. The idea of column
generation is to solve the the problem without considering
explicitly all the variables. Column generation decomposes an
LP relaxation of the problem into a master problem and sub-
problems. Initially a restricted LP formulation, called restricted
master problem (RMP), that contains only a small subset of the
variables of the full LP formulation is solved optimally. Then
a subproblem called pricing problem, which is a separation
problem for the dual linear program, is solved repeatedly to
identify new variables that have positive reduced cost and can,
therefore, potentially increase the objective value of the RMP.
This process is referred to as the column generation phase.
When no additional variables that can improve the objective
value of the RMP can be identified, the column generation
phase stops and the problem obtained in the column generation
phase is solved as IP.

For (LP2) the pricing problem is to find a service j
and assignment S ∈ Sj of positive reduced cost vj(S) −∑

i∈B yip(S, i) − zj , where (y, z) is an optimal solution to
the dual problem of the restricted master problem (RMP). For
ESPP with anti-collocation constraints the pricing problem is
the maximum weight bipartite matching problem that can be
solved in polynomial time (see [36]). For ESPP without the
anti-collocation constraints, the pricing problem is GAP. In
this paper we focus on the variant of ESPP with the anti-
collocation constraints.

For each j ∈ A, we define a bipartite graph Gj =
(B, Ij , Ej) in which we have an edge (i, l), if item l of
service j can be assigned to bin i. The weight of edge (i, l)
is wj

il = vj
il− yip

j
il. Thus, in order to find the highest reduced

cost for every service j we have to solve the maximum
weight bipartite matching that can be formulated as an integer
program as follows.



6

max
∑

(i,l)∈Ej

wj
ilxil

s.t.

m∑

i=1

xj
il = 1 ∀l ∈ {1, . . . , nj}

nj∑

l=1

xj
il ≤ 1 ∀i ∈ {1, . . . , m}

xj
il ∈ {0, 1} ∀i ∈ B, ∀l ∈ {1, . . . , nj}.

If the value of the optimal solution to the above maximum
weight bipartite matching problem for service j is greater than
zj then we have found a variable of service j that can be added
to the LP. In our implementation in every iteration of column
generation, we solve the pricing problem for every service
and if it has a positive reduced cost we add the corresponding
column to the restricted master problem (RMP).

A generalization of branch-and-bound with LP relaxations,
called branch-and-price [37], is often used for solving large
IP problems. This scheme allows applying column generation
throughout the branch-and-bound tree. However, our exper-
iments show that simple column generation was capable of
producing ESPP solutions very close to those of LP relaxation
of ESPP where LP reflect the upper limit on the ESPP objec-
tive function for any given problem instance. Consequently
we leave a more complex branch-and-price method out of the
scope of this work.

VII. IMPLEMENTATION AND SIMULATION RESULTS

In this section we discuss our experimental results. The
objective of our evaluation study is to compare the direct
IP formulation to the proposed column generation method
to get insights about the tradeoff between optimality and
computational time under reasonable assumptions about the
cloud settings.

One of the more challenging issues when evaluating algo-
rithms on complex scenarios is generating representative input
data sets. This data can come either from a real production
environment or from a cloud simulator. In the cloud envi-
ronment that we consider, the problem of the input data is
exacerbated by having multiple independent dimensions char-
acterizing our problem. Namely, one has to specify distribution
of the physical hosts capacities, distribution of the resource
demands by VMs, popularity distribution of VM sizes, dis-
tribution of the VM set sizes, birth-death stochastic process
characterizing elasticity, distribution of value attributed to VM
sets in accordance with specific SLA offerings and external
workload. While recently some cloud simulation tools have
appeared [38], these tools still need input on the above aspects
to drive the simulation. Given current production practices, we
were not able to obtain sufficiently representative production
data sets to extract all the needed data.

