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Abstract

When there are multiple queries posed to the resource-
constrained wireless sensor network, it is critical to pro-
cess them efficiently. In this paper, we propose a Two-Tier
Multiple Query Optimization (TTMQO) scheme. The first
tier, called base station optimization, adopts a cost-based
approach to rewrite a set of queries into an optimized set
that shares the commonality and eliminates the redundancy
among the queries in the original set. The optimized queries
are then injected into the wireless sensor network. In the
second tier, called in-network optimization, our scheme ef-
ficiently delivers query results by taking advantage of the
broadcast nature of the radio channel and sharing the sen-
sor readings among similar queries over time and space at a
finer granularity. Our experimental results indicate that our
proposed TTMQO scheme offers significant improvements
over the traditional single query optimization technique.

1. Introduction

Wireless sensor networks are increasingly being de-
ployed in many important applications to enable users to
query the physical world, such as environmental moni-
toring, healthcare monitoring, military surveillance, traffic
monitoring, etc. To ease the deployment of such appli-
cations, researchers have proposed techniques to treat the
wireless sensor network as a database which provides a
good logical abstraction for sensor data management, and
hence better realizes the potential of wireless sensor net-
works [16]. Users can issue declarative queries without hav-
ing to worry about how the data are generated, processed,
and transferred within the network, and how sensor nodes
are (re)programmed. Query optimization techniques can
also be applied to optimize the network operations.

In many applications, it is often necessary to process
multiple user queries simultaneously. Unfortunately, most
existing work has focused on the optimization and execu-
tion of a single long-running query. Consequently, multiple
concurrent queries cannot benefit from each other by shar-

ing their data acquisition, computation and communication
cost. Moreover, running multiple queries in such an un-
cooperative manner will lead to bandwidth contention and
even data loss as a result of transmission collisions (which
may in turn require retransmission). Thus, in the resource
constrained sensor network, it is critical to perform multi-
query optimization in order to share the limited communi-
cation and computational resources.
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Figure 1. The System Architecture

In this paper, we propose a Two-Tier Multiple Query
Optimization (TTMQO) scheme to minimize the average
transmission time in the sensor network. Figure 1 shows
the system architecture. TTMQO supports both aggrega-
tion and data acquisition queries. The first-tier optimization
is performed at the base station. We adopt a cost-based ap-
proach to heuristically rewrite user queries into “synthetic”
queries before injecting them into the sensor network, such
that duplicate data requests from original queries can be
eliminated as much as possible while guaranteeing the cor-
rectness of semantics of all queries. After the sensor net-
work returns results for the synthetic queries, correspond-
ing results for user queries can be easily obtained through
mapping and calculation. Our algorithm is dynamic in that
the set of running synthetic queries is continuously being
updated by the arrival of new queries as well as the termi-
nation of existing queries.

Our second-tier optimization is done inside the wireless
sensor network. The main idea is to focus on the data re-
quired by all (synthetic) queries during specific time inter-
val, and design a good DAG over the sensor nodes with the
base station as the sink point to gather the queried data. Our
algorithm further reduces the number of radio messages and
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saves the energy of sensor nodes in three ways. First, it
schedules the communication among queries as a whole,
which enables the combination of several query transmis-
sions if these queries need data at the same time. Second,
our algorithm dynamically determines the route to dissem-
inate the query results, which enables data aggregation as
soon as possible and involves fewer nodes. Finally, it tries
to acquire and transmit the data to satisfy multiple queries if
they need the same data, by taking advantage of the broad-
cast nature of the radio channel.

To study the effectiveness of the TTMQO scheme, we
implemented it using TinyDB [6] and evaluated it under the
TOSSIM [5] emulator. Our experimental results show that
the TTMQO scheme can provide significant performance
improvements, in terms of the cost of radio transmission
and scalability with the number of queries.

The rest of this paper is organized as follows. In Section
2, we review the related work and background information
on data query optimization in sensor networks. Section 3
presents our TTMQO scheme in detail. In section 4, we dis-
cuss the methodology and results of our experimental study.
Finally, we conclude the paper in Section 5.

2. Background and related work

Several sensor database query systems, such as Cougar
[16], and TinyDB [6], have been developed by the database
research community. These works have established the
foundation of sensory data management which our work
is based on. In this paper, we consider queries with
the semantics discussed in TinyDB, which consists of a
SELECT-FROM-WHERE clause supporting selection, pro-
jection, and aggregation, in addition to EPOCH DURA-
TION clause to define the frequency that the sensor data
should be fetched from the network [6].