Therefore we resorted to implementing our own problem
instance generator that abstracts the core features of the
model important for the algorithmic evaluation. As one can
easily verify, varying all aspects of the model described above
quickly results in an unwieldy set of sub-instances that would

be difficult to interpret and generalize. Thus, we decided to
focus on a simple experimental setting that would be easy to
follow and present and which will be sufficiently informative
to achieve the objective of this simulation study.

A single algorithm execution is performed on a random
problem instance. We generate instances ranging from 10 to
700 bins representing physical hosts. We set the ratio by
ρ = n/m between the number of items (representing VMs)
and bins in an instance and generate the number of items
to satisfy this ratio. Item types are chosen uniformly from
”Small”, ”Medium”, ”Large” which are the three typical sizes
of virtual machine instances, where ”Small”, ”Medium”, and
”Large” require 1, 3, and 7 compute units, respectively5.
Bin capacities are expressed in the same compute units as
items. We uniformly draw bin capacities from [20, 40]. In
most of our instances we used ρ = 10. The number of items
comprising each service is drawn uniformly from [1, 10]. We
consider ”Silver”, ”Gold” and ”Platinum” SLA types with
hourly compute unit price of 1, 2, 4, respectively. Each service
SLA type is drawn uniformly from ”Silver”, ”Gold” and
”Platinum”.

We partitioned our experiments into three sets. In the first
set we considered small resource pools with the number of
bins ranging from 10 to 220 and ρ = 10. In this problem size
range we explicitly compare our column generation algorithm
to direct IP formulation and to the solution obtained by
LP relaxation of ESPP. Beyond this range solving direct IP
proved to be infeasible. Thus, we conducted the second set
of experiments where we varied the number of bins from 250
to 700 with the same item-bin ratio as before. This set of
experiments evaluates performance of our proposed method
on the large resource pools. In these experiments we compare
the results obtained by our solution to the LP relaxation only.
In both these sets of experiments we considered a use case
where we start from an initially empty resource pool.

In the third of experiments we study the use case where
an initial assignment of items to bins already exists. We
generate additional item sets simulating newly arrived service
provisioning requests. Placement of the new services may
cause migrations of items across bins. It is our objective in this
set of simulations to validate that our migration costs modeling
indeed controls the costs of migrations and get insights on the
sensitivity of this mechanism.

In practical settings, timeliness of solving the placement
problem is of paramount importance. Therefore in all our
experiments we introduce two early stopping criteria. The
first one is a time limit on the total computation time and
the second one is target optimality gap that instructs the MIP
solver to stop when the target is achieved. The optimality gap
is defined as

100 · LP optimum - Best known feasible solution
Best known feasible solution

.

We implemented the column generation algorithm using
ILOG CPLEX version 12.1 [39]. We use CPLEX to solve the
direct IP formulation of ESPP to compare performance and

5The concrete definition of a compute unit differs from one provider to
another. See, e.g., [4]. We use the term compute unit in a generic manner.
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scalability of the direct approach to our column generation
method. When evaluating the column generation method, we
use CPLEX to solve the master problem, the subproblem and
the IP resulting from the column generation algorithm.

It is known that the column generation method may suffer
from the tailing-off effect where large number of iterations
may be required to reach an optimal solution of the master
problem LP. To reduce this effect, we impose a stopping con-
dition as follows. The column generation halts when solution
improves by less than certain percent between consecutive
iterations. Our results show that the early stopping condition
only marginally impacts solution optimality.

All our computational results are based on 5 randomly gen-
erated instances for each problem instance type. We compute
average of these runs and also present the maximum value in
the result set. We run all our simulations on a Linux machine
with 2.5 GHz processor and 16 GByte of RAM.

A. Small Resource Pools

Table I shows computational results for the column gener-
ation algorithm and direct IP formulation applied on a small
resource pool with 150 bins and different item-bin ratios. In
these experiments the target optimality gap stopping condition
is used. The first column in the table shows the number of bins
and the second column shows the number of items. For the
column generation and direct IP formulation, the table displays
the average and maximum optimality gap and computation
time used.