Besides these systems, a large amount of research has
been conducted on various aspects of sensor query process-
ing techniques. These include the design of energy-efficient
routing protocols [10], in-network query processing tech-
niques [1, 12], approximate data query processing [3], and
adaptive techniques to adjust query strategies and optimize
query plans over time [2]. These research have mainly fo-
cused on the optimization and execution of a single long-
running query, which is complementary to our base station
optimization.

The multi-query optimization (MQO) problem has long
been studied by the database community and many heuris-
tic techniques are proposed [9, 8]. However, these tech-
niques are not directly applicable to wireless sensor net-
works, even at the base station, due to the following two rea-
sons. First, sensor queries have different query semantics,
with one more “dimension” specified by the EPOCH DU-
RATION clause. Second, with data being ready to be pro-

cessed, traditional MQO focuses on optimizing the physi-
cal level, but the logical level optimization is critical in our
case.

Multi-query optimization has also been considered in the
context of streaming database [7, 4], where the focus is to
develop techniques to process multiple queries over the col-
lected sensor data streams. The problem of deciding which
set of data to be collected at the required frequency from a
sensor network is not addressed.

There are only a few studies on multi-query optimiza-
tion in wireless sensor networks. Trigoni et al. tackled
multi-query optimization in wireless sensor networks in
[13]. Their work studies region based aggregation queries,
while our scheme aims to support more types of queries,
including, for example, other types of aggregation queries
(e.g., value-based aggregation queries) and data acquisition
queries. Most recently, Silberstein et al. exploited the com-
bination of multicast and in-network optimization to op-
timize many-to-many aggregations to achieve efficient in-
network control of sensors [11], where the application con-
text is different from ours.

3. Two-tier multiple query optimization

Since sensor nodes are resource-constrained, we en-
deavor to design a light-weight but effective scheme to sup-
port multiple queries running inside a wireless sensor net-
work. The base station is the interface of a wireless sensor
network. Moreover, it is usually much more powerful than
sensor nodes, with abundant processing, disk, and memory
capacity. Thus, we use the base station as a filter to re-
duce duplicate data access to the sensor network and as a
screen to hide the query dynamics from the sensor network
as much as possible. The objective here is to save the en-
ergy at sensor side instead of minimizing the response time
or computation cost at the base station.

3.1. Base station optimization algorithm

As our base station optimization algorithm is based on
query rewriting, we propose a cost model to measure the
benefit of the rewriting. Then we propose a heuristic query
insertion algorithm, which is guided by the cost model, to
optimize the synthetic query set for each new incoming
query. Finally, we look at how to re-optimize the synthetic
queries when a query terminates.

3.1.1 Basic data structures

Let us first introduce some basic data structures of our user
queries and synthetic queries. We store each user query
in the form of 〈qid, attribute list|agg list, predicates,
epoch duration, qid′〉 in a query table. qid is the unique
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identifier of the query. The attribute list field contains
the list of attributes that a data acquisition query qid re-
trieves from the wireless sensor network. agg list is a list
of 〈operator, attribute〉 that an aggregation query qid ac-
quires. We note that for a single query, either attribute list
or agg list will be empty. predicate list is a list of
〈attribute,min,max〉. The qid′ field is used by our al-
gorithm to denote which synthetic query this query qid has
been rewritten into.

As for a synthetic query, besides the above fields, a few
more fields are used. (a) A count field is associated with the
epoch duration field as well as each entry in the various
lists (attribute list, agg list and predicate list), which
denotes the number of user queries that require that piece of
data. This is to facilitate the maintenance of the synthetic
query when user queries terminate. (b) A from list field
contains the user queries which the synthetic query is re-
sponsible for. (c) A flag field denotes the current status of
this synthetic query. (d) A benefit field indicates the bene-
fit that can be gained by the synthetic query (in comparison
to processing the individual user queries). It is worthy to
note that all these enhanced fields of the synthetic query are
stored in the base station to help with query rewriting and
further mapping and calculation, and they are not contained
in the query propagation message.

3.1.2 Benefit estimation

Cost model. Moore’s law suggests that the memory density
and processor speed will continue to grow at an exponential
rate. Thus, we expect sensor networks to continue to be
bandwidth and energy limited. Since radio transmission is
the most energy intensive operation a node performs, we use
the cost of radio transmission as our performance metric.

Radio messages consist of query result transmission
messages, query propagation and abortion messages, and
periodical network maintenance messages. For continuous
queries, result transmission messages dominate, so we only
count the result message transmission in our cost model.
However, to be realistic, we also include the effect of other
radio message transmission into the cost of radio transmis-
sion in the experimental study.

For a query qi, assume the length of its result message is
len(qi). The transmission cost of a result message from one
node to another can be estimated as Cstart+Ctrans·len(qi),
where Cstart is the transmission startup cost and Ctrans

is the transmission cost of each unit of data. To measure
the average transmission cost incurred by qi for each unit
of time, we have to estimate the number of per-unit time
transmissions incurred by qi, which is related to the number
of result messages generated by the sensors as well as the
number of hops required to forward the messages back to
the base station.

First, we look at the per-unit time number of result mes-
sages generated by a set of sensor nodes Nk, which is de-
noted as result(qi, Nk). At the end of each epoch of qi, one
result message would be generated by a sensor node whose
readings satisfy the predicates of qi. Therefore, we have

result(qi, Nk) =
sel(qi, Nk) · |Nk|

epochi
(1)

where sel(qi, Nk) is the selectivity of the query predicates
over Nk, which is equal to the percentage of sensor nodes in
Nk whose readings can satisfy the query predicates, epochi

is the epoch length of qi.
Second, the forwarding hops of the result messages are

determined by the message source nodes’ location at the
data routing tree. Based on Eq. (1), the number of message
transmission incurred by qi can be estimated as

trans(qi) =
max depth∑

k=1

result(qi, Nk) · k (2)

where Nk is the set of sensor nodes at the kth level of the
routing tree and max depth is the maximum depth of the
routing tree. Note that messages may be retransmitted due
to transmission failures, such as collisions. Here we assume
the number of retransmissions is proportional to trans(qi)
and can be omitted in our cost model because only relative
value is necessary to guide our query rewriting. Again, re-
transmission messages are considered in our experimental
study.

Eq. (2) provides an accurate estimation for acquisition
queries where no in-network aggregation occurs. For ag-
gregation queries, an internal node at the data routing path
can forward aggregation values instead of the original de-
tail values to reduce the number of message transmissions.
Hence the actual number of transmissions would be a value
within the range of [result(qi, N), trans(qi)], where N is
the whole set of sensors in the network. The lower bound
value happens if each node that receives a result message
also generates a result itself and can aggregate the received
result with its own result, while the upper bound value oc-
curs when no in-network aggregation can be performed at
all. Unfortunately, there is no straightforward way to es-
timate this actual value. That is because the places where
in-network aggregation occurs is hard to predict unless we
make much stronger assumptions, which is undesirable. In
this paper, we just use the lower bound value. As we will
see soon, this is conservative in that an aggregation query is
integrated with an acquisition query only if it is guaranteed
to be beneficial.

Now we can compute the cost of a query cost(qi) as

cost(qi) = trans(qi) · (Cstart + Ctrans · len(qi)) (3)

Benefit estimation. If we integrate two queries q1 and
q2 into one synthetic query q12, to ensure correctness, all
the data requested by q1 and q2 must be requested by q12.
In other words, the data requested by q12 is a superset of
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the data requested by q1 and q2. Semantic correctness con-
straints must be considered as well.

If q1 and q2 are aggregation queries (and hence q12). In
order to derive results for both q1 and q2 from the result of
q12, the two queries must have the same predicates. Hence,
the integration of two aggregation queries in this way is
guaranteed to be beneficial and hence we do not need to
estimate their benefit.

For other integrations, we have to estimate their bene-
fits. After integration, the requested attributes and predi-
cates of q12 will be the union of those of q1 and q2, while
the epoch duration should be the Greatest Common Divisor
of epoch1 and epoch2. We can estimate the cost of q12 by
using Eq. (3). The benefit of the integration is estimated as
benefit(q1, q2) = cost(q1) + cost(q2) − cost(q12).

Statistics. To compute our cost function, we have to
maintain some statistics. We use the reciprocal of the data
rate of the sensor nodes (given by the sensor specifica-
tions) as the value of Ctrans, while we periodically mea-
sure the actual average transmission startup time and use it
as Cstart. Another value to be estimated is sel(qi, Nk). To
do so, at each level of the routing tree, we can maintain the
data distribution, which is an independent problem studied
in other literatures, such as [3]. In practice, to save mainte-
nance cost, we can maintain one data distribution for mul-
tiple levels and assume the data distributions among these
levels are identical. Since our focus is on multiple query
optimization, in our experiments, we only use one distri-
bution for all the levels, which actually biases against our
techniques.