We observe that the column generation algorithm becomes
much faster than the direct IP formulation as the item-bin
ratio increases. However, the optimality gap of the column
generation algorithm is slightly worse than that of the direct
IP formulation.

Table II shows the computational results for resource pools
of size 10 to 220 bins and ρ = 10 for the column generation
algorithm and direct IP formulation. In these experiments the
time limit stopping condition of 15 minutes is used. One can
conclude from inspecting the optimality gaps obtained in this
set of simulations that if relatively long computation times are
permissible, the direct IP formulation is slightly superior to
the column generation method.

The big advantage of the column generation approach
becomes evident in the next set of experiments where target
optimality gap stopping condition is used. These simulations
are summarized in Table III and visualized in Figure 1 and
Figure 2.

As Figure 1 shows, the column generation algorithm is
significantly faster than the direct IP formulation for the target
optimality gap stopping condition, while – as shown in Figure
2 – the optimality gap of the column generation algorithm is
only slightly worse than that of the direct IP formulation.

B. Large Resource Pools

For large resource pools CPLEX was unable to find feasible
solutions for the direct IP formulation within the time limit,
hence in this section we show computational results only for
the column generation algorithm. The results are summarized
in Tables IV and V. The tables additionally display the average

m n COLUMN GENERATION DIRECT IP
Gap [%] Time [s] Gap [%] Time [s]
Avg Max Avg Max Avg Max Avg Max

150 900 7.58 9.33 9.96 10.9 0.34 1.71 0.97 1.1
150 1200 7.77 8.92 18.62 21.91 1.03 2.65 29.58 56.62
150 1500 9.36 9.9 26.23 30.44 3.18 4.8 86.19 108.46
150 1800 8.98 10.2 40.95 49.94 3.97 7.04 117.33 164.23
150 2100 9.44 10.24 43.06 54.04 5.15 5.78 91.47 103.94
150 2400 9.06 10.12 37.9 41.77 4.59 8.44 184.31 229.47

TABLE I
COMPARISON OF COLUMN GENERATION AND DIRECT IP ALGORITHMS
FOR SMALL RESOURCE POOL WITH DIFFERENT ITEM-BIN RATIO ρ AND

TARGET OPTIMALITY GAP OF 10 PERCENTS

m n COLUMN GENERATION DIRECT IP
Gap [%] Time [s] Gap [%] Time [s]
Avg Max Avg Max Avg Max Avg Max

10 100 2.31 3.37 0.33 900 0.4 1.02 0.49 1.1
40 400 2.24 2.67 900 900 0 0 13.06 27.34
70 700 3.23 4.84 900 900 0 0 665.05 754.34
100 1000 3.73 4.0 900 900 1.23 2.99 900 900
130 1300 4.21 4.6 900 900 2.19 3.17 900 900
160 1600 4.28 4.52 900 900 1.79 3.13 900 900
190 1900 4.62 5.31 900 900 2.02 2.41 900 900
220 2200 4.25 4.61 900 900 2.19 3.24 900 900

TABLE II
COMPARISON OF COLUMN GENERATION AND DIRECT IP ALGORITHMS

FOR SMALL RESOURCE POOLS WITH TIME LIMIT OF 15 MINUTES

m n COLUMN GENERATION DIRECT IP
Gap [%] Time [s] Gap [%] Time [s]
Avg Max Avg Max Avg Max Avg Max

10 100 6.75 8.63 0.18 0.26 3.15 5.61 0.03 0.05
40 400 8.85 9.34 1.56 1.66 5.59 7.62 1.31 2.07
70 700 7.58 9.21 4.72 5.25 3.86 6.9 7.16 7.73
100 1000 8.93 10.11 8.53 10.43 3.15 5.7 25.77 33.22
130 1300 9.13 10.01 17.90 22.03 3.11 4.79 60.04 73.97
160 1600 8.74 10.19 35.63 43.99 2.9 3.5 110.39 138.33
190 1900 8.8 9.29 42.58 45.21 3.0 4.82 256.74 409.91
220 2200 9.53 9.99 66.54 86.39 3.64 4.37 434.59 623.28