3.1.3 Greedy query insertion algorithm

Given a new query qi that arrives at the base station and a
list of currently running synthetic queries Qsyn, our greedy
query insertion algorithm (shown in Algorithm 1) works as
follows. If there is no synthetic query available, we directly
add qi in the synthetic query list. Otherwise, it searches
for the most beneficial synthetic query qid to rewrite with
this qi to produce a new synthetic query (lines 5–10). If
qid covers qi (line 11), the newly added user query qi will
not have any effect on the workload in the sensor network.
Otherwise, Integrate(qid, qi) is called to update the most
beneficial query qid into a new synthetic query. To iden-
tify that qi is covered by qid, as shown in line 6, we de-
sign the Beneficial(qi, qj) function to return the bene-
fit rate instead of the original benefit(qi, qj) defined in
Section 3.1.2. More specifically, we divide the computed
benefit(qi, qj) by cost(qi). If there is no synthetic query
that can be rewritten with the query qi so that there are ben-
efits, qi is added into the synthetic query list. Upon the
termination of the algorithm, if the synthetic query list is
changed, corresponding query abortion and injection oper-

ations will be invoked to complete the whole process.

Algorithm 1: Insert(qi, Qsyn)

if Qsyn == NULL then1
Qsyn.add(sqid); qi.qid′ ← sqid; UpdateCount(qi, sqid,2
1);

else3
qj ← Qsyn.next; max ← 0; id ← 0;4
while qj != NULL do5

BenefitRate ← Beneficial(qi, qj);6
if BenefitRate > max then7

max ← BenefitRate; id ← j;8

if max == 1 then break;9
qj ← qj .next;10

if max == 1 then11
qi.qid′ ← qid; UpdateCount(qi, qid, 1);12

else if max > 0 then13
Integrate(qid, qi); Insert(qid, Qsyn);14

else15
Qsyn.add(sqid); qi.qid′ ← sqid; UpdateCount(qi,16
sqid, 1);

It is possible that synthetical queries can further benefit
from the newly integrated synthetic query. Below shows a
simple example to illustrate the situation:

q1:select light where 280<light<600 epoch duration 2
q2:select light where 100<light<300 epoch duration 4
q3:select light where 150<light<500 epoch duration 4
For simplicity we assume all the sensor readings are uni-

form distribution and the value of (Cstart+Ctrans∗len(qi))
for any qi is equal to 1. Then, benefit(q1, q2) = d ∗
( sel(p1)

epoch1
+ sel(p2)

epoch2
− sel(p1∪p2)

GCD(epoch1,epoch2)
) = d

L ∗ (320
2 +

200
4 − 500

2 ) < 0, where L is the value range of light attribute
and d is the average depth of a node in the routing tree (i.e.
d =

∑
k Nk · k/|N |). Under this situation, q1 and q2 will

not be integrated, and both of them are directly added into
the synthetic query list as q′1 and q′2.

When q3 is admitted, benefit(q′1, q3) = d
L ∗(320

2 + 350
4 −

350
2 ) < 0, no integration with q1’. But benefit(q′2, q3) =

d
L ∗ (200

4 + 350
4 − 400

4 ) > 0, so we integrate q3 with q′2:
q′′2 :select light where 100<light<500 epoch duration 4
If we evaluate q′′2 against synthetic query q′1,

benefit(q′1, q
′′
2 ) = d

L ∗ (320
2 + 400

4 − 500
2 ) > 0, so

q′1 can benefit from new q′′2 . The resulting query is :
q′′1 : select light where 100<light<600 epoch duration 2
Hence, we need a more aggressive solution to re-

move the redundant data requests among user queries. To
achieve this, after Integrate(qid, qi) in line 14 in Algo-
rithm 1 has updated the synthetic query qid into a new
one, we iteratively exploit further benefit by rewriting
qid with the current running synthetic querylist by calling
Insert(qid, Qsyn).

The Beneficial function first identifies whether two
queries are rewritable based on semantic correctness con-
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straints, and then computes the benefit rate. The Integrate
function modifies the synthetic query qid so that all the data
requested by qi will be requested by the new qid; it is also
responsible for changing the values of the enhanced fields
of the synthetic queries shown in section 3.1.1. The modifi-
cation of the count fields upon insertion and termination is
accomplished by an UpdateCount procedure, with a flag
to differentiate increment or decrement.

3.1.4 Adaptive query termination algorithm

To handle dynamic workloads where user queries may join
or leave dynamically, we introduce a parameter α to adjust
our query termination algorithm according to the property
of application workload.