TABLE III
COMPARISON OF COLUMN GENERATION AND DIRECT IP ALGORITHMS
FOR SMALL RESOURCE POOLS WITH TARGET OPTIMALITY GAP OF 10

PERCENTS

Fig. 1. Comparison of column generation and direct IP algorithms optimality
gap for small resource pools with target optimality gap of 10 percents.

and maximum number of generated columns and the number
of column generation iterations.

Our results show that for the time limit stopping condition
the optimality gap increases with the problem size. We can
see in Table IV that for the problem instances of at most 500
bins, the average optimality gap obtained within the time limit
is at most 10.29 and for larger instances of size at most 700
bins, the average optimality gap is at most 23.07.

As seen from Table V, the obtained optimality gap of the
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Fig. 2. Comparison of column generation and direct IP algorithms running
time for small resource pools with target optimality gap of 10 percents.

column generation algorithm may occasionally exceed the
target optimality gap of 10 percents. We can see in the table
that the average optimality gap is at most 11.95. This happens
because we use early stopping condition for column generation
to mitigate the tailing-off effect as discussed earlier. Therefore
we obtain near optimal LP solutions to the master problem
rather than the optimal ones and this contributes to the overall
optimality gap.

m n Gap [%] Time [s] Columns Iterations
Avg Max Avg Max Avg Max Avg Max

250 2500 6.07 6.62 900 900 2387 2494 9 9
300 3000 6.81 7.11 900 900 2890.6 3102 9.4 10
350 3500 7.26 8.32 900 900 3369.4 3439 10 10
400 4000 8.676 9.63 900 900 4166.6 4434 11.4 12
450 4500 8.97 11.31 900 900 4928.8 5568 13 14
500 5000 10.29 11.92 900 900 5699.8 6084 13.2 14
550 5500 12.62 13.85 900 900 6677.6 7168 15.4 17
600 6000 13.65 14.95 900 900 7441.2 8022 16.6 17
650 6500 16.36 20.16 900 900 8597.6 9021 18.2 19
700 7000 23.07 23.9 900 900 9082.6 9346 17.2 18

TABLE IV
RESULTS OF THE COLUMN GENERATION ALGORITHM FOR LARGE

RESOURCE POOLS WITH TIME LIMIT OF 15 MINUTES

m n Gap [%] Time [s] Columns Iterations
Avg Max Avg Max Avg Max Avg Max

250 2500 11.10 12.2 62.506 65.19 2276.2 2457 9 9
300 3000 10.52 11.95 96.248 104.44 2947.4 3114 10 10
350 3500 11.04 11.87 141.578 158.07 3662 3805 10.8 11
400 4000 11.95 13.0 226.26 284.46 4307.4 4571 11.8 12
450 4500 10.34 12.32 406.194 459.99 5190.8 5532 13 14
500 5000 11.90 12.6 562.476 749.65 5603.4 5944 13.8 15
550 5500 11.41 13.37 910.94 1028.38 6710.8 7090 15.6 17
600 6000 11.83 13.21 1,167.27 1,250.96 7547.8 7925 16.4 17
650 6500 10.91 11.52 1,987.33 2,836.34 8065.6 8141 17.2 18
700 7000 11.61 12.35 2,072.33 2,364.51 9061.4 9791 17.2 18

TABLE V
RESULTS OF THE COLUMN GENERATION ALGORITHM FOR LARGE

RESOURCE POOLS WITH TARGET OPTIMALITY GAP OF 10 PERCENTS

C. Placement with migrations

In this section we consider the case of replacement, where
the placement problem starts from an existing placement. In
this case moving from the existing placement to the new
placement may require live migrations of VMs. To take into
account the operational costs incurred by live VM migrations,
we subtract these costs from the value obtained from the
migrated VMs. Thus, an already placed VM may produce
different values when placed on different hosts.

We model migration cost of a VM with value v as αv, where
0 ≤ α ≤ 1. Thus, the real value that results from moving a VM
from the original host to another host is (1−α)v. In general α
may vary for each VM and may depend on the communication
cost between hosts in the host pool and between the host pools.
In the presented experiments, we consider the homogenous
case where communication costs between the hosts in the pool
are uniform. We test the case of replacement by generating an
instance for 250 to 700 bins. For each problem instance we
compute an initial placement. Then, we generate new VMs that
amount to β = 0.2 fraction of the original number of VMs
and run the placement algorithm for different values of α. We
evaluate the quality of the new placement in terms of the total
value to the provider and the number of VM migrations.

Fig. 3. Number of migrations as a function of migration cost for column
generation algorithm with time limit of 15 minutes.

Fig. 4. Number of migrations as a function of migration cost for column
generation algorithm with time limit of 30 minutes.

Figure 3 shows the effect of migration cost on the num-
ber of migrations performed when moving from the initial
placement to the new placement computed by the column
generation algorithm with the time limit stopping condition of
15 minutes. As expected, the number of migrations decreases
as the migration cost grows, which indicates that the cloud
providers can control the operational cost of migrations using
this method. Due to the lack of space we do not show the
tabular data on the optimality gap. In general, the optimality
gap obtained for the time limit of 15 minutes decreased from
10% to 4.5% as migration costs increased.

One may notice from Figure 3 that when the cost of
migrations is zero, the number of migrations sharply decreases
occasionally. At a first glance this appears to be counter-
intuitive since zero migrations costs should have encouraged
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the solver to use more migrations when seeking for optimal
solutions. The explanation for this effect is that when mi-
gration costs are non-zero, the solver starts with a smaller
preferred candidate set for the already placed items giving
placement preference to the bins where these items are placed
at the moment. In absence of migration costs the solver needs
to perform much more branching since there is no preferred
placement for the items. Therefore 15 minutes might be too
short a time limit and the optimality gap achieved in the case
of zero migration costs is worse than in the case of non-zero
migration costs.

To verify that, we repeated the same experiment with the
time limit of 30 minutes. The results of these simulations are
presented in Figure 4. Indeed, as one can see, when given
more time, the optimality gap in case of zero migration costs
improves and more migrations are performed as expected.

VIII. CONCLUSION

We presented a novel approach to SLA-aware placement of
elastic services in a cloud. We formulated a novel optimization
problem, ESPP, and showed its relationship to GAP and multi-
unit combinatorial auctions. We further developed an efficient
computational methodology to solve ESPP using column gen-
eration and demonstrated that the tradeoff between solution
optimality and timeliness can be efficiently managed. We argue
that the operational costs related to SLA provisioning and
the network overhead incurred by live VM migrations can
be modeled within the same framework. We evaluated our
approach using simulations under the reasonable simplifying
assumptions. As demonstrated by our results, the column
generation method is capable of obtaining close to optimal
solutions while controlling the tradeoff between the optimality
gap of a solution and its timeliness.

One future work direction that we explore is how to
integrate the operational costs such as energy into the proposed
framework. One promising approach is extending the multi-
unit combinatorial auction modeling by adding the ”opening
cost” of bins. Another research direction that we will explore
in the future is including storage resources assignment into the
modeling. From the networking perspective, we will experi-
ment with more sophisticated dynamic communication costs
that reflect network topology and available bandwidth. Finally
we will explore partial VM set placement models where differ-
ent levels of SLA compliance are defined for different service
configurations that contain the initially requested configuration
as a proper subset.
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