Algorithm 2: Terminate(q,Qsyn)

Find the synquery sqold that q has been written into;1
UpdateCount(q, sqold, 0);2
Remove q.qid from sqold.fromlist;3
if some count in sqold has decreased to 0 then4

if vol(q) > sqold.benefit ∗ α then5
for All query qi in sqold.fromlist do6

Insert (qi,Qsyn);7

As shown in Algorithm 2, when a query q is terminated
by a user, the synthetic query it was written into, denoted as
sqold, can be easily determined, based on the information
kept at q.qid′. Query q eliminates its contribution in the
synthetic query sqold by UpdateCount. If the count of some
field has been decreased to 0, it means that this query is the
only query that requires sqold to request some specific data.
The termination of this query may trigger the reconstruction
of the synthetic queries.

We hide the effect of termination of query q from the
sensor network by keeping the old synthetic query sqold un-
changed, if the following condition is satisfied:

|sqold.benefit − sqold.benefit′|
sqold.benefit

≤ α

where sqold.benefit′ is the new benefit value of sqold after
the removal of q. Since cost(q) is equal to sqold.benefit −
sqold.benefit′ according to Section 3.1.2, the condition can
also be represented as: cost(q) <= sqold.benefit ∗ α (line
5). If such condition is not satisfied, we re-insert the re-
maining user queries contained in sqold in the same way as
the newly arrival queries (lines 6-7). α is a system pa-
rameter to tune the aggressiveness of query rewriting upon
query termination. A good α value can avoid frequent query
abortion and injection to the sensor network, which are also
costly operations.

Moreover, when there are considerable similarity be-
tween queries, it is very likely that the query insertion and

termination can be handled at the base station, without af-
fecting the sensor network.

3.2. In-network Optimization Algorithm

We note that the base station optimization is able to
exploit the similarity among queries and eliminate the re-
dundancy among queries through greedy query rewriting.
However, the base station optimization does not support
sharing of the commonality among queries at the finest
granularity. Since every query from the base station has the
same meaning for each sensor node all the time, the base
station optimization is a “all-or-nothing” approach. More-
over, base station optimization cannot take advantage of the
special properties of sensor nodes, such as the broadcast
nature of sensor radio transmission. Hence, we have our
second-tier optimization inside the wireless sensor network,
called in-network optimization, where sensors make local
decisions by themselves and behave adaptively to the query
workload with time.

3.2.1 Sharing Over Time

Consider two queries q1 and q2, whose only difference is
their epoch durations. If the epoch duration of one query
can be divided by that of the other (such as 2048ms and
4096ms), these two queries can be integrated into one ac-
cording to the base station algorithm in Section 3.1 and
thus the common result transmissions are shared. Other-
wise (such as 4096ms and 6144ms), these two queries are
sent into the network as two independent queries because
we are not be able to construct a beneficial synthetic query.
However, in this case, half of the data requested by q2 are
also requested by q1, which can be saved if we can schedule
these two queries properly.

Based on the above observation, we exploit more shar-
ing by scheduling the data acquisition and transmission of
all queries in a whole. After a new query is propagated to
the network, we (re)set the node’s clock to fire at the GCD
(Greatest Common Divisor) of the epoch durations of all
the queries. The epoch start time for the new query on a
sensor node is set to be divisible by the epoch duration (the
smallest allowed epoch duration is 2048ms, and we assume
that every epoch duration is divisible by it). In this way,
the latency of the first epoch may be longer; however, for
a continuous query, this extra latency for the first epoch is
acceptable. On the other hand, by introducing such a lit-
tle delay, various queries that have the same epoch dura-
tion will start sampling at the same time in every epoch,
and hence can share sample acquisition. More specifically,
when the clock is fired at time t, if there exists any qi such
that t mod qi.epoch = 0, a shared data acquisition is con-
ducted for all such qis.
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3.2.2 Sharing Over Space

After the sample rate has been set at each node, data will be
retrieved periodically and transmitted out of the network to
the base station. During the query result collection, we use
the following optimization heuristics to aggressively share
data over space. Each sensor node dynamically selects a
route (parent) that is aware of the query space; in the mean-
while, it tries to take advantage of the broadcast nature of
the radio channel to satisfy multiple queries in one message.

In TinyDB, a parent node is associated with each node
based on the link quality, and hence a fixed routing tree is
constructed, which is ignorant of the query space. In our
scheme, we focus on the data that are required by queries
during specific time interval. We let the source sensor node
multicast/unicast the data along a DAG with the base station
as the sink point, and dynamically form the routing trees
for various queries at the same time. The scheme works as
follows:

Query Propagation Phase. Queries are flooded
throughout the network from the base station. For a value-
based query, flooding is necessary, because the accurate set
of sensors that have data for the query are not known a prior
to the base station and the set of sensor nodes can vary with
time as well. If the query is a region-based query or a node-
id based query, the set of answer nodes are known in ad-
vance, and more efficient techniques such as SRT [6] can
be used. Here, we let every sensor decide where to propa-
gate to based on its local information about neighbors.

When the query is propagated from node x at level i
to level i + 1, node x checks whether it has the data the
query retrieves, and piggybacks this information down. In
the meanwhile, the DAG is formed by having an edge from
every node to each of its upper level neighbors (If the net-
work is too dense and not all neighbors can be maintained,
preference is given to the neighbors that also have query re-
sult to transmit). If the data at node x does not satisfy any
query, x switches into sleep mode and will wake up after a
predefined time. When it wakes up, if it finds that its current
data satisfies a query, it sends a one-hop broadcast message
so that its lower level neighbors would consider the node as
an option to relay its data.

Result Collection Phase. When the data of a sensor
node satisfy the predicates of any query that is triggered
at the current time, the node will pack the data and select
routes to forward them. Data acquisition queries and ag-
gregation queries are processed independently, and hence
the way they can share their common data in the network
is different. For data aggregation queries, in-network ag-
gregation at internal nodes is applied and each aggregation
operator (such as MAX) is processed with a result message.
Thus, one data message can be packed to share among all
of the queries whose partial aggregation value are the same.
For data acquisition queries, the sensor node generates a re-

sult message that contains the requesting attributes of all the
queries whose predicates are satisfied. In this way, the mes-
sage transmission can be shared among multiple queries,
and would be further forwarded all the way along until the
base station. Note that the length of a shared message may
be larger, but it is cheaper to transmit one shared message
than multiple query result messages.

After the result messages are generated, each sensor
node dynamically chooses a parent for each message based
on local information. To intelligently select a route to trans-
mit data, each node keeps a list of its neighbors as what
is done in TinyDB, but we also maintains the information
about whether its upper level neighbor has data for each
query, which was achieved through piggyback mentioned
above. When a node x at level k has result messages for
one or more queries, it checks whether there is a neighbor
at level k − 1 that also has data for these queries. Neigh-
bors with data for more queries have higher priority to be
chosen. Ties are broken by favoring those nodes with more
stable link with x. In this case, unicast message is sent to
the chosen neighbor to further forward or aggregate. Other-
wise, if multiple neighbors are chosen (each is responsible
for forwarding message for a subset of queries), one multi-
cast message is required to send out the message to all these
neighbors.

When an upper level node y receives a multicast mes-
sage and it is one of the destinations of the multicast mes-
sage, from the packet header, it identifies the set of queries
that the message is for. It may perform necessary process-
ing on the message (e.g. aggregate with its own data for
aggregation query) and choose an upper level neighbor to
forward the message. This procedure repeats until the mes-
sage reaches the base station.

Discussion. In real applications, sensor readings are of-
ten spatially and temporally correlated, and hence the set of
sensor nodes involved in a query are likely to be spatially
connected and temporally stable. When a node has a re-
sult message for a set of queries, it is very likely that one
of its neighbors would also have one for those queries. Un-
der the dynamic route selection strategy together with mul-
ticast, such result transmission cost can be shared among
queries. This is especially beneficial for aggregate queries,
whose common partial aggregation will continue to be ag-
gregated with other partial data at the upper level nodes to
further reduce the radio transmission.

From the above, we can see that much data transmis-
sion and energy can be saved by enabling sensor nodes to
make intelligent local decisions: a sensor node only needs
to transmit its data once to answer all the data acquisi-
tion queries; in-network aggregation is conducted sooner
for data aggregation queries; the nodes that have no data to
transmit can operate in a sleep mode to save energy.

In Figure 2, we illustrate the algorithm by a simple ex-
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Figure 2. Routing tree in TinyDB

ample. The solid lines denote the routing tree in TinyDB,
and dotted lines represent the radio range of a node. Sup-
pose D, E, F, G, H are queried by data acquisition query qi,
and D, G, H are queried by data acquisition query qj , and
both queries need data at time t. Using TinyDB, to answer
qi, all nodes will be involved. To answer qj , nodes D, G,
H will conduct sample acquisition again and intermediate
nodes will relay their data twice. Hence, in total, 8 sensor
nodes are involved, and 12+8=20 radio messages are trans-
mitted. Using our DAG, G will choose D instead of C to
relay for both qi and qj , and hence node C and A can be
instructed to sleep. The data message from node D, G and
H can be transmitted only once to answer both of queries.
Thus, a total of 6 sensor nodes are involved and 4+8=12
radio messages are transmitted.

For data aggregation queries, even more messages and
energy can be saved. By dynamically choosing node D as
the parent of node G, the aggregation for data at node G
that is supposed to be done at base station is done sooner
at D. Moreover, the aggregation from nodes G, H and D
can be shared at D among qi and qj . Thus, even node B
still needs to send one aggregated message representing qi

and qj respectively due to the further aggregation of data
at E and F for qi at B, only 7 out of 14 messages will be
transmitted in total.

4. Experimental evaluation

In this section, we shall present representative exper-
imental results to show the performance of our scheme.
More details can be found in [14].

4.1. Methodology

We have implemented our TTMQO scheme on top of
TinyDB, the most popular query processing system for sen-
sor networks. In our experiments, we used the packet-level
TOSSIM [5], an emulator for TinyOS-based sensor net-
works.

We assume that the sensor nodes are deployed uniformly
in a n× n two-dimensional grid, with the base station node
0 at the upper left corner. The radio transmission radius is

set to be 50 feet, while the grid spacing is 20 feet. In this
work, we assume a lossless communication environment in
which each node could transmit data to sensor nodes that are
within its radio range. As a reference, we use the following
strategy as the baseline for comparison: each query is opti-
mized by TinyDB, and multiple queries that have been sent
to the base station are all injected into the network to run
concurrently without multi-query optimization.

The cost of radio transmission is our performance metric
to minimize energy and bandwidth in the sensor network.
The cost function there actually tries to measure the trans-
mission time of the result messages. To be realistic, we
count in the transmission time of all radio messages, which
comprise result transmission messages, query propagation
and abortion messages, network maintenance messages and
retransmission messages due to transmission failure. More
specifically, we report the average transmission time in our
figures, which measures the average percentage of transmis-
sion time spent on each node for all running queries over the
simulation time.

4.2. Impact of optimization tiers

In this section, we study the performance gain we can
achieve with each optimization tier. We construct three
static workloads. The WORKLOADA is designed to fo-
cus on the (common) savings that can be achieved by both
the base station optimization and in-network optimization;
the WORKLOADB is used to show the complementary
of in-network optimization to base station optimization; the
WORKLOADC is designed to test the mutual comple-
mentary of these two optimizations.
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Figure 3. Average Transmission Time

From the results in Figure 3, we can see that our op-
timization algorithms behave as what we have expected.
For WORKLOADA, the base station optimization and
in-network optimization algorithm both eliminated the re-
dundant data requests for similar queries, though in dif-
ferent ways. Compared with base station optimization, in-
network optimization can more progressively share data re-
quested over time and space, but it cannot enable aggrega-
tion queries to benefit from data acquisition queries in ad-
dition to its larger message size to support multiple queries.
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The average transmission time by the two tiers shown are
quite similar, and have both been significantly reduced by
up to around 61% and 75% compared with that of the base-
line when the number of nodes is 16 and 64 respectively.

For WORKLOADB , as designed, the average trans-
mission time under in-network optimization is considerably
smaller than that under base station optimization, as shown
in Figure 3. Interestingly, the percentage of improvements
by in-network optimization is much bigger in the network
with 64 nodes than 16 nodes, compared with that of base
station optimization. Since the number of radio messages at
each node for aggregation queries will not increase with net-
work size while that for data acquisition queries will be pro-
portional to the network size, the number of radio messages
under in-network optimization grows much slower than that
under the base station optimization, and consequently the
percentage of improvement on number of radio messages
increases faster. As we analyzed in Section 3.1.2, the av-
erage transmission time increases with the number of radio
messages, and thus the percentage of improvement on aver-
age transmission time increases faster.

The results under WORKLOADC (see Figure 3) show
that the TTMQO performs much better than applying in-
network optimization or base station optimization sepa-
rately. It shows that the two tiers are mutually comple-
mentary, and it is beneficial to apply in-network optimiza-
tion after base station optimization. In-network optimiza-
tion does not support the similarity sharing among aggre-
gation queries and data acquisition queries, but base sta-
tion optimization can support it in the finest granularity.
By applying base station optimization first, the aggregation
queries whose answers can be derived from data acquisi-
tion queries are suppressed from injecting into the sensor
network, so the in-network optimization will not face the
problem of doing extra work to answer these aggregation
queries; moreover, with the common sharing that can be
achieved by both tiers enabled at the base station, the in-
network message size will not be unnecessarily enlarged.
On the other hand, the in-network optimization can effec-

tively handle the situation where the queries cannot be ef-
fectively rewritten by base station optimization due to epoch
duration constraint. It is also interesting to note that: when
the number of nodes is 16, base station optimization is more
effective than in-network optimization; while the contrary is
true when the number of nodes has increased to 64. This is
due to the same reason that applies to the scenario where
there is fast increase in the percentage of improvement by
in-network optimization as network size grows which we
have explained above. Our two-tier optimization scheme is
shown to improve up to 82% in terms of the transmission
time, which implies that it can save much bandwidth and
energy.

4.3. Performance under adaptive workloads

We evaluate the TTMQO scheme against various adap-
tive workloads. First, we evaluate the scalability of our
TTMQO scheme with the number of queries and study
the effect of parameter α with a model of queries that
randomly select attributes (nodeid,light,temp), aggregations
(MAX, MIN), predicates and epoch durations (from short-
est 8092ms to longest 24576ms, all divisible by 4096ms).
We keep the average arrival frequency at 40s per query, but
we vary the average duration so that the average number of
concurrent queries is changing. A set of workload is com-
plete after the termination of 500 queries. We divide the
sum of benefit by the sum of the cost() of every query to
get benefit ratio. Though we do not study skewed query
workload, we expect the similarity to be greater among such
workload, and the benefit can be even bigger.

Given random queries, as we can see in Figure 4(a),
the benefit ratio increases significantly from around 32%
to 82% as the number of current queries increases from 8
to 48. Comparing with the effect of number of concurrently
running queries, the parameter α has less effect on the ben-
efit ratio. As shown in Figure 4(b) , when there are 8 simul-
taneous queries, the most benefit is obtained when α=0.6,
which validates our analysis of Section 3.1.4. When α is too
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small, the significantly overlapped remaining queries may
be forced to rewrite with other synthetic queries which may
incur less benefit than original old synthetic query; on the
other hand, when α is too big, unnecessary data fetched for
previously-existed queries may incur so much overhead that
it is better to rewrite the remaining queries.

Figure 4(c) shows that our scheme can scale pretty well
with the number of concurrent queries. The average num-
ber of synthetic queries is less than 4 even when the number
of concurrent queries reaches 48. As the value of α in-
creases, the average number of synthetic queries slightly
decreases, because bigger value of α favors keeping the
old single synthetic query instead of rewriting the remained
queries into a new synthetic query set whose number is gen-
erally bigger than 1.

Next, we further evaluate our TTMQO scheme against
workloads with various specific properties. More specifi-
cally, different composition of aggregation and data acqui-
sition queries with predicates of different selectivity is uti-
lized. In this experiment, the number of concurrent queries
is 8; data acquisition queries retrieve all the attributes; ag-
gregation queries request for MAX(light); selectivity of
predicates = 0.6 means that one of the attributes (nodeid,
light, temp) is randomly specified in the query predicate
with a range coverage as 0.6. Figure 5 shows that the per-
centage of transmission time savings grows with selectiv-
ity of predicates for all workloads, because there is higher
probability that queries request similar data, which also sug-
gests that similarity among queries with same epoch dura-
tion or different epoch durations are both well exploited,
and much savings are introduced by our TTMQO scheme.
More carefully, we can see that when the selectivity of pred-
icates is 1, 8 data acquisition queries with the same epoch
duration achieves around 89.7% message savings, which is
even more significant than the theoretical value 7

8 , because
less result message transmission required by TTMQO in-
curs less transmission failure and radio message retransmis-
sion. And, it is interesting to note that with 100% aggre-
gation queries, there is a sharp performance improvement
when the selectivity of predicates reaches 1. This is be-
cause base station optimization cannot effectively optimize
two data aggregation queries with different predicates due
to semantic correctness constraints as discussed in section
3.1.2, and only in-network optimization scheme can take ef-
fect by selecting proper routes to enable aggregation as soon
as possible and sharing data among queries when the value
of their partial aggregation is the same.

5. Conclusion

In this paper, we have proposed a two-tier multiple query
optimization scheme (TTMQO) to enable similar queries to
share both communication and computational resources in

the sensor network. Our experimental results showed that
the TTMQO scheme can provide significant performance
improvements, with lower cost of radio transmission (aver-
age transmission time), and can scale well with the number
of concurrently running queries. Currently, our multi-query
optimization algorithm has not taken into consideration of
node failures and unreliable wireless transmissions that are
inherent with wireless sensor networks. We plan to study
quality-of-service driven multi-query optimization in the fu-
ture. Furthermore, we would like to extend our multiple
query optimization to support more complex queries such
as self-join queries [15].
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